Spaces:
Running
Running
Sean-Case
commited on
Commit
·
aa3df37
1
Parent(s):
0b7839c
Greatly improved low resource mode speed (at cost of potential quality)
Browse files- app.py +30 -21
- funcs/embeddings.py +7 -3
- funcs/representation_model.py +6 -3
app.py
CHANGED
|
@@ -2,7 +2,8 @@ import gradio as gr
|
|
| 2 |
from datetime import datetime
|
| 3 |
import pandas as pd
|
| 4 |
import numpy as np
|
| 5 |
-
|
|
|
|
| 6 |
from sklearn.feature_extraction.text import CountVectorizer
|
| 7 |
from transformers import AutoModel, AutoTokenizer
|
| 8 |
from transformers.pipelines import pipeline
|
|
@@ -81,6 +82,8 @@ hf_model_file = 'phi-2-orange.Q5_K_M.gguf' #'Capybara-7B-V1.9-Q5_K_M.gguf' # '
|
|
| 81 |
|
| 82 |
def extract_topics(in_files, in_file, min_docs_slider, in_colnames, max_topics_slider, candidate_topics, in_label, anonymise_drop, return_intermediate_files, embeddings_super_compress, low_resource_mode, create_llm_topic_labels, save_topic_model, visualise_topics):
|
| 83 |
|
|
|
|
|
|
|
| 84 |
output_list = []
|
| 85 |
file_list = [string.name for string in in_file]
|
| 86 |
|
|
@@ -122,18 +125,22 @@ def extract_topics(in_files, in_file, min_docs_slider, in_colnames, max_topics_s
|
|
| 122 |
|
| 123 |
embedding_model_pipe = pipeline("feature-extraction", model=embedding_model, tokenizer=tokenizer)
|
| 124 |
|
|
|
|
|
|
|
| 125 |
elif low_resource_mode == "Yes":
|
| 126 |
-
print("Choosing low resource
|
| 127 |
embedding_model_pipe = make_pipeline(
|
| 128 |
TfidfVectorizer(),
|
| 129 |
TruncatedSVD(100) # 100 # To be compatible with zero shot, this needs to be lower than number of suggested topics
|
| 130 |
)
|
| 131 |
embedding_model = embedding_model_pipe
|
| 132 |
|
| 133 |
-
|
| 134 |
|
| 135 |
|
| 136 |
-
|
|
|
|
|
|
|
| 137 |
|
| 138 |
vectoriser_model = CountVectorizer(stop_words="english", ngram_range=(1, 2), min_df=0.1)
|
| 139 |
|
|
@@ -141,19 +148,14 @@ def extract_topics(in_files, in_file, min_docs_slider, in_colnames, max_topics_s
|
|
| 141 |
from funcs.representation_model import create_representation_model, llm_config, chosen_start_tag
|
| 142 |
|
| 143 |
print("Create LLM topic labels:", create_llm_topic_labels)
|
| 144 |
-
representation_model = create_representation_model(create_llm_topic_labels, llm_config, hf_model_name, hf_model_file, chosen_start_tag)
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
|
| 150 |
|
| 151 |
if not candidate_topics:
|
| 152 |
-
|
| 153 |
-
|
| 154 |
topic_model = BERTopic( embedding_model=embedding_model_pipe,
|
| 155 |
vectorizer_model=vectoriser_model,
|
| 156 |
-
|
| 157 |
min_topic_size= min_docs_slider,
|
| 158 |
nr_topics = max_topics_slider,
|
| 159 |
representation_model=representation_model,
|
|
@@ -173,15 +175,9 @@ def extract_topics(in_files, in_file, min_docs_slider, in_colnames, max_topics_s
|
|
| 173 |
zero_shot_topics = read_file(candidate_topics.name)
|
| 174 |
zero_shot_topics_lower = list(zero_shot_topics.iloc[:, 0].str.lower())
|
| 175 |
|
| 176 |
-
if len(zero_shot_topics_lower) < 15:
|
| 177 |
-
umap_neighbours = len(zero_shot_topics_lower)
|
| 178 |
-
else: umap_neighbours = 15
|
| 179 |
-
|
| 180 |
-
#umap_model = UMAP(n_neighbors=umap_neighbours, n_components=5, random_state=random_seed)
|
| 181 |
-
|
| 182 |
topic_model = BERTopic( embedding_model=embedding_model_pipe,
|
| 183 |
vectorizer_model=vectoriser_model,
|
| 184 |
-
|
| 185 |
min_topic_size = min_docs_slider,
|
| 186 |
nr_topics = max_topics_slider,
|
| 187 |
zeroshot_topic_list = zero_shot_topics_lower,
|
|
@@ -252,11 +248,24 @@ def extract_topics(in_files, in_file, min_docs_slider, in_colnames, max_topics_s
|
|
| 252 |
|
| 253 |
if visualise_topics == "Yes":
|
| 254 |
# Visualise the topics:
|
|
|
|
| 255 |
print("Creating visualisation")
|
| 256 |
topics_vis = topic_model.visualize_documents(label_col, reduced_embeddings=reduced_embeddings, hide_annotations=True, hide_document_hover=False, custom_labels=True)
|
| 257 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
return output_text, output_list, topics_vis
|
| 259 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
return output_text, output_list, None
|
| 261 |
|
| 262 |
# , topic_model_save_name
|
|
@@ -286,7 +295,7 @@ with block:
|
|
| 286 |
candidate_topics = gr.File(label="Input topics from file (csv). File should have at least one column with a header and topic keywords in cells below. Topics will be taken from the first column of the file. Currently not compatible with low-resource embeddings.")
|
| 287 |
|
| 288 |
with gr.Row():
|
| 289 |
-
min_docs_slider = gr.Slider(minimum = 2, maximum = 1000, value = 15, step = 1, label = "Minimum number of documents
|
| 290 |
max_topics_slider = gr.Slider(minimum = 2, maximum = 500, value = 3, step = 1, label = "Maximum number of topics")
|
| 291 |
|
| 292 |
with gr.Row():
|
|
@@ -305,7 +314,7 @@ with block:
|
|
| 305 |
return_intermediate_files = gr.Dropdown(label = "Return intermediate processing files from file preparation. Files can be loaded in to save processing time in future.", value="Yes", choices=["Yes", "No"])
|
| 306 |
embedding_super_compress = gr.Dropdown(label = "Round embeddings to three dp for smaller files with less accuracy.", value="No", choices=["Yes", "No"])
|
| 307 |
with gr.Row():
|
| 308 |
-
low_resource_mode_opt = gr.Dropdown(label = "Use low resource embeddings
|
| 309 |
create_llm_topic_labels = gr.Dropdown(label = "Create LLM-generated topic labels.", value="No", choices=["Yes", "No"])
|
| 310 |
save_topic_model = gr.Dropdown(label = "Save topic model to file.", value="Yes", choices=["Yes", "No"])
|
| 311 |
visualise_topics = gr.Dropdown(label = "Create a visualisation to map topics.", value="Yes", choices=["Yes", "No"])
|
|
|
|
| 2 |
from datetime import datetime
|
| 3 |
import pandas as pd
|
| 4 |
import numpy as np
|
| 5 |
+
import time
|
| 6 |
+
#from sklearn.cluster import KMeans
|
| 7 |
from sklearn.feature_extraction.text import CountVectorizer
|
| 8 |
from transformers import AutoModel, AutoTokenizer
|
| 9 |
from transformers.pipelines import pipeline
|
|
|
|
| 82 |
|
| 83 |
def extract_topics(in_files, in_file, min_docs_slider, in_colnames, max_topics_slider, candidate_topics, in_label, anonymise_drop, return_intermediate_files, embeddings_super_compress, low_resource_mode, create_llm_topic_labels, save_topic_model, visualise_topics):
|
| 84 |
|
| 85 |
+
all_tic = time.perf_counter()
|
| 86 |
+
|
| 87 |
output_list = []
|
| 88 |
file_list = [string.name for string in in_file]
|
| 89 |
|
|
|
|
| 125 |
|
| 126 |
embedding_model_pipe = pipeline("feature-extraction", model=embedding_model, tokenizer=tokenizer)
|
| 127 |
|
| 128 |
+
umap_model = UMAP(n_neighbors=15, n_components=5, random_state=random_seed)
|
| 129 |
+
|
| 130 |
elif low_resource_mode == "Yes":
|
| 131 |
+
print("Choosing low resource TF-IDF model")
|
| 132 |
embedding_model_pipe = make_pipeline(
|
| 133 |
TfidfVectorizer(),
|
| 134 |
TruncatedSVD(100) # 100 # To be compatible with zero shot, this needs to be lower than number of suggested topics
|
| 135 |
)
|
| 136 |
embedding_model = embedding_model_pipe
|
| 137 |
|
| 138 |
+
umap_model = TruncatedSVD(n_components=3, random_state=random_seed)
|
| 139 |
|
| 140 |
|
| 141 |
+
|
| 142 |
+
embeddings_out, reduced_embeddings = make_or_load_embeddings(docs, file_list, data_file_name_no_ext, embedding_model, return_intermediate_files, embeddings_super_compress, low_resource_mode, create_llm_topic_labels)
|
| 143 |
+
|
| 144 |
|
| 145 |
vectoriser_model = CountVectorizer(stop_words="english", ngram_range=(1, 2), min_df=0.1)
|
| 146 |
|
|
|
|
| 148 |
from funcs.representation_model import create_representation_model, llm_config, chosen_start_tag
|
| 149 |
|
| 150 |
print("Create LLM topic labels:", create_llm_topic_labels)
|
| 151 |
+
representation_model = create_representation_model(create_llm_topic_labels, llm_config, hf_model_name, hf_model_file, chosen_start_tag, low_resource_mode)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
|
| 154 |
if not candidate_topics:
|
| 155 |
+
|
|
|
|
| 156 |
topic_model = BERTopic( embedding_model=embedding_model_pipe,
|
| 157 |
vectorizer_model=vectoriser_model,
|
| 158 |
+
umap_model=umap_model,
|
| 159 |
min_topic_size= min_docs_slider,
|
| 160 |
nr_topics = max_topics_slider,
|
| 161 |
representation_model=representation_model,
|
|
|
|
| 175 |
zero_shot_topics = read_file(candidate_topics.name)
|
| 176 |
zero_shot_topics_lower = list(zero_shot_topics.iloc[:, 0].str.lower())
|
| 177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
topic_model = BERTopic( embedding_model=embedding_model_pipe,
|
| 179 |
vectorizer_model=vectoriser_model,
|
| 180 |
+
umap_model=umap_model,
|
| 181 |
min_topic_size = min_docs_slider,
|
| 182 |
nr_topics = max_topics_slider,
|
| 183 |
zeroshot_topic_list = zero_shot_topics_lower,
|
|
|
|
| 248 |
|
| 249 |
if visualise_topics == "Yes":
|
| 250 |
# Visualise the topics:
|
| 251 |
+
vis_tic = time.perf_counter()
|
| 252 |
print("Creating visualisation")
|
| 253 |
topics_vis = topic_model.visualize_documents(label_col, reduced_embeddings=reduced_embeddings, hide_annotations=True, hide_document_hover=False, custom_labels=True)
|
| 254 |
|
| 255 |
+
all_toc = time.perf_counter()
|
| 256 |
+
time_out = f"Creating visualisation took {all_toc - vis_tic:0.1f} seconds"
|
| 257 |
+
print(time_out)
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
time_out = f"All processes took {all_toc - all_tic:0.1f} seconds"
|
| 261 |
+
print(time_out)
|
| 262 |
+
|
| 263 |
return output_text, output_list, topics_vis
|
| 264 |
|
| 265 |
+
all_toc = time.perf_counter()
|
| 266 |
+
time_out = f"All processes took {all_toc - all_tic:0.1f} seconds"
|
| 267 |
+
print(time_out)
|
| 268 |
+
|
| 269 |
return output_text, output_list, None
|
| 270 |
|
| 271 |
# , topic_model_save_name
|
|
|
|
| 295 |
candidate_topics = gr.File(label="Input topics from file (csv). File should have at least one column with a header and topic keywords in cells below. Topics will be taken from the first column of the file. Currently not compatible with low-resource embeddings.")
|
| 296 |
|
| 297 |
with gr.Row():
|
| 298 |
+
min_docs_slider = gr.Slider(minimum = 2, maximum = 1000, value = 15, step = 1, label = "Minimum number of documents per topic (use ~3 for low resource mode).")
|
| 299 |
max_topics_slider = gr.Slider(minimum = 2, maximum = 500, value = 3, step = 1, label = "Maximum number of topics")
|
| 300 |
|
| 301 |
with gr.Row():
|
|
|
|
| 314 |
return_intermediate_files = gr.Dropdown(label = "Return intermediate processing files from file preparation. Files can be loaded in to save processing time in future.", value="Yes", choices=["Yes", "No"])
|
| 315 |
embedding_super_compress = gr.Dropdown(label = "Round embeddings to three dp for smaller files with less accuracy.", value="No", choices=["Yes", "No"])
|
| 316 |
with gr.Row():
|
| 317 |
+
low_resource_mode_opt = gr.Dropdown(label = "Use low resource embeddings and processing.", value="No", choices=["Yes", "No"])
|
| 318 |
create_llm_topic_labels = gr.Dropdown(label = "Create LLM-generated topic labels.", value="No", choices=["Yes", "No"])
|
| 319 |
save_topic_model = gr.Dropdown(label = "Save topic model to file.", value="Yes", choices=["Yes", "No"])
|
| 320 |
visualise_topics = gr.Dropdown(label = "Create a visualisation to map topics.", value="Yes", choices=["Yes", "No"])
|
funcs/embeddings.py
CHANGED
|
@@ -35,7 +35,7 @@ def make_or_load_embeddings(docs, file_list, data_file_name_no_ext, embedding_mo
|
|
| 35 |
print("Creating simplified 'sparse' embeddings based on TfIDF")
|
| 36 |
embedding_model = make_pipeline(
|
| 37 |
TfidfVectorizer(),
|
| 38 |
-
TruncatedSVD(100)
|
| 39 |
)
|
| 40 |
|
| 41 |
# Fit the pipeline to the text data
|
|
@@ -69,7 +69,11 @@ def make_or_load_embeddings(docs, file_list, data_file_name_no_ext, embedding_mo
|
|
| 69 |
|
| 70 |
# Pre-reduce embeddings for visualisation purposes
|
| 71 |
if reduce_embeddings == "Yes":
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
return embeddings_out, None
|
|
|
|
| 35 |
print("Creating simplified 'sparse' embeddings based on TfIDF")
|
| 36 |
embedding_model = make_pipeline(
|
| 37 |
TfidfVectorizer(),
|
| 38 |
+
TruncatedSVD(100, random_state=random_seed)
|
| 39 |
)
|
| 40 |
|
| 41 |
# Fit the pipeline to the text data
|
|
|
|
| 69 |
|
| 70 |
# Pre-reduce embeddings for visualisation purposes
|
| 71 |
if reduce_embeddings == "Yes":
|
| 72 |
+
if low_resource_mode_opt == "No":
|
| 73 |
+
reduced_embeddings = UMAP(n_neighbors=15, n_components=2, min_dist=0.0, metric='cosine', random_state=random_seed).fit_transform(embeddings_out)
|
| 74 |
+
return embeddings_out, reduced_embeddings
|
| 75 |
+
else:
|
| 76 |
+
reduced_embeddings = TruncatedSVD(2, random_state=random_seed).fit_transform(embeddings_out)
|
| 77 |
+
return embeddings_out, reduced_embeddings
|
| 78 |
|
| 79 |
return embeddings_out, None
|
funcs/representation_model.py
CHANGED
|
@@ -121,7 +121,7 @@ keybert = KeyBERTInspired(random_state=random_seed)
|
|
| 121 |
# MMR
|
| 122 |
mmr = MaximalMarginalRelevance(diversity=0.3)
|
| 123 |
|
| 124 |
-
def create_representation_model(create_llm_topic_labels, llm_config, hf_model_name, hf_model_file, chosen_start_tag):
|
| 125 |
|
| 126 |
if create_llm_topic_labels == "Yes":
|
| 127 |
# Use llama.cpp to load in model
|
|
@@ -142,8 +142,11 @@ def create_representation_model(create_llm_topic_labels, llm_config, hf_model_na
|
|
| 142 |
}
|
| 143 |
|
| 144 |
elif create_llm_topic_labels == "No":
|
| 145 |
-
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
# Deprecated example using CTransformers. This package is not really used anymore
|
| 149 |
#model = AutoModelForCausalLM.from_pretrained('NousResearch/Nous-Capybara-7B-V1.9-GGUF', model_type='mistral', model_file='Capybara-7B-V1.9-Q5_K_M.gguf', hf=True, **vars(llm_config))
|
|
|
|
| 121 |
# MMR
|
| 122 |
mmr = MaximalMarginalRelevance(diversity=0.3)
|
| 123 |
|
| 124 |
+
def create_representation_model(create_llm_topic_labels, llm_config, hf_model_name, hf_model_file, chosen_start_tag, low_resource_mode):
|
| 125 |
|
| 126 |
if create_llm_topic_labels == "Yes":
|
| 127 |
# Use llama.cpp to load in model
|
|
|
|
| 142 |
}
|
| 143 |
|
| 144 |
elif create_llm_topic_labels == "No":
|
| 145 |
+
if low_resource_mode == "Yes":
|
| 146 |
+
#representation_model = {"mmr": mmr}
|
| 147 |
+
representation_model = {"KeyBERT": keybert}
|
| 148 |
+
else:
|
| 149 |
+
representation_model = {"KeyBERT": keybert}
|
| 150 |
|
| 151 |
# Deprecated example using CTransformers. This package is not really used anymore
|
| 152 |
#model = AutoModelForCausalLM.from_pretrained('NousResearch/Nous-Capybara-7B-V1.9-GGUF', model_type='mistral', model_file='Capybara-7B-V1.9-Q5_K_M.gguf', hf=True, **vars(llm_config))
|