Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ import spaces
|
|
9 |
import torch
|
10 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
11 |
|
12 |
-
DESCRIPTIONx = """## REALVISXL V5
|
13 |
"""
|
14 |
|
15 |
css = '''
|
@@ -25,11 +25,11 @@ examples = [
|
|
25 |
"Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K",
|
26 |
]
|
27 |
|
28 |
-
MODEL_ID = os.getenv("MODEL_VAL_PATH", "SG161222/RealVisXL_V4.0_Lightning")
|
29 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
30 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
31 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
32 |
-
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
|
33 |
|
34 |
#Load model outside of function
|
35 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
@@ -61,18 +61,6 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
61 |
seed = random.randint(0, MAX_SEED)
|
62 |
return seed
|
63 |
|
64 |
-
def set_wallpaper_size(size):
|
65 |
-
if size == "Mobile (1080x1920)":
|
66 |
-
return 1080, 1920
|
67 |
-
elif size == "Desktop (1920x1080)":
|
68 |
-
return 1920, 1080
|
69 |
-
elif size == "Extented (1920x512)":
|
70 |
-
return 1920, 512
|
71 |
-
elif size == "Headers (1080x512)":
|
72 |
-
return 1080, 512
|
73 |
-
else:
|
74 |
-
return 1024, 1024
|
75 |
-
|
76 |
@spaces.GPU(duration=60, enable_queue=True)
|
77 |
def generate(
|
78 |
prompt: str,
|
@@ -81,7 +69,6 @@ def generate(
|
|
81 |
seed: int = 1,
|
82 |
width: int = 1024,
|
83 |
height: int = 1024,
|
84 |
-
wallpaper_size: str = "Default (1024x1024)",
|
85 |
guidance_scale: float = 3,
|
86 |
num_inference_steps: int = 25,
|
87 |
randomize_seed: bool = False,
|
@@ -91,9 +78,8 @@ def generate(
|
|
91 |
):
|
92 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
93 |
generator = torch.Generator(device=device).manual_seed(seed)
|
94 |
-
width, height = set_wallpaper_size(wallpaper_size)
|
95 |
|
96 |
-
|
97 |
options = {
|
98 |
"prompt": [prompt] * num_images,
|
99 |
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
@@ -120,9 +106,10 @@ def generate(
|
|
120 |
|
121 |
image_paths = [save_image(img) for img in images]
|
122 |
return image_paths, seed
|
123 |
-
|
124 |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
125 |
gr.Markdown(DESCRIPTIONx)
|
|
|
126 |
with gr.Group():
|
127 |
with gr.Row():
|
128 |
prompt = gr.Text(
|
@@ -134,13 +121,6 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
134 |
)
|
135 |
run_button = gr.Button("Run", scale=0)
|
136 |
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
137 |
-
|
138 |
-
with gr.Row(visible=True):
|
139 |
-
wallpaper_size = gr.Radio(
|
140 |
-
choices=["Mobile (1080x1920)", "Desktop (1920x1080)", "Extented (1920x512)", "Headers (1080x512)", "Default (1024x1024)"],
|
141 |
-
label="Pixel Size(x*y)",
|
142 |
-
value="Default (1024x1024)"
|
143 |
-
)
|
144 |
with gr.Accordion("Advanced options", open=False, visible=False):
|
145 |
num_images = gr.Slider(
|
146 |
label="Number of Images",
|
@@ -232,6 +212,6 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
232 |
outputs=[result, seed],
|
233 |
api_name="run",
|
234 |
)
|
235 |
-
|
236 |
if __name__ == "__main__":
|
237 |
demo.queue(max_size=40).launch()
|
|
|
9 |
import torch
|
10 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
11 |
|
12 |
+
DESCRIPTIONx = """## REALVISXL V5 🤗
|
13 |
"""
|
14 |
|
15 |
css = '''
|
|
|
25 |
"Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K",
|
26 |
]
|
27 |
|
28 |
+
MODEL_ID = os.getenv("MODEL_VAL_PATH", "SG161222/RealVisXL_V4.0_Lightning")
|
29 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
30 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
31 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
32 |
+
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # Allow generating multiple images at once
|
33 |
|
34 |
#Load model outside of function
|
35 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
61 |
seed = random.randint(0, MAX_SEED)
|
62 |
return seed
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
@spaces.GPU(duration=60, enable_queue=True)
|
65 |
def generate(
|
66 |
prompt: str,
|
|
|
69 |
seed: int = 1,
|
70 |
width: int = 1024,
|
71 |
height: int = 1024,
|
|
|
72 |
guidance_scale: float = 3,
|
73 |
num_inference_steps: int = 25,
|
74 |
randomize_seed: bool = False,
|
|
|
78 |
):
|
79 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
80 |
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
81 |
|
82 |
+
#Options
|
83 |
options = {
|
84 |
"prompt": [prompt] * num_images,
|
85 |
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
|
|
106 |
|
107 |
image_paths = [save_image(img) for img in images]
|
108 |
return image_paths, seed
|
109 |
+
#Main gr.Block
|
110 |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
111 |
gr.Markdown(DESCRIPTIONx)
|
112 |
+
|
113 |
with gr.Group():
|
114 |
with gr.Row():
|
115 |
prompt = gr.Text(
|
|
|
121 |
)
|
122 |
run_button = gr.Button("Run", scale=0)
|
123 |
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
with gr.Accordion("Advanced options", open=False, visible=False):
|
125 |
num_images = gr.Slider(
|
126 |
label="Number of Images",
|
|
|
212 |
outputs=[result, seed],
|
213 |
api_name="run",
|
214 |
)
|
215 |
+
gr.HTML(html_content)
|
216 |
if __name__ == "__main__":
|
217 |
demo.queue(max_size=40).launch()
|