File size: 2,688 Bytes
3150950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# Copyright (c) ByteDance, Inc. and its affiliates.
# Copyright (c) Chutong Meng
#
# This source code is licensed under the CC BY-NC license found in the
# LICENSE file in the root directory of this source tree.
# Based on AudioDec (https://github.com/facebookresearch/AudioDec)

import torch.nn as nn


class Conv1d1x1(nn.Conv1d):
    """1x1 Conv1d."""

    def __init__(self, in_channels, out_channels, bias=True):
        super(Conv1d1x1, self).__init__(in_channels, out_channels, kernel_size=1, bias=bias)


class Conv1d(nn.Module):
    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            kernel_size: int,
            stride: int = 1,
            padding: int = -1,
            dilation: int = 1,
            groups: int = 1,
            bias: bool = True
    ):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        if padding < 0:
            padding = (kernel_size - 1) // 2 * dilation
        self.dilation = dilation
        self.conv = nn.Conv1d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=bias,
        )

    def forward(self, x):
        """
        Args:
            x (Tensor): Float tensor variable with the shape  (B, C, T).
        Returns:
            Tensor: Float tensor variable with the shape (B, C, T).
        """
        x = self.conv(x)
        return x


class ConvTranspose1d(nn.Module):
    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            kernel_size: int,
            stride: int,
            padding=-1,
            output_padding=-1,
            groups=1,
            bias=True,
    ):
        super().__init__()
        if padding < 0:
            padding = (stride + 1) // 2
        if output_padding < 0:
            output_padding = 1 if stride % 2 else 0
        self.deconv = nn.ConvTranspose1d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            output_padding=output_padding,
            groups=groups,
            bias=bias,
        )

    def forward(self, x):
        """
        Args:
            x (Tensor): Float tensor variable with the shape  (B, C, T).
        Returns:
            Tensor: Float tensor variable with the shape (B, C', T').
        """
        x = self.deconv(x)
        return x