KingNish's picture
using r1
01bd804
raw
history blame
9.23 kB
import gradio as gr
import subprocess
import os
import shutil
import tempfile
import spaces
import sys
print("Installing flash-attn...")
# Install flash attention
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
from huggingface_hub import snapshot_download
# Create xcodec_mini_infer folder
folder_path = './xcodec_mini_infer'
# Create the folder if it doesn't exist
if not os.path.exists(folder_path):
os.mkdir(folder_path)
print(f"Folder created at: {folder_path}")
else:
print(f"Folder already exists at: {folder_path}")
snapshot_download(
repo_id = "m-a-p/xcodec_mini_infer",
local_dir = "./xcodec_mini_infer"
)
# Change to the "inference" directory
inference_dir = "."
try:
os.chdir(inference_dir)
print(f"Changed working directory to: {os.getcwd()}")
except FileNotFoundError:
print(f"Directory not found: {inference_dir}")
exit(1)
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
import gradio as gr
import os
import shutil
import tempfile
import spaces
import torch
import numpy as np
from pathlib import Path
from huggingface_hub import snapshot_download
from omegaconf import OmegaConf
import torchaudio
import soundfile as sf
from functools import lru_cache
from concurrent.futures import ThreadPoolExecutor
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessorList
from models.soundstream_hubert_new import SoundStream
from vocoder import build_codec_model
from mmtokenizer import _MMSentencePieceTokenizer
from codecmanipulator import CodecManipulator
# --------------------------
# Configuration Constants
# --------------------------
MODEL_DIR = Path("./xcodec_mini_infer")
OUTPUT_DIR = Path("./output")
DEVICE = "cuda:0"
TORCH_DTYPE = torch.float16
MAX_CONTEXT = 16384 - 3000 - 1
MAX_SEQ_LEN = 16384
# --------------------------
# Preload Models with KV Cache Initialization
# --------------------------
@spaces.GPU
def preload_models():
global model, mmtokenizer, codec_model, codectool, vocal_decoder, inst_decoder
# Text generation model with KV cache support
model = AutoModelForCausalLM.from_pretrained(
"m-a-p/YuE-s1-7B-anneal-en-cot",
torch_dtype=TORCH_DTYPE,
attn_implementation="flash_attention_2",
use_cache=True # Enable KV caching
).to(DEVICE).eval()
# Tokenizer and codec tools
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
codectool = CodecManipulator("xcodec", 0, 1)
# Audio codec model
model_config = OmegaConf.load(MODEL_DIR/"final_ckpt/config.yaml")
codec_model = SoundStream(**model_config.generator.config).to(DEVICE)
codec_model.load_state_dict(
torch.load(MODEL_DIR/"final_ckpt/ckpt_00360000.pth", map_location='cpu')['codec_model']
)
codec_model.eval()
# Vocoders
vocal_decoder, inst_decoder = build_codec_model(
MODEL_DIR/"decoders/config.yaml",
MODEL_DIR/"decoders/decoder_131000.pth",
MODEL_DIR/"decoders/decoder_151000.pth"
)
# --------------------------
# Optimized Generation with KV Cache Management
# --------------------------
class KVCacheManager:
def __init__(self, model):
self.model = model
self.past_key_values = None
self.current_length = 0
def reset(self):
self.past_key_values = None
self.current_length = 0
def generate_with_cache(self, input_ids, generation_config):
outputs = self.model(
input_ids,
past_key_values=self.past_key_values,
use_cache=True,
output_hidden_states=False,
return_dict=True
)
self.past_key_values = outputs.past_key_values
self.current_length += input_ids.shape[1]
return outputs.logits
def split_lyrics(lyrics: str):
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
segments = re.findall(pattern, lyrics, re.DOTALL)
return [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
@torch.inference_mode()
def process_audio_batch(codec_ids, decoder, sample_rate=44100):
decoded = codec_model.decode(
torch.as_tensor(codec_ids.astype(np.int16), dtype=torch.long)
.unsqueeze(0).permute(1, 0, 2).to(DEVICE)
)
return decoded.cpu().squeeze(0)
# --------------------------
# Core Generation Logic with KV Cache
# --------------------------
def generate_music(genre_txt, lyrics_txt, num_segments=2, max_new_tokens=2000):
# Initialize KV cache manager
cache_manager = KVCacheManager(model)
# Preprocess inputs
genres = genre_txt.strip()
structured_lyrics = split_lyrics(lyrics_txt+"\n")
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{''.join(structured_lyrics)}"] + structured_lyrics
# Generation loop with KV cache
all_generated = []
for i in range(1, min(num_segments+1, len(prompt_texts))):
input_ids = prepare_inputs(prompt_texts, i, all_generated)
input_ids = input_ids.to(DEVICE)
# Generate segment with KV cache
segment_output = []
for _ in range(max_new_tokens):
logits = cache_manager.generate_with_cache(input_ids, None)
# Sampling logic
probs = torch.nn.functional.softmax(logits[:, -1], dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
segment_output.append(next_token.item())
input_ids = next_token.unsqueeze(0)
if next_token == mmtokenizer.eoa:
break
all_generated.extend(segment_output)
# Prevent cache overflow
if cache_manager.current_length > MAX_SEQ_LEN * 0.8:
cache_manager.reset()
# Process outputs
ids = np.array(all_generated)
vocals, instrumentals = process_outputs(ids)
# Parallel audio processing
with ThreadPoolExecutor() as executor:
vocal_future = executor.submit(process_audio_batch, vocals, vocal_decoder)
inst_future = executor.submit(process_audio_batch, instrumentals, inst_decoder)
vocal_wav = vocal_future.result()
inst_wav = inst_future.result()
# Mix and post-process
mixed = (vocal_wav + inst_wav) / 2
final_path = OUTPUT_DIR/"final_output.mp3"
save_audio(mixed, final_path, 44100)
return str(final_path)
# --------------------------
# Optimized Helper Functions
# --------------------------
@lru_cache(maxsize=10)
def prepare_inputs(prompt_texts, index, previous_tokens):
current_prompt = mmtokenizer.tokenize(prompt_texts[index])
return torch.tensor([previous_tokens + current_prompt], dtype=torch.long, device=DEVICE)
def process_outputs(ids):
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
vocals = []
instrumentals = []
for i in range(len(soa_idx)):
codec_ids = ids[soa_idx[i]+1:eoa_idx[i]]
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
vocals.append(codectool.ids2npy(codec_ids[::2]))
instrumentals.append(codectool.ids2npy(codec_ids[1::2]))
return np.concatenate(vocals, axis=1), np.concatenate(instrumentals, axis=1)
def save_audio(wav, path, sr):
wav = wav.clamp(-0.99, 0.99)
torchaudio.save(path, wav.cpu(), sr, encoding='PCM_S', bits_per_sample=16)
# --------------------------
# Gradio Interface
# --------------------------
@spaces.GPU(duration=120)
def infer(genre, lyrics, num_segments=2, max_tokens=2000):
with tempfile.TemporaryDirectory() as tmpdir:
return generate_music(genre, lyrics, num_segments, max_tokens)
# Initialize models at startup
preload_models()
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# YuE Music Generator with KV Cache Optimization")
with gr.Row():
with gr.Column():
genre_txt = gr.Textbox(label="Genre", placeholder="e.g., pop electronic female vocal")
lyrics_txt = gr.Textbox(label="Lyrics", lines=8,
placeholder="""[verse]\nYour lyrics here...""")
num_segments = gr.Slider(1, 10, value=2, label="Song Segments")
max_tokens = gr.Slider(100, 3000, value=1000, step=100,
label="Max Tokens per Segment (100≈1sec)")
submit_btn = gr.Button("Generate Music")
with gr.Column():
audio_output = gr.Audio(label="Generated Music", interactive=False)
gr.Examples(
examples=[
["pop rock male vocal", "[verse]\nStanding in the light..."],
["electronic dance synth female", "[drop]\nFeel the rhythm..."]
],
inputs=[genre_txt, lyrics_txt],
outputs=audio_output
)
submit_btn.click(
fn=infer,
inputs=[genre_txt, lyrics_txt, num_segments, max_tokens],
outputs=audio_output
)
demo.queue(concurrency_count=2).launch()