File size: 5,859 Bytes
40462a0
7aafe2f
 
 
 
 
c82ffd4
21e68e9
40462a0
7aafe2f
 
 
 
5fd4d69
 
40462a0
7aafe2f
 
21e68e9
35f3b0f
4dffcc7
35f3b0f
4dffcc7
7aafe2f
 
 
7d90483
34a0f74
7aafe2f
 
c82ffd4
7aafe2f
b7bdba8
7aafe2f
 
 
34a0f74
7aafe2f
b7bdba8
d588de2
7aafe2f
 
 
9e966fc
34a0f74
 
 
 
 
 
9e966fc
dbc482d
 
34a0f74
 
81a5368
 
 
 
 
d588de2
81a5368
 
 
 
 
d22e6d3
81a5368
 
34a0f74
 
 
 
 
dbc482d
 
7aafe2f
dbc482d
34a0f74
1dad7a0
ee1f924
14f1ed0
7aafe2f
34a0f74
81a5368
7aafe2f
c5c8a09
34a0f74
 
 
 
 
d588de2
34a0f74
d588de2
 
 
 
 
 
 
7aafe2f
c5c8a09
81a5368
7aafe2f
 
 
 
d588de2
7aafe2f
 
 
f1c2277
7aafe2f
34a0f74
d588de2
3bad26c
34a0f74
7aafe2f
 
 
34a0f74
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import gradio as gr
import numpy as np
import random
import spaces
import torch
import time
from diffusers import DiffusionPipeline, AutoencoderTiny
from custom_pipeline import FluxWithCFGPipeline

# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
DEFAULT_WIDTH = 1024
DEFAULT_HEIGHT = 768
DEFAULT_INFERENCE_STEPS = 4

# Device and model setup
dtype = torch.float16
pipe = FluxWithCFGPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-schnell", torch_dtype=dtype
)
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
pipe.to("cuda")
torch.cuda.empty_cache()

# Inference function
@spaces.GPU(duration=25)
def generate_image(prompt, seed=24, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, randomize_seed=False, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(int(float(seed)))

    img = pipe.generate_images( 
            prompt=prompt,
            width=width,
            height=height,
            num_inference_steps=DEFAULT_INFERENCE_STEPS,
            generator=generator
        )
    return img, seed

# Example prompts
examples = [
    "sexy woman & man , under wear, full body, sunday",
    "A glamorous young woman with long, wavy blonde hair and smokey eye makeup, posing in a luxury hotel room. She's wearing a sparkly gold cocktail dress and holding up a white card with 'Invite' written on it in elegant calligraphy. Soft, warm lighting creates a luxurious atmosphere. ", 
    "A fit male fitness influencer with short dark hair and stubble, standing shirtless in a modern gym. He has defined abs and arm muscles, and is holding a protein shake in one hand and a card that says 'Invite' in the other. Bright, clean lighting highlights his physique.",
    "A bohemian-style female travel blogger with sun-kissed skin and messy beach waves, sitting on a tropical beach at sunset. She's wearing a flowy white sundress and holding up a weathered postcard with 'Invite scrawled on it. Golden hour lighting bathes the scene in warm tones. ",
    "A trendy male fashion influencer with perfectly styled hair and designer stubble, posing on a city street. He's wearing a tailored suit and holding up a sleek black business card with 'Invite' printed in minimalist white font. The background shows blurred city lights, creating a chic urban atmosphere.",
    "A fresh-faced young female beauty guru with freckles and natural makeup, sitting at a vanity covered in cosmetics. She's wearing a pastel pink robe and holding up a makeup palette with 'Invite' written on it in lipstick. Soft, flattering lighting enhances her radiant complexion. ",
    "A stylish young woman with long, wavy ombre hair and winged eyeliner, posing in front of a neon-lit city skyline at night. She's wearing a sleek black leather jacket over a sparkly crop top and holding up a holographic business card that says 'Invite' in futuristic font. The card reflects the colorful neon lights, creating a cyberpunk aesthetic.",    
]    

css = """
footer {visibility: hidden;}
.container {max-width: 1200px; margin: auto; padding: 20px;}
.generate-box, .image-box {
    background-color: #f0f0f0;
    border-radius: 10px;
    padding: 20px;
    margin-bottom: 20px;
    height: 600px;  /* 고정된 높이 설정 */
    display: flex;
    flex-direction: column;
}
.image-box img {
    max-height: 100%;
    width: 100%;
    object-fit: contain;
}
.generate-box .row {display: flex; align-items: center; margin-bottom: 10px;}
.generate-box .row > * {margin-right: 10px;}
.generate-box .row > *:last-child {margin-right: 0;}
.advanced-options {background-color: #e0e0e0; border-radius: 10px; padding: 20px; margin-top: 20px;}
.examples-gallery {margin-top: 30px;}
"""

# --- Gradio UI ---
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
    with gr.Column(elem_id="container"):
        gr.Markdown("# Open FLUX 1.1 Pro")
        gr.Markdown("###Flux Schnell-based with no commercial restrictions, 4-step fast image generation with quality enhancement, and improved memory efficiency (VAE).")        

        with gr.Row():
            with gr.Column(scale=2):
                result = gr.Image(label="Generated Image", show_label=False, interactive=False, elem_classes="image-box")
            with gr.Column(scale=1):
                with gr.Column(elem_classes="generate-box"):
                    prompt = gr.Text(
                        label="Prompt",
                        placeholder="sexy woman & man , under wear, full body, sunday",
                        lines=3,
                    )
                    generateBtn = gr.Button("Generate Image", variant="primary")

                    with gr.Column(elem_classes="advanced-options"):
                        with gr.Row():
                            seed = gr.Number(label="Seed", value=42)
                            randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                        with gr.Row():
                            width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH)
                            height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT)

        with gr.Column(elem_classes="examples-gallery"):
            gr.Markdown("### Gallery")
            gr.Examples(
                examples=examples,
                fn=generate_image,
                inputs=[prompt],
                outputs=[result, seed],
                cache_examples="lazy" 
            )

    generateBtn.click(
        fn=generate_image,
        inputs=[prompt, seed, width, height, randomize_seed],
        outputs=[result, seed],
        show_progress="full",
        api_name="GenerateImage",
    )

# Launch the app
demo.launch()