Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import subprocess | |
| import os | |
| import shutil | |
| import tempfile | |
| import spaces | |
| import torch | |
| import os | |
| import sys | |
| print("Installing flash-attn...") | |
| # Install flash attention | |
| subprocess.run( | |
| "pip install flash-attn --no-build-isolation", | |
| env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
| shell=True, | |
| ) | |
| from huggingface_hub import snapshot_download | |
| # Create xcodec_mini_infer folder | |
| folder_path = './xcodec_mini_infer' | |
| # Create the folder if it doesn't exist | |
| if not os.path.exists(folder_path): | |
| os.mkdir(folder_path) | |
| print(f"Folder created at: {folder_path}") | |
| else: | |
| print(f"Folder already exists at: {folder_path}") | |
| snapshot_download( | |
| repo_id = "m-a-p/xcodec_mini_infer", | |
| local_dir = "./xcodec_mini_infer" | |
| ) | |
| # Change to the "inference" directory | |
| inference_dir = "." | |
| try: | |
| os.chdir(inference_dir) | |
| print(f"Changed working directory to: {os.getcwd()}") | |
| except FileNotFoundError: | |
| print(f"Directory not found: {inference_dir}") | |
| exit(1) | |
| sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer')) | |
| sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec')) | |
| import argparse | |
| import numpy as np | |
| import json | |
| from omegaconf import OmegaConf | |
| import torchaudio | |
| from torchaudio.transforms import Resample | |
| import soundfile as sf | |
| import uuid | |
| from tqdm import tqdm | |
| from einops import rearrange | |
| from codecmanipulator import CodecManipulator | |
| from mmtokenizer import _MMSentencePieceTokenizer | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList | |
| import glob | |
| import time | |
| import copy | |
| from collections import Counter | |
| from models.soundstream_hubert_new import SoundStream | |
| from vocoder import build_codec_model, process_audio | |
| from post_process_audio import replace_low_freq_with_energy_matched | |
| import re | |
| is_shared_ui = True if "innova-ai/YuE-music-generator-demo" in os.environ['SPACE_ID'] else False | |
| def empty_output_folder(output_dir): | |
| # List all files in the output directory | |
| files = os.listdir(output_dir) | |
| # Iterate over the files and remove them | |
| for file in files: | |
| file_path = os.path.join(output_dir, file) | |
| try: | |
| if os.path.isdir(file_path): | |
| # If it's a directory, remove it recursively | |
| shutil.rmtree(file_path) | |
| else: | |
| # If it's a file, delete it | |
| os.remove(file_path) | |
| except Exception as e: | |
| print(f"Error deleting file {file_path}: {e}") | |
| # Function to create a temporary file with string content | |
| def create_temp_file(content, prefix, suffix=".txt"): | |
| temp_file = tempfile.NamedTemporaryFile(delete=False, mode="w", prefix=prefix, suffix=suffix) | |
| # Ensure content ends with newline and normalize line endings | |
| content = content.strip() + "\n\n" # Add extra newline at end | |
| content = content.replace("\r\n", "\n").replace("\r", "\n") | |
| temp_file.write(content) | |
| temp_file.close() | |
| # Debug: Print file contents | |
| print(f"\nContent written to {prefix}{suffix}:") | |
| print(content) | |
| print("---") | |
| return temp_file.name | |
| def get_last_mp3_file(output_dir): | |
| # List all files in the output directory | |
| files = os.listdir(output_dir) | |
| # Filter only .mp3 files | |
| mp3_files = [file for file in files if file.endswith('.mp3')] | |
| if not mp3_files: | |
| print("No .mp3 files found in the output folder.") | |
| return None | |
| # Get the full path for the mp3 files | |
| mp3_files_with_path = [os.path.join(output_dir, file) for file in mp3_files] | |
| # Sort the files based on the modification time (most recent first) | |
| mp3_files_with_path.sort(key=lambda x: os.path.getmtime(x), reverse=True) | |
| # Return the most recent .mp3 file | |
| return mp3_files_with_path[0] | |
| device = torch.device(f"cuda" if torch.cuda.is_available() else "cpu") | |
| model = AutoModelForCausalLM.from_pretrained( | |
| "m-a-p/YuE-s1-7B-anneal-en-cot", | |
| torch_dtype=torch.float16, | |
| attn_implementation="flash_attention_2", # To enable flashattn, you have to install flash-attn | |
| ) | |
| model.to(device) | |
| model.eval() | |
| mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model") | |
| basic_model_config='./xcodec_mini_infer/final_ckpt/config.yaml', | |
| resume_path='./xcodec_mini_infer/final_ckpt/ckpt_00360000.pth', | |
| config_path='./xcodec_mini_infer/decoders/config.yaml', | |
| vocal_decoder_path='./xcodec_mini_infer/decoders/decoder_131000.pth', | |
| inst_decoder_path='./xcodec_mini_infer/decoders/decoder_151000.pth', | |
| codectool = CodecManipulator("xcodec", 0, 1) | |
| model_config = OmegaConf.load(basic_model_config) | |
| codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device) | |
| parameter_dict = torch.load(resume_path, map_location='cpu') | |
| codec_model.load_state_dict(parameter_dict['codec_model']) | |
| codec_model.to(device) | |
| codec_model.eval() | |
| def generate_music( | |
| stage1_model="m-a-p/YuE-s1-7B-anneal-en-cot", | |
| max_new_tokens=3000, | |
| run_n_segments=2, | |
| genre_txt=None, | |
| lyrics_txt=None, | |
| use_audio_prompt=False, | |
| audio_prompt_path="", | |
| prompt_start_time=0.0, | |
| prompt_end_time=30.0, | |
| output_dir="./output", | |
| keep_intermediate=False, | |
| disable_offload_model=False, | |
| cuda_idx=0, | |
| basic_model_config='./xcodec_mini_infer/final_ckpt/config.yaml', | |
| resume_path='./xcodec_mini_infer/final_ckpt/ckpt_00360000.pth', | |
| config_path='./xcodec_mini_infer/decoders/config.yaml', | |
| vocal_decoder_path='./xcodec_mini_infer/decoders/decoder_131000.pth', | |
| inst_decoder_path='./xcodec_mini_infer/decoders/decoder_151000.pth', | |
| rescale=False, | |
| ): | |
| if use_audio_prompt and not audio_prompt_path: | |
| raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!") | |
| model = stage1_model | |
| cuda_idx = cuda_idx | |
| max_new_tokens = max_new_tokens | |
| stage1_output_dir = os.path.join(output_dir, f"stage1") | |
| os.makedirs(stage1_output_dir, exist_ok=True) | |
| class BlockTokenRangeProcessor(LogitsProcessor): | |
| def __init__(self, start_id, end_id): | |
| self.blocked_token_ids = list(range(start_id, end_id)) | |
| def __call__(self, input_ids, scores): | |
| scores[:, self.blocked_token_ids] = -float("inf") | |
| return scores | |
| def load_audio_mono(filepath, sampling_rate=16000): | |
| audio, sr = torchaudio.load(filepath) | |
| # Convert to mono | |
| audio = torch.mean(audio, dim=0, keepdim=True) | |
| # Resample if needed | |
| if sr != sampling_rate: | |
| resampler = Resample(orig_freq=sr, new_freq=sampling_rate) | |
| audio = resampler(audio) | |
| return audio | |
| def split_lyrics(lyrics: str): | |
| pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)" | |
| segments = re.findall(pattern, lyrics, re.DOTALL) | |
| structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments] | |
| return structured_lyrics | |
| # Call the function and print the result | |
| stage1_output_set = [] | |
| genres = genre_txt.strip() | |
| lyrics = split_lyrics(lyrics_txt+"\n") | |
| # intruction | |
| full_lyrics = "\n".join(lyrics) | |
| prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"] | |
| prompt_texts += lyrics | |
| random_id = uuid.uuid4() | |
| output_seq = None | |
| # Here is suggested decoding config | |
| top_p = 0.93 | |
| temperature = 1.0 | |
| repetition_penalty = 1.2 | |
| # special tokens | |
| start_of_segment = mmtokenizer.tokenize('[start_of_segment]') | |
| end_of_segment = mmtokenizer.tokenize('[end_of_segment]') | |
| raw_output = None | |
| # Format text prompt | |
| run_n_segments = min(run_n_segments+1, len(lyrics)) | |
| print(list(enumerate(tqdm(prompt_texts[:run_n_segments])))) | |
| for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])): | |
| section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '') | |
| guidance_scale = 1.5 if i <=1 else 1.2 | |
| if i==0: | |
| continue | |
| if i==1: | |
| if use_audio_prompt: | |
| audio_prompt = load_audio_mono(audio_prompt_path) | |
| audio_prompt.unsqueeze_(0) | |
| with torch.no_grad(): | |
| raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5) | |
| raw_codes = raw_codes.transpose(0, 1) | |
| raw_codes = raw_codes.cpu().numpy().astype(np.int16) | |
| # Format audio prompt | |
| code_ids = codectool.npy2ids(raw_codes[0]) | |
| audio_prompt_codec = code_ids[int(prompt_start_time *50): int(prompt_end_time *50)] # 50 is tps of xcodec | |
| audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa] | |
| sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]") | |
| head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids | |
| else: | |
| head_id = mmtokenizer.tokenize(prompt_texts[0]) | |
| prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids | |
| else: | |
| prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids | |
| prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device) | |
| input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids | |
| # Use window slicing in case output sequence exceeds the context of model | |
| max_context = 16384-max_new_tokens-1 | |
| if input_ids.shape[-1] > max_context: | |
| print(f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.') | |
| input_ids = input_ids[:, -(max_context):] | |
| with torch.no_grad(): | |
| output_seq = model.generate( | |
| input_ids=input_ids, | |
| max_new_tokens=max_new_tokens, | |
| min_new_tokens=100, | |
| do_sample=True, | |
| top_p=top_p, | |
| temperature=temperature, | |
| repetition_penalty=repetition_penalty, | |
| eos_token_id=mmtokenizer.eoa, | |
| pad_token_id=mmtokenizer.eoa, | |
| logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]), | |
| guidance_scale=guidance_scale, | |
| ) | |
| if output_seq[0][-1].item() != mmtokenizer.eoa: | |
| tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device) | |
| output_seq = torch.cat((output_seq, tensor_eoa), dim=1) | |
| if i > 1: | |
| raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1) | |
| else: | |
| raw_output = output_seq | |
| print(len(raw_output)) | |
| # save raw output and check sanity | |
| ids = raw_output[0].cpu().numpy() | |
| soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist() | |
| eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist() | |
| if len(soa_idx)!=len(eoa_idx): | |
| raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}') | |
| vocals = [] | |
| instrumentals = [] | |
| range_begin = 1 if use_audio_prompt else 0 | |
| for i in range(range_begin, len(soa_idx)): | |
| codec_ids = ids[soa_idx[i]+1:eoa_idx[i]] | |
| if codec_ids[0] == 32016: | |
| codec_ids = codec_ids[1:] | |
| codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)] | |
| vocals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[0]) | |
| vocals.append(vocals_ids) | |
| instrumentals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[1]) | |
| instrumentals.append(instrumentals_ids) | |
| vocals = np.concatenate(vocals, axis=1) | |
| instrumentals = np.concatenate(instrumentals, axis=1) | |
| vocal_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_vocal_{random_id}".replace('.', '@')+'.npy') | |
| inst_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_instrumental_{random_id}".replace('.', '@')+'.npy') | |
| np.save(vocal_save_path, vocals) | |
| np.save(inst_save_path, instrumentals) | |
| stage1_output_set.append(vocal_save_path) | |
| stage1_output_set.append(inst_save_path) | |
| # offload model | |
| if not disable_offload_model: | |
| model.cpu() | |
| del model | |
| torch.cuda.empty_cache() | |
| print("Converting to Audio...") | |
| # convert audio tokens to audio | |
| def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False): | |
| folder_path = os.path.dirname(path) | |
| if not os.path.exists(folder_path): | |
| os.makedirs(folder_path) | |
| limit = 0.99 | |
| max_val = wav.abs().max() | |
| wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit) | |
| torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16) | |
| # reconstruct tracks | |
| recons_output_dir = os.path.join(output_dir, "recons") | |
| recons_mix_dir = os.path.join(recons_output_dir, 'mix') | |
| os.makedirs(recons_mix_dir, exist_ok=True) | |
| tracks = [] | |
| for npy in stage1_output_set: | |
| codec_result = np.load(npy) | |
| decodec_rlt=[] | |
| with torch.no_grad(): | |
| decoded_waveform = codec_model.decode(torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device)) | |
| decoded_waveform = decoded_waveform.cpu().squeeze(0) | |
| decodec_rlt.append(torch.as_tensor(decoded_waveform)) | |
| decodec_rlt = torch.cat(decodec_rlt, dim=-1) | |
| save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3") | |
| tracks.append(save_path) | |
| save_audio(decodec_rlt, save_path, 16000) | |
| # mix tracks | |
| for inst_path in tracks: | |
| try: | |
| if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \ | |
| and 'instrumental' in inst_path: | |
| # find pair | |
| vocal_path = inst_path.replace('instrumental', 'vocal') | |
| if not os.path.exists(vocal_path): | |
| continue | |
| # mix | |
| recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed')) | |
| vocal_stem, sr = sf.read(inst_path) | |
| instrumental_stem, _ = sf.read(vocal_path) | |
| mix_stem = (vocal_stem + instrumental_stem) / 1 | |
| sf.write(recons_mix, mix_stem, sr) | |
| except Exception as e: | |
| print(e) | |
| # vocoder to upsample audios | |
| vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path) | |
| vocoder_output_dir = os.path.join(output_dir, 'vocoder') | |
| vocoder_stems_dir = os.path.join(vocoder_output_dir, 'stems') | |
| vocoder_mix_dir = os.path.join(vocoder_output_dir, 'mix') | |
| os.makedirs(vocoder_mix_dir, exist_ok=True) | |
| os.makedirs(vocoder_stems_dir, exist_ok=True) | |
| instrumental_output = None | |
| vocal_output = None | |
| for npy in stage1_output_set: | |
| if 'instrumental' in npy: | |
| # Process instrumental | |
| instrumental_output = process_audio( | |
| npy, | |
| os.path.join(vocoder_stems_dir, 'instrumental.mp3'), | |
| rescale, | |
| argparse.Namespace(**locals()), # Convert local variables to argparse.Namespace | |
| inst_decoder, | |
| codec_model | |
| ) | |
| else: | |
| # Process vocal | |
| vocal_output = process_audio( | |
| npy, | |
| os.path.join(vocoder_stems_dir, 'vocal.mp3'), | |
| rescale, | |
| argparse.Namespace(**locals()), # Convert local variables to argparse.Namespace | |
| vocal_decoder, | |
| codec_model | |
| ) | |
| # mix tracks | |
| try: | |
| mix_output = instrumental_output + vocal_output | |
| vocoder_mix = os.path.join(vocoder_mix_dir, os.path.basename(recons_mix)) | |
| save_audio(mix_output, vocoder_mix, 44100, rescale) | |
| print(f"Created mix: {vocoder_mix}") | |
| except RuntimeError as e: | |
| print(e) | |
| print(f"mix {vocoder_mix} failed! inst: {instrumental_output.shape}, vocal: {vocal_output.shape}") | |
| # Post process | |
| replace_low_freq_with_energy_matched( | |
| a_file=recons_mix, # 16kHz | |
| b_file=vocoder_mix, # 48kHz | |
| c_file=os.path.join(output_dir, os.path.basename(recons_mix)), | |
| cutoff_freq=5500.0 | |
| ) | |
| print("All process Done") | |
| return recons_mix | |
| def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=200): | |
| # Ensure the output folder exists | |
| output_dir = "./output" | |
| os.makedirs(output_dir, exist_ok=True) | |
| print(f"Output folder ensured at: {output_dir}") | |
| empty_output_folder(output_dir) | |
| # Execute the command | |
| try: | |
| music = generate_music(stage1_model=model, genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments, output_dir=output_dir, cuda_idx=0, max_new_tokens=max_new_tokens) | |
| return music | |
| except subprocess.CalledProcessError as e: | |
| print(f"Error occurred: {e}") | |
| return None | |
| finally: | |
| # Clean up temporary files | |
| print("Temporary files deleted.") | |
| # Gradio | |
| with gr.Blocks() as demo: | |
| with gr.Column(): | |
| gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation") | |
| gr.HTML(""" | |
| <div style="display:flex;column-gap:4px;"> | |
| <a href="https://github.com/multimodal-art-projection/YuE"> | |
| <img src='https://img.shields.io/badge/GitHub-Repo-blue'> | |
| </a> | |
| <a href="https://map-yue.github.io"> | |
| <img src='https://img.shields.io/badge/Project-Page-green'> | |
| </a> | |
| <a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true"> | |
| <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space"> | |
| </a> | |
| </div> | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| genre_txt = gr.Textbox(label="Genre") | |
| lyrics_txt = gr.Textbox(label="Lyrics") | |
| with gr.Column(): | |
| if is_shared_ui: | |
| num_segments = gr.Number(label="Number of Segments", value=2, interactive=True) | |
| max_new_tokens = gr.Slider(label="Max New Tokens", info="100 tokens equals 1 second long music", minimum=100, maximum="3000", step=100, value=500, interactive=True) # increase it after testing | |
| else: | |
| num_segments = gr.Number(label="Number of Song Segments", value=2, interactive=True) | |
| max_new_tokens = gr.Slider(label="Max New Tokens", minimum=500, maximum="24000", step=500, value=3000, interactive=True) | |
| submit_btn = gr.Button("Submit") | |
| music_out = gr.Audio(label="Audio Result") | |
| gr.Examples( | |
| examples = [ | |
| [ | |
| "female blues airy vocal bright vocal piano sad romantic guitar jazz", | |
| """[verse] | |
| In the quiet of the evening, shadows start to fall | |
| Whispers of the night wind echo through the hall | |
| Lost within the silence, I hear your gentle voice | |
| Guiding me back homeward, making my heart rejoice | |
| [chorus] | |
| Don't let this moment fade, hold me close tonight | |
| With you here beside me, everything's alright | |
| Can't imagine life alone, don't want to let you go | |
| Stay with me forever, let our love just flow | |
| """ | |
| ], | |
| [ | |
| "rap piano street tough piercing vocal hip-hop synthesizer clear vocal male", | |
| """[verse] | |
| Woke up in the morning, sun is shining bright | |
| Chasing all my dreams, gotta get my mind right | |
| City lights are fading, but my vision's clear | |
| Got my team beside me, no room for fear | |
| Walking through the streets, beats inside my head | |
| Every step I take, closer to the bread | |
| People passing by, they don't understand | |
| Building up my future with my own two hands | |
| [chorus] | |
| This is my life, and I'm aiming for the top | |
| Never gonna quit, no, I'm never gonna stop | |
| Through the highs and lows, I'mma keep it real | |
| Living out my dreams with this mic and a deal | |
| """ | |
| ] | |
| ], | |
| inputs = [genre_txt, lyrics_txt], | |
| outputs = [music_out], | |
| cache_examples = False, | |
| # cache_mode="lazy", | |
| fn=infer | |
| ) | |
| submit_btn.click( | |
| fn = infer, | |
| inputs = [genre_txt, lyrics_txt, num_segments, max_new_tokens], | |
| outputs = [music_out] | |
| ) | |
| demo.queue().launch(show_api=False, show_error=True) |