|
import gradio as gr |
|
import subprocess |
|
import os |
|
import shutil |
|
import tempfile |
|
import spaces |
|
import torch |
|
import sys |
|
import uuid |
|
import re |
|
|
|
print("Installing flash-attn...") |
|
|
|
subprocess.run( |
|
"pip install flash-attn --no-build-isolation", |
|
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, |
|
shell=True |
|
) |
|
|
|
from huggingface_hub import snapshot_download |
|
|
|
|
|
folder_path = './xcodec_mini_infer' |
|
|
|
|
|
if not os.path.exists(folder_path): |
|
os.mkdir(folder_path) |
|
print(f"Folder created at: {folder_path}") |
|
else: |
|
print(f"Folder already exists at: {folder_path}") |
|
|
|
snapshot_download( |
|
repo_id="m-a-p/xcodec_mini_infer", |
|
local_dir="./xcodec_mini_infer" |
|
) |
|
|
|
|
|
inference_dir = "." |
|
try: |
|
os.chdir(inference_dir) |
|
print(f"Changed working directory to: {os.getcwd()}") |
|
except FileNotFoundError: |
|
print(f"Directory not found: {inference_dir}") |
|
exit(1) |
|
|
|
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer')) |
|
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec')) |
|
|
|
|
|
|
|
|
|
import argparse |
|
import numpy as np |
|
import json |
|
from omegaconf import OmegaConf |
|
import torchaudio |
|
from torchaudio.transforms import Resample |
|
import soundfile as sf |
|
|
|
from tqdm import tqdm |
|
from einops import rearrange |
|
from codecmanipulator import CodecManipulator |
|
from mmtokenizer import _MMSentencePieceTokenizer |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList |
|
import glob |
|
import time |
|
import copy |
|
from collections import Counter |
|
from models.soundstream_hubert_new import SoundStream |
|
from vocoder import build_codec_model, process_audio |
|
from post_process_audio import replace_low_freq_with_energy_matched |
|
|
|
device = "cuda:0" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"m-a-p/YuE-s1-7B-anneal-en-cot", |
|
torch_dtype=torch.float16, |
|
attn_implementation="flash_attention_2", |
|
low_cpu_mem_usage=True, |
|
).to(device) |
|
model.eval() |
|
|
|
basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml' |
|
resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth' |
|
config_path = './xcodec_mini_infer/decoders/config.yaml' |
|
vocal_decoder_path = './xcodec_mini_infer/decoders/decoder_131000.pth' |
|
inst_decoder_path = './xcodec_mini_infer/decoders/decoder_151000.pth' |
|
|
|
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model") |
|
|
|
codectool = CodecManipulator("xcodec", 0, 1) |
|
model_config = OmegaConf.load(basic_model_config) |
|
|
|
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device) |
|
parameter_dict = torch.load(resume_path, map_location='cpu') |
|
codec_model.load_state_dict(parameter_dict['codec_model']) |
|
|
|
codec_model.eval() |
|
|
|
|
|
vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path) |
|
vocal_decoder.to(device) |
|
inst_decoder.to(device) |
|
|
|
|
|
vocal_decoder.eval() |
|
inst_decoder.eval() |
|
|
|
|
|
def generate_music( |
|
max_new_tokens=5, |
|
run_n_segments=2, |
|
genre_txt=None, |
|
lyrics_txt=None, |
|
use_audio_prompt=False, |
|
audio_prompt_path="", |
|
prompt_start_time=0.0, |
|
prompt_end_time=30.0, |
|
cuda_idx=0, |
|
rescale=False, |
|
): |
|
if use_audio_prompt and not audio_prompt_path: |
|
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!") |
|
cuda_idx = cuda_idx |
|
max_new_tokens = max_new_tokens * 100 |
|
|
|
with tempfile.TemporaryDirectory() as output_dir: |
|
stage1_output_dir = os.path.join(output_dir, f"stage1") |
|
os.makedirs(stage1_output_dir, exist_ok=True) |
|
|
|
class BlockTokenRangeProcessor(LogitsProcessor): |
|
def __init__(self, start_id, end_id): |
|
self.blocked_token_ids = list(range(start_id, end_id)) |
|
|
|
def __call__(self, input_ids, scores): |
|
scores[:, self.blocked_token_ids] = -float("inf") |
|
return scores |
|
|
|
def load_audio_mono(filepath, sampling_rate=16000): |
|
audio, sr = torchaudio.load(filepath) |
|
|
|
audio = torch.mean(audio, dim=0, keepdim=True) |
|
|
|
if sr != sampling_rate: |
|
resampler = Resample(orig_freq=sr, new_freq=sampling_rate) |
|
audio = resampler(audio) |
|
return audio |
|
|
|
def split_lyrics(lyrics: str): |
|
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)" |
|
segments = re.findall(pattern, lyrics, re.DOTALL) |
|
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments] |
|
return structured_lyrics |
|
|
|
|
|
stage1_output_set = [] |
|
|
|
genres = genre_txt.strip() |
|
lyrics = split_lyrics(lyrics_txt + "\n") |
|
|
|
full_lyrics = "\n".join(lyrics) |
|
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"] |
|
prompt_texts += lyrics |
|
|
|
random_id = uuid.uuid4() |
|
output_seq = None |
|
|
|
top_p = 0.93 |
|
temperature = 1.0 |
|
repetition_penalty = 1.2 |
|
|
|
start_of_segment = mmtokenizer.tokenize('[start_of_segment]') |
|
end_of_segment = mmtokenizer.tokenize('[end_of_segment]') |
|
|
|
raw_output = None |
|
|
|
|
|
run_n_segments = min(run_n_segments + 1, len(lyrics)) |
|
|
|
print(list(enumerate(tqdm(prompt_texts[:run_n_segments])))) |
|
|
|
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])): |
|
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '') |
|
guidance_scale = 1.5 if i <= 1 else 1.2 |
|
if i == 0: |
|
continue |
|
if i == 1: |
|
if use_audio_prompt: |
|
audio_prompt = load_audio_mono(audio_prompt_path) |
|
audio_prompt.unsqueeze_(0) |
|
with torch.no_grad(): |
|
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5) |
|
raw_codes = raw_codes.transpose(0, 1) |
|
raw_codes = raw_codes.cpu().numpy().astype(np.int16) |
|
|
|
code_ids = codectool.npy2ids(raw_codes[0]) |
|
audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)] |
|
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [ |
|
mmtokenizer.eoa] |
|
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize( |
|
"[end_of_reference]") |
|
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids |
|
else: |
|
head_id = mmtokenizer.tokenize(prompt_texts[0]) |
|
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids |
|
else: |
|
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids |
|
|
|
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device) |
|
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids |
|
|
|
max_context = 16384 - max_new_tokens - 1 |
|
if input_ids.shape[-1] > max_context: |
|
print( |
|
f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.') |
|
input_ids = input_ids[:, -(max_context):] |
|
with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16): |
|
output_seq = model.generate( |
|
input_ids=input_ids, |
|
max_new_tokens=max_new_tokens, |
|
min_new_tokens=100, |
|
do_sample=True, |
|
top_p=top_p, |
|
temperature=temperature, |
|
repetition_penalty=repetition_penalty, |
|
eos_token_id=mmtokenizer.eoa, |
|
pad_token_id=mmtokenizer.eoa, |
|
logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]), |
|
guidance_scale=guidance_scale, |
|
use_cache=True, |
|
top_k=50, |
|
num_beams=1 |
|
) |
|
if output_seq[0][-1].item() != mmtokenizer.eoa: |
|
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device) |
|
output_seq = torch.cat((output_seq, tensor_eoa), dim=1) |
|
if i > 1: |
|
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1) |
|
else: |
|
raw_output = output_seq |
|
print(len(raw_output)) |
|
|
|
|
|
ids = raw_output[0].cpu().numpy() |
|
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist() |
|
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist() |
|
if len(soa_idx) != len(eoa_idx): |
|
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}') |
|
|
|
vocals = [] |
|
instrumentals = [] |
|
range_begin = 1 if use_audio_prompt else 0 |
|
for i in range(range_begin, len(soa_idx)): |
|
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]] |
|
if codec_ids[0] == 32016: |
|
codec_ids = codec_ids[1:] |
|
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)] |
|
vocals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0]) |
|
vocals.append(vocals_ids) |
|
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1]) |
|
instrumentals.append(instrumentals_ids) |
|
vocals = np.concatenate(vocals, axis=1) |
|
instrumentals = np.concatenate(instrumentals, axis=1) |
|
|
|
vocal_save_path = os.path.join(stage1_output_dir, f"vocal_{random_id}".replace('.', '@') + '.npy') |
|
inst_save_path = os.path.join(stage1_output_dir, f"instrumental_{random_id}".replace('.', '@') + '.npy') |
|
np.save(vocal_save_path, vocals) |
|
np.save(inst_save_path, instrumentals) |
|
stage1_output_set.append(vocal_save_path) |
|
stage1_output_set.append(inst_save_path) |
|
|
|
|
|
print("Converting to Audio...") |
|
|
|
|
|
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False): |
|
folder_path = os.path.dirname(path) |
|
if not os.path.exists(folder_path): |
|
os.makedirs(folder_path) |
|
limit = 0.99 |
|
max_val = wav.abs().max() |
|
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit) |
|
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16) |
|
|
|
|
|
recons_output_dir = os.path.join(output_dir, "recons") |
|
recons_mix_dir = os.path.join(recons_output_dir, 'mix') |
|
os.makedirs(recons_mix_dir, exist_ok=True) |
|
tracks = [] |
|
for npy in stage1_output_set: |
|
codec_result = np.load(npy) |
|
decodec_rlt = [] |
|
with torch.no_grad(): |
|
decoded_waveform = codec_model.decode( |
|
torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to( |
|
device)) |
|
decoded_waveform = decoded_waveform.cpu().squeeze(0) |
|
decodec_rlt.append(torch.as_tensor(decoded_waveform)) |
|
decodec_rlt = torch.cat(decodec_rlt, dim=-1) |
|
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3") |
|
tracks.append(save_path) |
|
save_audio(decodec_rlt, save_path, 16000) |
|
|
|
for inst_path in tracks: |
|
try: |
|
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \ |
|
and 'instrumental' in inst_path: |
|
|
|
vocal_path = inst_path.replace('instrumental', 'vocal') |
|
if not os.path.exists(vocal_path): |
|
continue |
|
|
|
recons_mix = os.path.join(recons_mix_dir, |
|
os.path.basename(inst_path).replace('instrumental', 'mixed')) |
|
vocal_stem, sr = sf.read(inst_path) |
|
instrumental_stem, _ = sf.read(vocal_path) |
|
mix_stem = (vocal_stem + instrumental_stem) / 1 |
|
sf.write(recons_mix, mix_stem, sr) |
|
except Exception as e: |
|
print(e) |
|
|
|
|
|
vocoder_output_dir = os.path.join(output_dir, 'vocoder') |
|
vocoder_stems_dir = os.path.join(vocoder_output_dir, 'stems') |
|
vocoder_mix_dir = os.path.join(vocoder_output_dir, 'mix') |
|
os.makedirs(vocoder_mix_dir, exist_ok=True) |
|
os.makedirs(vocoder_stems_dir, exist_ok=True) |
|
instrumental_output = None |
|
vocal_output = None |
|
for npy in stage1_output_set: |
|
if 'instrumental' in npy: |
|
|
|
instrumental_output = process_audio( |
|
npy, |
|
os.path.join(vocoder_stems_dir, 'instrumental.mp3'), |
|
rescale, |
|
argparse.Namespace(**locals()), |
|
inst_decoder, |
|
codec_model |
|
) |
|
else: |
|
|
|
vocal_output = process_audio( |
|
npy, |
|
os.path.join(vocoder_stems_dir, 'vocal.mp3'), |
|
rescale, |
|
argparse.Namespace(**locals()), |
|
vocal_decoder, |
|
codec_model |
|
) |
|
|
|
try: |
|
mix_output = instrumental_output + vocal_output |
|
vocoder_mix = os.path.join(vocoder_mix_dir, os.path.basename(recons_mix)) |
|
save_audio(mix_output, vocoder_mix, 44100, rescale) |
|
print(f"Created mix: {vocoder_mix}") |
|
except RuntimeError as e: |
|
print(e) |
|
print(f"mix {vocoder_mix} failed! inst: {instrumental_output.shape}, vocal: {vocal_output.shape}") |
|
|
|
|
|
final_output_path = os.path.join(output_dir, os.path.basename(recons_mix)) |
|
replace_low_freq_with_energy_matched( |
|
a_file=recons_mix, |
|
b_file=vocoder_mix, |
|
c_file=final_output_path, |
|
cutoff_freq=5500.0 |
|
) |
|
print("All process Done") |
|
|
|
|
|
final_audio, sr = torchaudio.load(final_output_path) |
|
return (sr, final_audio.squeeze().numpy()) |
|
|
|
|
|
@spaces.GPU(duration=120) |
|
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=15): |
|
|
|
try: |
|
audio_data = generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments, |
|
cuda_idx=0, max_new_tokens=max_new_tokens) |
|
return audio_data |
|
except Exception as e: |
|
gr.Warning("An Error Occured: " + str(e)) |
|
return None |
|
finally: |
|
print("Temporary files deleted.") |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Column(): |
|
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation") |
|
gr.HTML(""" |
|
<div style="display:flex;column-gap:4px;"> |
|
<a href="https://github.com/multimodal-art-projection/YuE"> |
|
<img src='https://img.shields.io/badge/GitHub-Repo-blue'> |
|
</a> |
|
<a href="https://map-yue.github.io"> |
|
<img src='https://img.shields.io/badge/Project-Page-green'> |
|
</a> |
|
<a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true"> |
|
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space"> |
|
</a> |
|
</div> |
|
""") |
|
with gr.Row(): |
|
with gr.Column(): |
|
genre_txt = gr.Textbox(label="Genre") |
|
lyrics_txt = gr.Textbox(label="Lyrics") |
|
|
|
with gr.Column(): |
|
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True) |
|
max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=15, |
|
interactive=True) |
|
submit_btn = gr.Button("Submit") |
|
music_out = gr.Audio(label="Audio Result") |
|
|
|
gr.Examples( |
|
examples=[ |
|
[ |
|
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male", |
|
"""[verse] |
|
Late nights grinding, writing down these rhymes |
|
Clock is ticking fast, can't afford to waste time |
|
Haters gonna hate, but I brush it off |
|
Turn the negativity into something strong |
|
Mama working hard, wanna make her proud |
|
Echoes of her prayers cutting through the crowd |
|
Friends turned strangers, but it's all good |
|
Focused on my path like I always knew I would |
|
|
|
[chorus] |
|
This is my life, and I'm aiming for the top |
|
Never gonna quit, no, I'm never gonna stop |
|
Through the highs and lows, I'mma keep it real |
|
Living out my dreams with this mic and a deal |
|
|
|
""" |
|
], |
|
[ |
|
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male", |
|
"""[verse] |
|
Woke up in the morning, sun is shining bright |
|
Chasing all my dreams, gotta get my mind right |
|
City lights are fading, but my vision's clear |
|
Got my team beside me, no room for fear |
|
Walking through the streets, beats inside my head |
|
Every step I take, closer to the bread |
|
People passing by, they don't understand |
|
Building up my future with my own two hands |
|
|
|
[chorus] |
|
This is my life, and I'm aiming for the top |
|
Never gonna quit, no, I'm never gonna stop |
|
Through the highs and lows, I'mma keep it real |
|
Living out my dreams with this mic and a deal |
|
""" |
|
] |
|
], |
|
inputs=[genre_txt, lyrics_txt], |
|
outputs=[music_out], |
|
cache_examples=True, |
|
cache_mode="eager", |
|
fn=infer |
|
) |
|
|
|
submit_btn.click( |
|
fn=infer, |
|
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens], |
|
outputs=[music_out] |
|
) |
|
demo.queue().launch(show_error=True) |