|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from RepCodec.repcodec.layers.conv_layer import Conv1d, ConvTranspose1d |
|
from RepCodec.repcodec.modules.residual_unit import ResidualUnit |
|
|
|
|
|
class DecoderBlock(nn.Module): |
|
""" Decoder block (no up-sampling) """ |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
stride: int, |
|
dilations=(1, 1), |
|
unit_kernel_size=3, |
|
bias=True |
|
): |
|
super().__init__() |
|
|
|
if stride == 1: |
|
self.conv = Conv1d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
stride=stride, |
|
bias=bias, |
|
) |
|
else: |
|
self.conv = ConvTranspose1d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=(2 * stride), |
|
stride=stride, |
|
bias=bias, |
|
) |
|
|
|
self.res_units = torch.nn.ModuleList() |
|
for idx, dilation in enumerate(dilations): |
|
self.res_units += [ |
|
ResidualUnit(out_channels, out_channels, |
|
kernel_size=unit_kernel_size, |
|
dilation=dilation) |
|
] |
|
self.num_res = len(self.res_units) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
for idx in range(self.num_res): |
|
x = self.res_units[idx](x) |
|
return x |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__( |
|
self, |
|
code_dim: int, |
|
output_channels: int, |
|
decode_channels: int, |
|
channel_ratios=(1, 1), |
|
strides=(1, 1), |
|
kernel_size=3, |
|
bias=True, |
|
block_dilations=(1, 1), |
|
unit_kernel_size=3, |
|
): |
|
super().__init__() |
|
assert len(channel_ratios) == len(strides) |
|
|
|
self.conv1 = Conv1d( |
|
in_channels=code_dim, |
|
out_channels=int(decode_channels * channel_ratios[0]), |
|
kernel_size=kernel_size, |
|
stride=1, |
|
bias=False |
|
) |
|
|
|
self.conv_blocks = torch.nn.ModuleList() |
|
for idx, stride in enumerate(strides): |
|
in_channels = int(decode_channels * channel_ratios[idx]) |
|
if idx < (len(channel_ratios) - 1): |
|
out_channels = int(decode_channels * channel_ratios[idx + 1]) |
|
else: |
|
out_channels = decode_channels |
|
self.conv_blocks += [ |
|
DecoderBlock( |
|
in_channels, out_channels, stride, |
|
dilations=block_dilations, unit_kernel_size=unit_kernel_size, |
|
bias=bias |
|
) |
|
] |
|
self.num_blocks = len(self.conv_blocks) |
|
|
|
self.conv2 = Conv1d(out_channels, output_channels, kernel_size, 1, bias=False) |
|
|
|
def forward(self, z): |
|
x = self.conv1(z) |
|
for i in range(self.num_blocks): |
|
x = self.conv_blocks[i](x) |
|
x = self.conv2(x) |
|
return x |
|
|