Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import os
|
2 |
import random
|
3 |
import uuid
|
@@ -13,7 +14,7 @@ DESCRIPTIONx = """## REALVISXL V5 🦉
|
|
13 |
"""
|
14 |
|
15 |
css = '''
|
16 |
-
.gradio-container{max-width:
|
17 |
h1{text-align:center}
|
18 |
footer {
|
19 |
visibility: hidden
|
@@ -25,12 +26,28 @@ examples = [
|
|
25 |
"Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K",
|
26 |
]
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
30 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
31 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
32 |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # Allow generating multiple images at once
|
33 |
|
|
|
34 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
35 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
36 |
MODEL_ID,
|
@@ -44,6 +61,7 @@ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.conf
|
|
44 |
if USE_TORCH_COMPILE:
|
45 |
pipe.compile()
|
46 |
|
|
|
47 |
if ENABLE_CPU_OFFLOAD:
|
48 |
pipe.enable_model_cpu_offload()
|
49 |
|
@@ -69,7 +87,7 @@ def set_wallpaper_size(size):
|
|
69 |
elif size == "Headers (1080x512)":
|
70 |
return 1080, 512
|
71 |
else:
|
72 |
-
return 1024, 1024
|
73 |
|
74 |
@spaces.GPU(duration=60, enable_queue=True)
|
75 |
def generate(
|
@@ -77,6 +95,8 @@ def generate(
|
|
77 |
negative_prompt: str = "",
|
78 |
use_negative_prompt: bool = False,
|
79 |
seed: int = 1,
|
|
|
|
|
80 |
wallpaper_size: str = "Default (1024x1024)",
|
81 |
guidance_scale: float = 3,
|
82 |
num_inference_steps: int = 25,
|
@@ -87,9 +107,9 @@ def generate(
|
|
87 |
):
|
88 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
89 |
generator = torch.Generator(device=device).manual_seed(seed)
|
90 |
-
|
91 |
width, height = set_wallpaper_size(wallpaper_size)
|
92 |
|
|
|
93 |
options = {
|
94 |
"prompt": [prompt] * num_images,
|
95 |
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
@@ -100,10 +120,12 @@ def generate(
|
|
100 |
"generator": generator,
|
101 |
"output_type": "pil",
|
102 |
}
|
103 |
-
|
|
|
104 |
if use_resolution_binning:
|
105 |
options["use_resolution_binning"] = True
|
106 |
|
|
|
107 |
images = []
|
108 |
for i in range(0, num_images, BATCH_SIZE):
|
109 |
batch_options = options.copy()
|
@@ -116,20 +138,26 @@ def generate(
|
|
116 |
return image_paths, seed
|
117 |
|
118 |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
119 |
-
|
120 |
gr.Markdown(DESCRIPTIONx)
|
121 |
-
with gr.
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
num_images = gr.Slider(
|
134 |
label="Number of Images",
|
135 |
minimum=1,
|
@@ -156,10 +184,19 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
156 |
)
|
157 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
158 |
with gr.Row(visible=True):
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
)
|
164 |
with gr.Row():
|
165 |
guidance_scale = gr.Slider(
|
@@ -201,7 +238,8 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
201 |
negative_prompt,
|
202 |
use_negative_prompt,
|
203 |
seed,
|
204 |
-
|
|
|
205 |
guidance_scale,
|
206 |
num_inference_steps,
|
207 |
randomize_seed,
|
@@ -210,6 +248,6 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
210 |
outputs=[result, seed],
|
211 |
api_name="run",
|
212 |
)
|
213 |
-
|
214 |
if __name__ == "__main__":
|
215 |
demo.queue(max_size=40).launch()
|
|
|
1 |
+
# ...
|
2 |
import os
|
3 |
import random
|
4 |
import uuid
|
|
|
14 |
"""
|
15 |
|
16 |
css = '''
|
17 |
+
.gradio-container{max-width: 560px !important}
|
18 |
h1{text-align:center}
|
19 |
footer {
|
20 |
visibility: hidden
|
|
|
26 |
"Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K",
|
27 |
]
|
28 |
|
29 |
+
|
30 |
+
#examples = [
|
31 |
+
# ["file/1.png", "3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1.5), (best quality:1.5)"],
|
32 |
+
# ["file/2.png", "Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K"],
|
33 |
+
#["file/3.png", "Vector illustration of a horse, vector graphic design with flat colors on a brown background in the style of vector art, using simple shapes and graphics with simple details, professionally designed as a tshirt logo ready for print on a white background. --ar 89:82 --v 6.0 --style raw"],
|
34 |
+
#["file/4.png", "Man in brown leather jacket posing for the camera, in the style of sleek and stylized, clockpunk, subtle shades, exacting precision, ferrania p30 --ar 67:101 --v 5"],
|
35 |
+
#["file/5.png", "Commercial photography, giant burger, white lighting, studio light, 8k octane rendering, high resolution photography, insanely detailed, fine details, on a white isolated plain, 8k, commercial photography, stock photo, professional color grading, --v 4 --ar 9:16"]
|
36 |
+
#]
|
37 |
+
|
38 |
+
|
39 |
+
#Set an os.Getenv variable
|
40 |
+
#set VAR_NAME=”VALUE”
|
41 |
+
#Fetch an environment variable
|
42 |
+
#echo %VAR_NAME%
|
43 |
+
|
44 |
+
MODEL_ID = os.getenv("MODEL_VAL_PATH") #Use SDXL Model as "MODEL_REPO" --------->>> ”VALUE”.
|
45 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
46 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
47 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
48 |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # Allow generating multiple images at once
|
49 |
|
50 |
+
#Load model outside of function
|
51 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
52 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
53 |
MODEL_ID,
|
|
|
61 |
if USE_TORCH_COMPILE:
|
62 |
pipe.compile()
|
63 |
|
64 |
+
# Offloading capacity (RAM)
|
65 |
if ENABLE_CPU_OFFLOAD:
|
66 |
pipe.enable_model_cpu_offload()
|
67 |
|
|
|
87 |
elif size == "Headers (1080x512)":
|
88 |
return 1080, 512
|
89 |
else:
|
90 |
+
return 1024, 1024
|
91 |
|
92 |
@spaces.GPU(duration=60, enable_queue=True)
|
93 |
def generate(
|
|
|
95 |
negative_prompt: str = "",
|
96 |
use_negative_prompt: bool = False,
|
97 |
seed: int = 1,
|
98 |
+
width: int = 1024,
|
99 |
+
height: int = 1024,
|
100 |
wallpaper_size: str = "Default (1024x1024)",
|
101 |
guidance_scale: float = 3,
|
102 |
num_inference_steps: int = 25,
|
|
|
107 |
):
|
108 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
109 |
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
110 |
width, height = set_wallpaper_size(wallpaper_size)
|
111 |
|
112 |
+
|
113 |
options = {
|
114 |
"prompt": [prompt] * num_images,
|
115 |
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
|
|
120 |
"generator": generator,
|
121 |
"output_type": "pil",
|
122 |
}
|
123 |
+
|
124 |
+
#VRAM usage Lesser
|
125 |
if use_resolution_binning:
|
126 |
options["use_resolution_binning"] = True
|
127 |
|
128 |
+
#Images potential batches
|
129 |
images = []
|
130 |
for i in range(0, num_images, BATCH_SIZE):
|
131 |
batch_options = options.copy()
|
|
|
138 |
return image_paths, seed
|
139 |
|
140 |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
|
141 |
gr.Markdown(DESCRIPTIONx)
|
142 |
+
with gr.Group():
|
143 |
+
with gr.Row():
|
144 |
+
prompt = gr.Text(
|
145 |
+
label="Prompt",
|
146 |
+
show_label=False,
|
147 |
+
max_lines=1,
|
148 |
+
placeholder="Enter your prompt",
|
149 |
+
container=False,
|
150 |
+
)
|
151 |
+
run_button = gr.Button("Run", scale=0)
|
152 |
+
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
153 |
+
|
154 |
+
with gr.Row(visible=True):
|
155 |
+
wallpaper_size = gr.Radio(
|
156 |
+
choices=["Mobile (1080x1920)", "Desktop (1920x1080)", "Extented (1920x512)", "Headers (1080x512)", "Default (1024x1024)"],
|
157 |
+
label="Pixel Size(x*y)",
|
158 |
+
value="Default (1024x1024)"
|
159 |
+
)
|
160 |
+
with gr.Accordion("Advanced options", open=False, visible=False):
|
161 |
num_images = gr.Slider(
|
162 |
label="Number of Images",
|
163 |
minimum=1,
|
|
|
184 |
)
|
185 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
186 |
with gr.Row(visible=True):
|
187 |
+
width = gr.Slider(
|
188 |
+
label="Width",
|
189 |
+
minimum=512,
|
190 |
+
maximum=MAX_IMAGE_SIZE,
|
191 |
+
step=64,
|
192 |
+
value=1024,
|
193 |
+
)
|
194 |
+
height = gr.Slider(
|
195 |
+
label="Height",
|
196 |
+
minimum=512,
|
197 |
+
maximum=MAX_IMAGE_SIZE,
|
198 |
+
step=64,
|
199 |
+
value=1024,
|
200 |
)
|
201 |
with gr.Row():
|
202 |
guidance_scale = gr.Slider(
|
|
|
238 |
negative_prompt,
|
239 |
use_negative_prompt,
|
240 |
seed,
|
241 |
+
width,
|
242 |
+
height,
|
243 |
guidance_scale,
|
244 |
num_inference_steps,
|
245 |
randomize_seed,
|
|
|
248 |
outputs=[result, seed],
|
249 |
api_name="run",
|
250 |
)
|
251 |
+
|
252 |
if __name__ == "__main__":
|
253 |
demo.queue(max_size=40).launch()
|