Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import subprocess | |
| import os | |
| import shutil | |
| import tempfile | |
| import spaces | |
| import torch | |
| import sys | |
| import uuid | |
| import re | |
| print("Installing flash-attn...") | |
| # Install flash attention | |
| subprocess.run( | |
| "pip install flash-attn --no-build-isolation", | |
| env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
| shell=True | |
| ) | |
| from huggingface_hub import snapshot_download | |
| # Create xcodec_mini_infer folder | |
| folder_path = './xcodec_mini_infer' | |
| # Create the folder if it doesn't exist | |
| if not os.path.exists(folder_path): | |
| os.mkdir(folder_path) | |
| print(f"Folder created at: {folder_path}") | |
| else: | |
| print(f"Folder already exists at: {folder_path}") | |
| snapshot_download( | |
| repo_id="m-a-p/xcodec_mini_infer", | |
| local_dir="./xcodec_mini_infer" | |
| ) | |
| # Change to the "inference" directory | |
| inference_dir = "." | |
| try: | |
| os.chdir(inference_dir) | |
| print(f"Changed working directory to: {os.getcwd()}") | |
| except FileNotFoundError: | |
| print(f"Directory not found: {inference_dir}") | |
| exit(1) | |
| sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer')) | |
| sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec')) | |
| import argparse | |
| import numpy as np | |
| import json | |
| from omegaconf import OmegaConf | |
| import torchaudio | |
| from torchaudio.transforms import Resample | |
| import soundfile as sf | |
| from tqdm import tqdm | |
| from einops import rearrange | |
| from codecmanipulator import CodecManipulator | |
| from mmtokenizer import _MMSentencePieceTokenizer | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList | |
| import glob | |
| import time | |
| import copy | |
| from collections import Counter | |
| from models.soundstream_hubert_new import SoundStream | |
| # don't change above code | |
| device = "cuda:0" | |
| model = AutoModelForCausalLM.from_pretrained( | |
| "m-a-p/YuE-s1-7B-anneal-en-cot", | |
| torch_dtype=torch.float16, | |
| attn_implementation="flash_attention_2", | |
| # low_cpu_mem_usage=True, | |
| ).to(device) | |
| model.eval() | |
| basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml' | |
| resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth' | |
| mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model") | |
| codectool = CodecManipulator("xcodec", 0, 1) | |
| model_config = OmegaConf.load(basic_model_config) | |
| # Load codec model | |
| codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device) | |
| parameter_dict = torch.load(resume_path, map_location='cpu') | |
| codec_model.load_state_dict(parameter_dict['codec_model']) | |
| codec_model.eval() | |
| def generate_music( | |
| max_new_tokens=5, | |
| run_n_segments=2, | |
| genre_txt=None, | |
| lyrics_txt=None, | |
| use_audio_prompt=False, | |
| audio_prompt_path="", | |
| prompt_start_time=0.0, | |
| prompt_end_time=30.0, | |
| cuda_idx=0, | |
| rescale=False, | |
| ): | |
| if use_audio_prompt and not audio_prompt_path: | |
| raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!") | |
| cuda_idx = cuda_idx | |
| max_new_tokens = max_new_tokens * 100 | |
| class BlockTokenRangeProcessor(LogitsProcessor): | |
| def __init__(self, start_id, end_id): | |
| self.blocked_token_ids = list(range(start_id, end_id)) | |
| def __call__(self, input_ids, scores): | |
| scores[:, self.blocked_token_ids] = -float("inf") | |
| return scores | |
| def load_audio_mono(filepath, sampling_rate=16000): | |
| audio, sr = torchaudio.load(filepath) | |
| # Convert to mono | |
| audio = torch.mean(audio, dim=0, keepdim=True) | |
| # Resample if needed | |
| if sr != sampling_rate: | |
| resampler = Resample(orig_freq=sr, new_freq=sampling_rate) | |
| audio = resampler(audio) | |
| return audio | |
| def split_lyrics(lyrics: str): | |
| pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)" | |
| segments = re.findall(pattern, lyrics, re.DOTALL) | |
| structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments] | |
| return structured_lyrics | |
| # Call the function and print the result | |
| stage1_output_set = [] | |
| genres = genre_txt.strip() | |
| lyrics = split_lyrics(lyrics_txt + "\n") | |
| # intruction | |
| full_lyrics = "\n".join(lyrics) | |
| prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"] | |
| prompt_texts += lyrics | |
| random_id = uuid.uuid4() | |
| output_seq = None | |
| # Here is suggested decoding config | |
| top_p = 0.93 | |
| temperature = 1.0 | |
| repetition_penalty = 1.2 | |
| # special tokens | |
| start_of_segment = mmtokenizer.tokenize('[start_of_segment]') | |
| end_of_segment = mmtokenizer.tokenize('[end_of_segment]') | |
| raw_output = None | |
| # Format text prompt | |
| run_n_segments = min(run_n_segments + 1, len(lyrics)) | |
| print(list(enumerate(tqdm(prompt_texts[:run_n_segments])))) | |
| for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])): | |
| section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '') | |
| guidance_scale = 1.5 if i <= 1 else 1.2 | |
| if i == 0: | |
| continue | |
| if i == 1: | |
| if use_audio_prompt: | |
| audio_prompt = load_audio_mono(audio_prompt_path) | |
| audio_prompt.unsqueeze_(0) | |
| with torch.no_grad(): | |
| raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5) | |
| raw_codes = raw_codes.transpose(0, 1) | |
| raw_codes = raw_codes.cpu().numpy().astype(np.int16) | |
| # Format audio prompt | |
| code_ids = codectool.npy2ids(raw_codes[0]) | |
| audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)] # 50 is tps of xcodec | |
| audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [ | |
| mmtokenizer.eoa] | |
| sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize( | |
| "[end_of_reference]") | |
| head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids | |
| else: | |
| head_id = mmtokenizer.tokenize(prompt_texts[0]) | |
| prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids | |
| else: | |
| prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids | |
| prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device) | |
| input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids | |
| # Use window slicing in case output sequence exceeds the context of model | |
| max_context = 16384 - max_new_tokens - 1 | |
| if input_ids.shape[-1] > max_context: | |
| print( | |
| f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.') | |
| input_ids = input_ids[:, -(max_context):] | |
| with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16): | |
| output_seq = model.generate( | |
| input_ids=input_ids, | |
| max_new_tokens=max_new_tokens, | |
| min_new_tokens=100, | |
| do_sample=True, | |
| top_p=top_p, | |
| temperature=temperature, | |
| repetition_penalty=repetition_penalty, | |
| eos_token_id=mmtokenizer.eoa, | |
| pad_token_id=mmtokenizer.eoa, | |
| logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]), | |
| guidance_scale=guidance_scale, | |
| use_cache=True | |
| ) | |
| if output_seq[0][-1].item() != mmtokenizer.eoa: | |
| tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device) | |
| output_seq = torch.cat((output_seq, tensor_eoa), dim=1) | |
| if i > 1: | |
| raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1) | |
| else: | |
| raw_output = output_seq | |
| print(len(raw_output)) | |
| # save raw output and check sanity | |
| ids = raw_output[0].cpu().numpy() | |
| soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist() | |
| eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist() | |
| if len(soa_idx) != len(eoa_idx): | |
| raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}') | |
| vocals = [] | |
| instrumentals = [] | |
| range_begin = 1 if use_audio_prompt else 0 | |
| for i in range(range_begin, len(soa_idx)): | |
| codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]] | |
| if codec_ids[0] == 32016: | |
| codec_ids = codec_ids[1:] | |
| codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)] | |
| vocals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0]) | |
| vocals.append(vocals_ids) | |
| instrumentals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1]) | |
| instrumentals.append(instrumentals_ids) | |
| vocals = np.concatenate(vocals, axis=1) | |
| instrumentals = np.concatenate(instrumentals, axis=1) | |
| vocal_audio = None | |
| instrumental_audio = None | |
| mixed_audio = None | |
| # convert audio tokens to audio | |
| def convert_to_audio(codec_result, rescale): | |
| with torch.no_grad(): | |
| decoded_waveform = codec_model.decode( | |
| # Corrected line: Convert numpy array to PyTorch tensor with appropriate type | |
| torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device) | |
| ) | |
| decoded_waveform = decoded_waveform.cpu().squeeze(0) | |
| limit = 0.99 | |
| max_val = decoded_waveform.abs().max() | |
| scaled_waveform = decoded_waveform * min(limit / max_val, 1) if rescale else decoded_waveform.clamp(-limit, limit) | |
| # Corrected line: Convert to numpy array before casting to int16 | |
| return (16000, (scaled_waveform * 32767).detach().cpu().numpy().astype(np.int16)) | |
| vocal_audio = convert_to_audio(vocals, rescale) | |
| instrumental_audio = convert_to_audio(instrumentals, rescale) | |
| mix_stem = (vocal_audio[1] + instrumental_audio[1]) / 1 # mixing by summing and dividing | |
| mixed_audio = (vocal_audio[0], mix_stem) # same sample rate | |
| return (vocal_audio[0], (mix_stem * 32767).astype(np.int16)), None, None | |
| def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=15): | |
| # Execute the command | |
| try: | |
| mixed_audio_data, vocal_audio_data, instrumental_audio_data = generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments, | |
| cuda_idx=0, max_new_tokens=max_new_tokens) | |
| return mixed_audio_data, vocal_audio_data, instrumental_audio_data | |
| except Exception as e: | |
| gr.Warning("An Error Occured: " + str(e)) | |
| return None, None, None | |
| finally: | |
| print("Temporary files deleted.") | |
| # Gradio | |
| with gr.Blocks() as demo: | |
| with gr.Column(): | |
| gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation") | |
| gr.HTML(""" | |
| <div style="display:flex;column-gap:4px;"> | |
| <a href="https://github.com/multimodal-art-projection/YuE"> | |
| <img src='https://img.shields.io/badge/GitHub-Repo-blue'> | |
| </a> | |
| <a href="https://map-yue.github.io"> | |
| <img src='https://img.shields.io/badge/Project-Page-green'> | |
| </a> | |
| <a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true"> | |
| <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space"> | |
| </a> | |
| </div> | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| genre_txt = gr.Textbox(label="Genre") | |
| lyrics_txt = gr.Textbox(label="Lyrics") | |
| with gr.Column(): | |
| num_segments = gr.Number(label="Number of Segments", value=2, interactive=True) | |
| max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=15, interactive=True) | |
| submit_btn = gr.Button("Submit") | |
| music_out = gr.Audio(label="Mixed Audio Result") | |
| with gr.Accordion(label="Vocal and Instrumental Result", open=False): | |
| vocal_out = gr.Audio(label="Vocal Audio") | |
| instrumental_out = gr.Audio(label="Instrumental Audio") | |
| gr.Examples( | |
| examples=[ | |
| [ | |
| "Bass Metalcore Thrash Metal Furious bright vocal male Angry aggressive vocal Guitar", | |
| """[verse] | |
| Step back cause I'll ignite | |
| Won't quit without a fight | |
| No escape, gear up, it's a fierce fight | |
| Brace up, raise your hands up and light | |
| Fear the might. Step back cause I'll ignite | |
| Won't back down without a fight | |
| It keeps going and going, the heat is on. | |
| [chorus] | |
| Hot flame. Hot flame. | |
| Still here, still holding aim | |
| I don't care if I'm bright or dim: nah. | |
| I've made it clear, I'll make it again | |
| All I want is my crew and my gain. | |
| I'm feeling wild, got a bit of rebel style. | |
| Locked inside my mind, hot flame. | |
| """ | |
| ], | |
| [ | |
| "rap piano street tough piercing vocal hip-hop synthesizer clear vocal male", | |
| """[verse] | |
| Woke up in the morning, sun is shining bright | |
| Chasing all my dreams, gotta get my mind right | |
| City lights are fading, but my vision's clear | |
| Got my team beside me, no room for fear | |
| Walking through the streets, beats inside my head | |
| Every step I take, closer to the bread | |
| People passing by, they don't understand | |
| Building up my future with my own two hands | |
| [chorus] | |
| This is my life, and I'm aiming for the top | |
| Never gonna quit, no, I'm never gonna stop | |
| Through the highs and lows, I'mma keep it real | |
| Living out my dreams with this mic and a deal | |
| """ | |
| ] | |
| ], | |
| inputs=[genre_txt, lyrics_txt], | |
| outputs=[music_out, vocal_out, instrumental_out], | |
| cache_examples=True, | |
| cache_mode="eager", | |
| fn=infer | |
| ) | |
| submit_btn.click( | |
| fn=infer, | |
| inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens], | |
| outputs=[music_out, vocal_out, instrumental_out] | |
| ) | |
| gr.Markdown("## Call for Contributions\nIf you find this space interesting please feel free to contribute.") | |
| demo.queue().launch(show_error=True) |