|
import os |
|
import subprocess |
|
|
|
|
|
subprocess.run( |
|
"pip install flash-attn --no-build-isolation", |
|
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, |
|
shell=True, |
|
) |
|
|
|
import spaces |
|
import os |
|
import torch |
|
import numpy as np |
|
from omegaconf import OmegaConf |
|
import torchaudio |
|
from torchaudio.transforms import Resample |
|
import soundfile as sf |
|
import uuid |
|
from tqdm import tqdm |
|
from einops import rearrange |
|
import gradio as gr |
|
import re |
|
from collections import Counter |
|
from codecmanipulator import CodecManipulator |
|
from mmtokenizer import _MMSentencePieceTokenizer |
|
from transformers import AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList |
|
|
|
from vocoder import build_codec_model, process_audio |
|
from post_process_audio import replace_low_freq_with_energy_matched |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model") |
|
codectool = CodecManipulator("xcodec", 0, 1) |
|
codectool_stage2 = CodecManipulator("xcodec", 0, 8) |
|
|
|
|
|
def load_models(): |
|
|
|
stage1_model = AutoModelForCausalLM.from_pretrained( |
|
"m-a-p/YuE-s1-7B-anneal-en-cot", |
|
torch_dtype=torch.bfloat16, |
|
attn_implementation="flash_attention_2" |
|
).to(device) |
|
stage1_model.eval() |
|
|
|
|
|
stage2_model = AutoModelForCausalLM.from_pretrained( |
|
"m-a-p/YuE-s2-1B-general", |
|
torch_dtype=torch.float16, |
|
attn_implementation="flash_attention_2" |
|
).to(device) |
|
stage2_model.eval() |
|
|
|
|
|
model_config = OmegaConf.load('./xcodec_mini_infer/final_ckpt/config.yaml') |
|
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device) |
|
parameter_dict = torch.load('./xcodec_mini_infer/final_ckpt/ckpt_00360000.pth', map_location='cpu') |
|
codec_model.load_state_dict(parameter_dict['codec_model']) |
|
codec_model.eval() |
|
|
|
return stage1_model, stage2_model, codec_model |
|
|
|
stage1_model, stage2_model, codec_model = load_models() |
|
|
|
|
|
def split_lyrics(lyrics): |
|
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)" |
|
segments = re.findall(pattern, lyrics, re.DOTALL) |
|
return [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments] |
|
|
|
def load_audio_mono(filepath, sampling_rate=16000): |
|
audio, sr = torchaudio.load(filepath) |
|
audio = torch.mean(audio, dim=0, keepdim=True) |
|
if sr != sampling_rate: |
|
resampler = Resample(orig_freq=sr, new_freq=sampling_rate) |
|
audio = resampler(audio) |
|
return audio |
|
|
|
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False): |
|
folder_path = os.path.dirname(path) |
|
if not os.path.exists(folder_path): |
|
os.makedirs(folder_path) |
|
limit = 0.99 |
|
max_val = wav.abs().max() |
|
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit) |
|
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16) |
|
|
|
|
|
def stage1_generate(genres, lyrics_text, use_audio_prompt, audio_prompt_path, prompt_start_time, prompt_end_time): |
|
structured_lyrics = split_lyrics(lyrics_text) |
|
full_lyrics = "\n".join(structured_lyrics) |
|
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"] + structured_lyrics |
|
|
|
random_id = str(uuid.uuid4()) |
|
output_dir = os.path.join("./output", random_id) |
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
stage1_output_set = [] |
|
for i, p in enumerate(tqdm(prompt_texts)): |
|
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '') |
|
guidance_scale = 1.5 if i <= 1 else 1.2 |
|
|
|
if i == 0: |
|
continue |
|
|
|
if i == 1 and use_audio_prompt: |
|
audio_prompt = load_audio_mono(audio_prompt_path) |
|
audio_prompt.unsqueeze_(0) |
|
with torch.no_grad(): |
|
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5) |
|
raw_codes = raw_codes.transpose(0, 1).cpu().numpy().astype(np.int16) |
|
audio_prompt_codec = codectool.npy2ids(raw_codes[0])[int(prompt_start_time * 50): int(prompt_end_time * 50)] |
|
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa] |
|
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]") |
|
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids |
|
else: |
|
head_id = mmtokenizer.tokenize(prompt_texts[0]) |
|
|
|
prompt_ids = head_id + mmtokenizer.tokenize("[start_of_segment]") + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids |
|
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device) |
|
|
|
with torch.no_grad(): |
|
output_seq = stage1_model.generate( |
|
input_ids=prompt_ids, |
|
max_new_tokens=3000, |
|
min_new_tokens=100, |
|
do_sample=True, |
|
top_p=0.93, |
|
temperature=1.0, |
|
repetition_penalty=1.2, |
|
eos_token_id=mmtokenizer.eoa, |
|
pad_token_id=mmtokenizer.eoa, |
|
) |
|
|
|
if i > 1: |
|
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, prompt_ids.shape[-1]:]], dim=1) |
|
else: |
|
raw_output = output_seq |
|
|
|
|
|
ids = raw_output[0].cpu().numpy() |
|
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist() |
|
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist() |
|
|
|
vocals = [] |
|
instrumentals = [] |
|
for i in range(len(soa_idx)): |
|
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]] |
|
if codec_ids[0] == 32016: |
|
codec_ids = codec_ids[1:] |
|
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)] |
|
vocals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0]) |
|
vocals.append(vocals_ids) |
|
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1]) |
|
instrumentals.append(instrumentals_ids) |
|
|
|
vocals = np.concatenate(vocals, axis=1) |
|
instrumentals = np.concatenate(instrumentals, axis=1) |
|
vocal_save_path = os.path.join(output_dir, f"vocal_{random_id}.npy") |
|
inst_save_path = os.path.join(output_dir, f"instrumental_{random_id}.npy") |
|
np.save(vocal_save_path, vocals) |
|
np.save(inst_save_path, instrumentals) |
|
stage1_output_set.append(vocal_save_path) |
|
stage1_output_set.append(inst_save_path) |
|
|
|
return stage1_output_set, output_dir |
|
|
|
|
|
def stage2_generate(model, prompt, batch_size=16): |
|
codec_ids = codectool.unflatten(prompt, n_quantizer=1) |
|
codec_ids = codectool.offset_tok_ids( |
|
codec_ids, |
|
global_offset=codectool.global_offset, |
|
codebook_size=codectool.codebook_size, |
|
num_codebooks=codectool.num_codebooks, |
|
).astype(np.int32) |
|
|
|
if batch_size > 1: |
|
codec_list = [] |
|
for i in range(batch_size): |
|
idx_begin = i * 300 |
|
idx_end = (i + 1) * 300 |
|
codec_list.append(codec_ids[:, idx_begin:idx_end]) |
|
codec_ids = np.concatenate(codec_list, axis=0) |
|
prompt_ids = np.concatenate( |
|
[ |
|
np.tile([mmtokenizer.soa, mmtokenizer.stage_1], (batch_size, 1)), |
|
codec_ids, |
|
np.tile([mmtokenizer.stage_2], (batch_size, 1)), |
|
], |
|
axis=1 |
|
) |
|
else: |
|
prompt_ids = np.concatenate([ |
|
np.array([mmtokenizer.soa, mmtokenizer.stage_1]), |
|
codec_ids.flatten(), |
|
np.array([mmtokenizer.stage_2]) |
|
]).astype(np.int32) |
|
prompt_ids = prompt_ids[np.newaxis, ...] |
|
|
|
codec_ids = torch.as_tensor(codec_ids).to(device) |
|
prompt_ids = torch.as_tensor(prompt_ids).to(device) |
|
len_prompt = prompt_ids.shape[-1] |
|
|
|
block_list = LogitsProcessorList([BlockTokenRangeProcessor(0, 46358), BlockTokenRangeProcessor(53526, mmtokenizer.vocab_size)]) |
|
|
|
for frames_idx in range(codec_ids.shape[1]): |
|
cb0 = codec_ids[:, frames_idx:frames_idx + 1] |
|
prompt_ids = torch.cat([prompt_ids, cb0], dim=1) |
|
input_ids = prompt_ids |
|
|
|
with torch.no_grad(): |
|
stage2_output = model.generate( |
|
input_ids=input_ids, |
|
min_new_tokens=7, |
|
max_new_tokens=7, |
|
eos_token_id=mmtokenizer.eoa, |
|
pad_token_id=mmtokenizer.eoa, |
|
logits_processor=block_list, |
|
) |
|
|
|
assert stage2_output.shape[1] - prompt_ids.shape[1] == 7, f"output new tokens={stage2_output.shape[1] - prompt_ids.shape[1]}" |
|
prompt_ids = stage2_output |
|
|
|
if batch_size > 1: |
|
output = prompt_ids.cpu().numpy()[:, len_prompt:] |
|
output_list = [output[i] for i in range(batch_size)] |
|
output = np.concatenate(output_list, axis=0) |
|
else: |
|
output = prompt_ids[0].cpu().numpy()[len_prompt:] |
|
|
|
return output |
|
|
|
def stage2_inference(model, stage1_output_set, output_dir, batch_size=4): |
|
stage2_result = [] |
|
for i in tqdm(range(len(stage1_output_set))): |
|
output_filename = os.path.join(output_dir, os.path.basename(stage1_output_set[i])) |
|
if os.path.exists(output_filename): |
|
continue |
|
|
|
prompt = np.load(stage1_output_set[i]).astype(np.int32) |
|
output_duration = prompt.shape[-1] // 50 // 6 * 6 |
|
num_batch = output_duration // 6 |
|
|
|
if num_batch <= batch_size: |
|
output = stage2_generate(model, prompt[:, :output_duration * 50], batch_size=num_batch) |
|
else: |
|
segments = [] |
|
num_segments = (num_batch // batch_size) + (1 if num_batch % batch_size != 0 else 0) |
|
for seg in range(num_segments): |
|
start_idx = seg * batch_size * 300 |
|
end_idx = min((seg + 1) * batch_size * 300, output_duration * 50) |
|
current_batch_size = batch_size if seg != num_segments - 1 or num_batch % batch_size == 0 else num_batch % batch_size |
|
segment = stage2_generate(model, prompt[:, start_idx:end_idx], batch_size=current_batch_size) |
|
segments.append(segment) |
|
output = np.concatenate(segments, axis=0) |
|
|
|
if output_duration * 50 != prompt.shape[-1]: |
|
ending = stage2_generate(model, prompt[:, output_duration * 50:], batch_size=1) |
|
output = np.concatenate([output, ending], axis=0) |
|
output = codectool_stage2.ids2npy(output) |
|
|
|
fixed_output = copy.deepcopy(output) |
|
for i, line in enumerate(output): |
|
for j, element in enumerate(line): |
|
if element < 0 or element > 1023: |
|
counter = Counter(line) |
|
most_frequant = sorted(counter.items(), key=lambda x: x[1], reverse=True)[0][0] |
|
fixed_output[i, j] = most_frequant |
|
np.save(output_filename, fixed_output) |
|
stage2_result.append(output_filename) |
|
return stage2_result |
|
|
|
|
|
@spaces.GPU() |
|
def generate_music(genres, lyrics_text, use_audio_prompt, audio_prompt, start_time, end_time, progress=gr.Progress()): |
|
progress(0.1, "Running Stage 1 Generation...") |
|
stage1_output_set, output_dir = stage1_generate(genres, lyrics_text, use_audio_prompt, audio_prompt, start_time, end_time) |
|
|
|
progress(0.6, "Running Stage 2 Refinement...") |
|
stage2_result = stage2_inference(stage2_model, stage1_output_set, output_dir) |
|
|
|
progress(0.8, "Processing Audio...") |
|
vocal_decoder, inst_decoder = build_codec_model('./xcodec_mini_infer/decoders/config.yaml', './xcodec_mini_infer/decoders/decoder_131000.pth', './xcodec_mini_infer/decoders/decoder_151000.pth') |
|
vocoder_output_dir = os.path.join(output_dir, "vocoder") |
|
os.makedirs(vocoder_output_dir, exist_ok=True) |
|
|
|
for npy in stage2_result: |
|
if 'instrumental' in npy: |
|
process_audio(npy, os.path.join(vocoder_output_dir, 'instrumental.mp3'), False, None, inst_decoder, codec_model) |
|
else: |
|
process_audio(npy, os.path.join(vocoder_output_dir, 'vocal.mp3'), False, None, vocal_decoder, codec_model) |
|
|
|
return [ |
|
os.path.join(vocoder_output_dir, 'instrumental.mp3'), |
|
os.path.join(vocoder_output_dir, 'vocal.mp3') |
|
] |
|
|
|
|
|
with gr.Blocks(title="AI Music Generation") as demo: |
|
gr.Markdown("# 🎵 AI Music Generation Pipeline") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
genre_input = gr.Textbox(label="Genre Tags", placeholder="e.g., Pop, Happy, Female Vocal") |
|
lyrics_input = gr.Textbox(label="Lyrics", lines=10, placeholder="Enter lyrics with segments...") |
|
use_audio_prompt = gr.Checkbox(label="Use Audio Prompt") |
|
audio_input = gr.Audio(label="Reference Audio", type="filepath", visible=False) |
|
start_time = gr.Number(label="Start Time (sec)", value=0.0, visible=False) |
|
end_time = gr.Number(label="End Time (sec)", value=30.0, visible=False) |
|
|
|
generate_btn = gr.Button("Generate Music", variant="primary") |
|
|
|
with gr.Column(): |
|
vocal_output = gr.Audio(label="Vocal Track", interactive=False) |
|
inst_output = gr.Audio(label="Instrumental Track", interactive=False) |
|
|
|
use_audio_prompt.change( |
|
lambda x: [gr.update(visible=x), gr.update(visible=x), gr.update(visible=x)], |
|
inputs=use_audio_prompt, |
|
outputs=[audio_input, start_time, end_time] |
|
) |
|
|
|
generate_btn.click( |
|
generate_music, |
|
inputs=[genre_input, lyrics_input, use_audio_prompt, audio_input, start_time, end_time], |
|
outputs=[vocal_output, inst_output] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |