|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
|
|
import fairseq |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from fairseq.data.audio.audio_utils import get_features_or_waveform |
|
|
|
logger = logging.getLogger("dump_feature") |
|
|
|
|
|
class HubertFeatureReader(object): |
|
def __init__(self, ckpt_path: str, layer: int, device: str, max_chunk=1600000): |
|
( |
|
model, |
|
cfg, |
|
task, |
|
) = fairseq.checkpoint_utils.load_model_ensemble_and_task([ckpt_path]) |
|
|
|
self.device = device |
|
logger.info(f"device = {self.device}") |
|
|
|
self.model = model[0].eval().to(self.device) |
|
self.task = task |
|
self.layer = layer |
|
self.max_chunk = max_chunk |
|
logger.info(f"TASK CONFIG:\n{self.task.cfg}") |
|
logger.info(f" max_chunk = {self.max_chunk}") |
|
|
|
def read_audio(self, path, ref_len=None): |
|
wav = get_features_or_waveform(path, need_waveform=True, use_sample_rate=self.task.cfg.sample_rate) |
|
if wav.ndim == 2: |
|
wav = wav.mean(-1) |
|
assert wav.ndim == 1, wav.ndim |
|
if ref_len is not None and abs(ref_len - len(wav)) > 160: |
|
logger.warning(f"ref {ref_len} != read {len(wav)} ({path})") |
|
return wav |
|
|
|
def get_feats(self, path, ref_len=None): |
|
x = self.read_audio(path, ref_len=ref_len) |
|
with torch.no_grad(): |
|
x = torch.from_numpy(x).float().to(self.device) |
|
if self.task.cfg.normalize: |
|
x = F.layer_norm(x, x.shape) |
|
x = x.view(1, -1) |
|
|
|
feat = [] |
|
for start in range(0, x.size(1), self.max_chunk): |
|
x_chunk = x[:, start: start + self.max_chunk] |
|
feat_chunk, _ = self.model.extract_features( |
|
source=x_chunk, |
|
padding_mask=None, |
|
mask=False, |
|
output_layer=self.layer, |
|
) |
|
feat.append(feat_chunk) |
|
return torch.cat(feat, 1).squeeze(0) |
|
|