Upload ./RepCodec/repcodec/tokenize.py with huggingface_hub
Browse files- RepCodec/repcodec/tokenize.py +212 -0
RepCodec/repcodec/tokenize.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) ByteDance, Inc. and its affiliates.
|
2 |
+
# Copyright (c) Chutong Meng
|
3 |
+
#
|
4 |
+
# This source code is licensed under the MIT license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import argparse
|
8 |
+
import os
|
9 |
+
from pathlib import Path
|
10 |
+
from typing import Tuple, List, Optional
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
import yaml
|
15 |
+
from tqdm import tqdm
|
16 |
+
|
17 |
+
from repcodec.RepCodec import RepCodec
|
18 |
+
|
19 |
+
ALL_MODELS = {
|
20 |
+
"data2vec_base_l6": 768,
|
21 |
+
"data2vec_large_l18": 1024,
|
22 |
+
"hubert_base_l9": 768,
|
23 |
+
"hubert_large_l18": 1024,
|
24 |
+
"whisper_medium_l24": 1024,
|
25 |
+
"whisper_large_l32": 1280
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
def parse_args():
|
30 |
+
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
31 |
+
parser.add_argument(
|
32 |
+
"in_dir",
|
33 |
+
type=str,
|
34 |
+
help="directory of representations to be tokenized."
|
35 |
+
)
|
36 |
+
parser.add_argument(
|
37 |
+
"--model",
|
38 |
+
required=True,
|
39 |
+
type=str,
|
40 |
+
help="path of the RepCodec model."
|
41 |
+
)
|
42 |
+
parser.add_argument(
|
43 |
+
"--tsv_path",
|
44 |
+
required=True,
|
45 |
+
type=str,
|
46 |
+
help="path of the tsv file."
|
47 |
+
)
|
48 |
+
parser.add_argument(
|
49 |
+
"--model_config_path",
|
50 |
+
default=None,
|
51 |
+
type=str,
|
52 |
+
help="please provide this training config if you are using the model you trained yourself."
|
53 |
+
)
|
54 |
+
parser.add_argument(
|
55 |
+
"--n_shard",
|
56 |
+
required=False,
|
57 |
+
type=int,
|
58 |
+
default=1,
|
59 |
+
help="number of shards of representations."
|
60 |
+
)
|
61 |
+
parser.add_argument(
|
62 |
+
"--use_gpu",
|
63 |
+
default=False,
|
64 |
+
action="store_true",
|
65 |
+
help="whether use gpu for inference."
|
66 |
+
)
|
67 |
+
parser.add_argument(
|
68 |
+
"--batch_size",
|
69 |
+
default=1,
|
70 |
+
type=int,
|
71 |
+
help="number of utterances for each mini batch."
|
72 |
+
)
|
73 |
+
parser.add_argument(
|
74 |
+
"--out_dir",
|
75 |
+
type=str,
|
76 |
+
default=".",
|
77 |
+
help="the directory to save the output."
|
78 |
+
)
|
79 |
+
return parser.parse_args()
|
80 |
+
|
81 |
+
|
82 |
+
def load_model(model_path: str, config_path: Optional[str] = None):
|
83 |
+
if config_path is None:
|
84 |
+
name = os.path.basename(model_path).strip(".pkl")
|
85 |
+
assert name in ALL_MODELS.keys(), f"Cannot find configs for {model_path}. " \
|
86 |
+
f"Please provide the config file you used for training."
|
87 |
+
config = os.path.join(os.path.dirname(__file__), "configs", f"repcodec_dim{ALL_MODELS[name]}.yaml")
|
88 |
+
with open(config) as fp:
|
89 |
+
conf = yaml.load(fp, Loader=yaml.FullLoader)
|
90 |
+
else:
|
91 |
+
with open(config_path) as fp:
|
92 |
+
conf = yaml.load(fp, Loader=yaml.FullLoader)["model_params"]
|
93 |
+
|
94 |
+
model = RepCodec(**conf)
|
95 |
+
model.load_state_dict(torch.load(model_path, map_location="cpu")["model"]["repcodec"])
|
96 |
+
model.quantizer.initial()
|
97 |
+
model.eval()
|
98 |
+
return model
|
99 |
+
|
100 |
+
|
101 |
+
def load_shard(in_dir: Path, rank: int, n_shard: int) -> Tuple[np.ndarray, List[int]]:
|
102 |
+
feat_path = in_dir / f"{rank}_{n_shard}.npy"
|
103 |
+
len_path = in_dir / f"{rank}_{n_shard}.len"
|
104 |
+
|
105 |
+
with open(len_path) as fp:
|
106 |
+
lengths = [int(line.strip()) for line in fp]
|
107 |
+
|
108 |
+
return np.load(feat_path.as_posix(), mmap_mode="r"), lengths
|
109 |
+
|
110 |
+
|
111 |
+
def pad_data(data: List[np.ndarray]) -> List[np.ndarray]:
|
112 |
+
max_len = max([d.shape[0] for d in data])
|
113 |
+
data = [
|
114 |
+
np.pad(d, [(0, max_len - d.shape[0]), (0, 0)], "constant", constant_values=0.0)
|
115 |
+
for d in data
|
116 |
+
]
|
117 |
+
return data
|
118 |
+
|
119 |
+
|
120 |
+
def make_batch_data(data: np.ndarray, shard_lengths: List[int], batch_size: int):
|
121 |
+
batch_data = []
|
122 |
+
batch_lens = []
|
123 |
+
offsets = np.cumsum([0] + shard_lengths)
|
124 |
+
assert len(data) == offsets[-1], f"{len(data)} {offsets[-1]}"
|
125 |
+
|
126 |
+
# from longest to shortest
|
127 |
+
for i in range(len(shard_lengths)):
|
128 |
+
if batch_size > len(batch_data):
|
129 |
+
batch_data.append(data[offsets[i]: offsets[i + 1]])
|
130 |
+
batch_lens.append(shard_lengths[i])
|
131 |
+
else:
|
132 |
+
yield {
|
133 |
+
"data": torch.tensor(np.stack(pad_data(batch_data)), dtype=torch.float), # (bsz, seq len, hidden dim)
|
134 |
+
"lengths": batch_lens
|
135 |
+
}
|
136 |
+
batch_data = [data[offsets[i]: offsets[i + 1]]]
|
137 |
+
batch_lens = [shard_lengths[i]]
|
138 |
+
if len(batch_data) > 0:
|
139 |
+
yield {
|
140 |
+
"data": torch.tensor(np.stack(pad_data(batch_data)), dtype=torch.float),
|
141 |
+
"lengths": batch_lens
|
142 |
+
}
|
143 |
+
|
144 |
+
|
145 |
+
def tokenize_batch(model: RepCodec, batch: dict, device: str) -> List[List[int]]:
|
146 |
+
with torch.no_grad():
|
147 |
+
data = batch["data"].transpose(1, 2).to(device) # (bsz, hidden dim, seq len)
|
148 |
+
x = model.encoder(data)
|
149 |
+
z = model.projector(x)
|
150 |
+
_, idx = model.quantizer.codebook.forward_index(z.transpose(2, 1))
|
151 |
+
|
152 |
+
# when bsz=1: (1, seq len)
|
153 |
+
if idx.dim() == 2:
|
154 |
+
return idx.cpu().data.numpy().tolist()
|
155 |
+
# when bsz>1: (1, bsz, seq len)
|
156 |
+
tokens = idx.cpu().data.numpy().tolist()[0]
|
157 |
+
res = []
|
158 |
+
batch_lens = batch["lengths"]
|
159 |
+
for i in range(len(tokens)):
|
160 |
+
n_tokens = batch_lens[i]
|
161 |
+
res.append(tokens[i][:n_tokens])
|
162 |
+
return res
|
163 |
+
|
164 |
+
|
165 |
+
def load_tsv(path: str):
|
166 |
+
with open(path) as fp:
|
167 |
+
root = fp.readline().strip()
|
168 |
+
names = []
|
169 |
+
for line in fp:
|
170 |
+
names.append(line.strip().split("\t")[0])
|
171 |
+
return root, names
|
172 |
+
|
173 |
+
|
174 |
+
def cli():
|
175 |
+
args = parse_args()
|
176 |
+
device = "cuda" if args.use_gpu else "cpu"
|
177 |
+
|
178 |
+
model = load_model(model_path=args.model, config_path=args.model_config_path)
|
179 |
+
model.to(device)
|
180 |
+
|
181 |
+
in_dir = Path(args.in_dir)
|
182 |
+
n_shard = args.n_shard
|
183 |
+
batch_size = args.batch_size
|
184 |
+
|
185 |
+
root_dir, file_names = load_tsv(args.tsv_path)
|
186 |
+
|
187 |
+
output_dir = args.out_dir
|
188 |
+
os.makedirs(output_dir, exist_ok=True)
|
189 |
+
|
190 |
+
processed_cnt = 0
|
191 |
+
pbar = tqdm(total=len(file_names))
|
192 |
+
with open(os.path.join(output_dir, "tokens"), mode="w+") as fp:
|
193 |
+
fp.write(f"{root_dir}\n")
|
194 |
+
|
195 |
+
for rank in range(n_shard):
|
196 |
+
shard_data, shard_lengths = load_shard(in_dir, rank, n_shard)
|
197 |
+
for batch in make_batch_data(shard_data, shard_lengths, batch_size=batch_size):
|
198 |
+
batch_tokens = tokenize_batch(model, batch, device)
|
199 |
+
|
200 |
+
for tokens in batch_tokens:
|
201 |
+
fp.write(f"{file_names[processed_cnt]}\t{' '.join(map(str, tokens))}\n")
|
202 |
+
processed_cnt += 1
|
203 |
+
|
204 |
+
pbar.update(len(batch_tokens))
|
205 |
+
assert processed_cnt == len(file_names), f"# lines of tsv do not match # of representations!"
|
206 |
+
|
207 |
+
pbar.close()
|
208 |
+
print("Tokenize successfully!")
|
209 |
+
|
210 |
+
|
211 |
+
if __name__ == '__main__':
|
212 |
+
cli()
|