YuE-music-generator-demo-zero / RepCodec /examples /data2vec_feature_reader.py
KingNish's picture
Upload ./RepCodec/examples/data2vec_feature_reader.py with huggingface_hub
32960f8 verified
raw
history blame
3.25 kB
# Copyright (c) ByteDance, Inc. and its affiliates.
# Copyright (c) Chutong Meng
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# Based on fairseq (https://github.com/facebookresearch/fairseq)
import logging
import torch
import torch.nn.functional as F
from fairseq import tasks
from fairseq.checkpoint_utils import load_checkpoint_to_cpu
from fairseq.data.audio.audio_utils import get_features_or_waveform
from omegaconf import OmegaConf
from data2vec_audio import Data2VecAudioModel
logger = logging.getLogger("dump_feature")
class Data2vecFeatureReader(object):
def __init__(self, ckpt_path: str, layer: int, device: str, max_chunk=1600000):
state = load_checkpoint_to_cpu(ckpt_path)
cfg = state["cfg"]
# load task
task = tasks.setup_task(cfg.task, from_checkpoint=True)
task.load_state_dict(state["task_state"])
# load model config
if "layer_type" not in cfg.model:
# fix a missing key
model_config = {k: v for k, v in cfg.model.items()}
model_config["layer_type"] = "transformer"
model_config = OmegaConf.create(model_config)
else:
model_config = cfg.model
# fix param name in the state
state["model"]["final_proj.weight"] = state["model"].pop("final_proj.0.weight")
state["model"]["final_proj.bias"] = state["model"].pop("final_proj.0.bias")
del state["model"]["_ema"]
# load model
model = Data2VecAudioModel.build_model(model_config)
model.load_state_dict(
state["model"], strict=True, model_cfg=model_config
)
self.device = device
logger.info(f"device = {self.device}")
self.model = model.eval().to(self.device)
self.task = task
self.layer = layer - 1 # make it 1-based
self.max_chunk = max_chunk
logger.info(f"TASK CONFIG:\n{self.task.cfg}")
logger.info(f" max_chunk = {self.max_chunk}")
def read_audio(self, path, ref_len=None):
wav = get_features_or_waveform(path, need_waveform=True, use_sample_rate=self.task.cfg.sample_rate)
if wav.ndim == 2:
wav = wav.mean(-1)
assert wav.ndim == 1, wav.ndim
if ref_len is not None and abs(ref_len - len(wav)) > 160:
logger.warning(f"ref {ref_len} != read {len(wav)} ({path})")
return wav
def get_feats(self, path, ref_len=None):
x = self.read_audio(path, ref_len=ref_len)
with torch.no_grad():
x = torch.from_numpy(x).float().to(self.device)
if self.task.cfg.normalize:
x = F.layer_norm(x, x.shape)
x = x.view(1, -1)
feat = []
for start in range(0, x.size(1), self.max_chunk):
x_chunk = x[:, start: start + self.max_chunk]
res = self.model.extract_features(
source=x_chunk,
padding_mask=None,
mask=False,
layer=self.layer,
)
feat_chunk = res["x"]
feat.append(feat_chunk)
return torch.cat(feat, 1).squeeze(0)