|
import gradio as gr |
|
import subprocess |
|
import os |
|
import shutil |
|
import tempfile |
|
import spaces |
|
import sys |
|
|
|
print("Installing flash-attn...") |
|
|
|
subprocess.run( |
|
"pip install flash-attn --no-build-isolation", |
|
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, |
|
shell=True, |
|
) |
|
|
|
from huggingface_hub import snapshot_download |
|
|
|
|
|
folder_path = './xcodec_mini_infer' |
|
|
|
|
|
if not os.path.exists(folder_path): |
|
os.mkdir(folder_path) |
|
print(f"Folder created at: {folder_path}") |
|
else: |
|
print(f"Folder already exists at: {folder_path}") |
|
|
|
snapshot_download( |
|
repo_id = "m-a-p/xcodec_mini_infer", |
|
local_dir = "./xcodec_mini_infer" |
|
) |
|
|
|
|
|
inference_dir = "." |
|
try: |
|
os.chdir(inference_dir) |
|
print(f"Changed working directory to: {os.getcwd()}") |
|
except FileNotFoundError: |
|
print(f"Directory not found: {inference_dir}") |
|
exit(1) |
|
|
|
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer')) |
|
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec')) |
|
|
|
import gradio as gr |
|
import os |
|
import shutil |
|
import tempfile |
|
import spaces |
|
import torch |
|
import numpy as np |
|
from pathlib import Path |
|
from huggingface_hub import snapshot_download |
|
from omegaconf import OmegaConf |
|
import torchaudio |
|
import soundfile as sf |
|
from functools import lru_cache |
|
from concurrent.futures import ThreadPoolExecutor |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessorList |
|
from models.soundstream_hubert_new import SoundStream |
|
from vocoder import build_codec_model |
|
from mmtokenizer import _MMSentencePieceTokenizer |
|
from codecmanipulator import CodecManipulator |
|
|
|
|
|
|
|
|
|
MODEL_DIR = Path("./xcodec_mini_infer") |
|
OUTPUT_DIR = Path("./output") |
|
DEVICE = "cuda:0" |
|
TORCH_DTYPE = torch.float16 |
|
MAX_CONTEXT = 16384 - 3000 - 1 |
|
MAX_SEQ_LEN = 16384 |
|
|
|
|
|
|
|
|
|
@spaces.GPU |
|
def preload_models(): |
|
global model, mmtokenizer, codec_model, codectool, vocal_decoder, inst_decoder |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"m-a-p/YuE-s1-7B-anneal-en-cot", |
|
torch_dtype=TORCH_DTYPE, |
|
attn_implementation="flash_attention_2", |
|
use_cache=True |
|
).to(DEVICE).eval() |
|
|
|
|
|
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model") |
|
codectool = CodecManipulator("xcodec", 0, 1) |
|
|
|
|
|
model_config = OmegaConf.load(MODEL_DIR/"final_ckpt/config.yaml") |
|
codec_model = SoundStream(**model_config.generator.config).to(DEVICE) |
|
codec_model.load_state_dict( |
|
torch.load(MODEL_DIR/"final_ckpt/ckpt_00360000.pth", map_location='cpu')['codec_model'] |
|
) |
|
codec_model.eval() |
|
|
|
|
|
vocal_decoder, inst_decoder = build_codec_model( |
|
MODEL_DIR/"decoders/config.yaml", |
|
MODEL_DIR/"decoders/decoder_131000.pth", |
|
MODEL_DIR/"decoders/decoder_151000.pth" |
|
) |
|
|
|
|
|
|
|
|
|
class KVCacheManager: |
|
def __init__(self, model): |
|
self.model = model |
|
self.past_key_values = None |
|
self.current_length = 0 |
|
|
|
def reset(self): |
|
self.past_key_values = None |
|
self.current_length = 0 |
|
|
|
def generate_with_cache(self, input_ids, generation_config): |
|
outputs = self.model( |
|
input_ids, |
|
past_key_values=self.past_key_values, |
|
use_cache=True, |
|
output_hidden_states=False, |
|
return_dict=True |
|
) |
|
|
|
self.past_key_values = outputs.past_key_values |
|
self.current_length += input_ids.shape[1] |
|
|
|
return outputs.logits |
|
|
|
def split_lyrics(lyrics: str): |
|
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)" |
|
segments = re.findall(pattern, lyrics, re.DOTALL) |
|
return [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments] |
|
|
|
@torch.inference_mode() |
|
def process_audio_batch(codec_ids, decoder, sample_rate=44100): |
|
decoded = codec_model.decode( |
|
torch.as_tensor(codec_ids.astype(np.int16), dtype=torch.long) |
|
.unsqueeze(0).permute(1, 0, 2).to(DEVICE) |
|
) |
|
return decoded.cpu().squeeze(0) |
|
|
|
|
|
|
|
|
|
def generate_music(genre_txt, lyrics_txt, num_segments=2, max_new_tokens=2000): |
|
|
|
cache_manager = KVCacheManager(model) |
|
|
|
|
|
genres = genre_txt.strip() |
|
structured_lyrics = split_lyrics(lyrics_txt+"\n") |
|
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{''.join(structured_lyrics)}"] + structured_lyrics |
|
|
|
|
|
all_generated = [] |
|
for i in range(1, min(num_segments+1, len(prompt_texts))): |
|
input_ids = prepare_inputs(prompt_texts, i, all_generated) |
|
input_ids = input_ids.to(DEVICE) |
|
|
|
|
|
segment_output = [] |
|
for _ in range(max_new_tokens): |
|
logits = cache_manager.generate_with_cache(input_ids, None) |
|
|
|
|
|
probs = torch.nn.functional.softmax(logits[:, -1], dim=-1) |
|
next_token = torch.multinomial(probs, num_samples=1) |
|
|
|
segment_output.append(next_token.item()) |
|
input_ids = next_token.unsqueeze(0) |
|
|
|
if next_token == mmtokenizer.eoa: |
|
break |
|
|
|
all_generated.extend(segment_output) |
|
|
|
|
|
if cache_manager.current_length > MAX_SEQ_LEN * 0.8: |
|
cache_manager.reset() |
|
|
|
|
|
ids = np.array(all_generated) |
|
vocals, instrumentals = process_outputs(ids) |
|
|
|
|
|
with ThreadPoolExecutor() as executor: |
|
vocal_future = executor.submit(process_audio_batch, vocals, vocal_decoder) |
|
inst_future = executor.submit(process_audio_batch, instrumentals, inst_decoder) |
|
vocal_wav = vocal_future.result() |
|
inst_wav = inst_future.result() |
|
|
|
|
|
mixed = (vocal_wav + inst_wav) / 2 |
|
final_path = OUTPUT_DIR/"final_output.mp3" |
|
save_audio(mixed, final_path, 44100) |
|
return str(final_path) |
|
|
|
|
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def prepare_inputs(prompt_texts, index, previous_tokens): |
|
current_prompt = mmtokenizer.tokenize(prompt_texts[index]) |
|
return torch.tensor([previous_tokens + current_prompt], dtype=torch.long, device=DEVICE) |
|
|
|
def process_outputs(ids): |
|
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist() |
|
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist() |
|
|
|
vocals = [] |
|
instrumentals = [] |
|
for i in range(len(soa_idx)): |
|
codec_ids = ids[soa_idx[i]+1:eoa_idx[i]] |
|
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)] |
|
vocals.append(codectool.ids2npy(codec_ids[::2])) |
|
instrumentals.append(codectool.ids2npy(codec_ids[1::2])) |
|
|
|
return np.concatenate(vocals, axis=1), np.concatenate(instrumentals, axis=1) |
|
|
|
def save_audio(wav, path, sr): |
|
wav = wav.clamp(-0.99, 0.99) |
|
torchaudio.save(path, wav.cpu(), sr, encoding='PCM_S', bits_per_sample=16) |
|
|
|
|
|
|
|
|
|
@spaces.GPU(duration=120) |
|
def infer(genre, lyrics, num_segments=2, max_tokens=2000): |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
return generate_music(genre, lyrics, num_segments, max_tokens) |
|
|
|
|
|
preload_models() |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# YuE Music Generator with KV Cache Optimization") |
|
with gr.Row(): |
|
with gr.Column(): |
|
genre_txt = gr.Textbox(label="Genre", placeholder="e.g., pop electronic female vocal") |
|
lyrics_txt = gr.Textbox(label="Lyrics", lines=8, |
|
placeholder="""[verse]\nYour lyrics here...""") |
|
num_segments = gr.Slider(1, 10, value=2, label="Song Segments") |
|
max_tokens = gr.Slider(100, 3000, value=1000, step=100, |
|
label="Max Tokens per Segment (100≈1sec)") |
|
submit_btn = gr.Button("Generate Music") |
|
with gr.Column(): |
|
audio_output = gr.Audio(label="Generated Music", interactive=False) |
|
|
|
gr.Examples( |
|
examples=[ |
|
["pop rock male vocal", "[verse]\nStanding in the light..."], |
|
["electronic dance synth female", "[drop]\nFeel the rhythm..."] |
|
], |
|
inputs=[genre_txt, lyrics_txt], |
|
outputs=audio_output |
|
) |
|
|
|
submit_btn.click( |
|
fn=infer, |
|
inputs=[genre_txt, lyrics_txt, num_segments, max_tokens], |
|
outputs=audio_output |
|
) |
|
|
|
demo.queue(concurrency_count=2).launch() |