topic_modelling / funcs /embeddings.py
Sean-Case
Greatly increased low resource process dimensions for higher quality. Visualisations disabled by default to increase speed.
fac3624
raw
history blame
3.39 kB
import time
import numpy as np
from torch import cuda
from sklearn.pipeline import make_pipeline
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import TfidfVectorizer
from umap import UMAP
random_seed = 42
if cuda.is_available():
torch_device = "gpu"
else:
torch_device = "cpu"
def make_or_load_embeddings(docs, file_list, data_file_name_no_ext, embedding_model, return_intermediate_files, embeddings_super_compress, low_resource_mode_opt, reduce_embeddings="Yes"):
embeddings_file_names = [string.lower() for string in file_list if "embedding" in string.lower()]
if embeddings_file_names:
print("Loading embeddings from file.")
embeddings_out = np.load(embeddings_file_names[0])['arr_0']
# If embedding files have 'super_compress' in the title, they have been multiplied by 100 before save
if "compress" in embeddings_file_names[0]:
embeddings_out /= 100
if not embeddings_file_names:
tic = time.perf_counter()
print("Starting to embed documents.")
# Custom model
# If on CPU, don't resort to embedding models
if low_resource_mode_opt == "Yes":
print("Creating simplified 'sparse' embeddings based on TfIDF")
embedding_model = make_pipeline(
TfidfVectorizer(),
TruncatedSVD(2000, random_state=random_seed)
)
# Fit the pipeline to the text data
embedding_model.fit(docs)
# Transform text data to embeddings
embeddings_out = embedding_model.transform(docs)
#embeddings_out = embedding_model.encode(sentences=docs, show_progress_bar = True, batch_size = 32)
elif low_resource_mode_opt == "No":
print("Creating dense embeddings based on transformers model")
embeddings_out = embedding_model.encode(sentences=docs, max_length=1024, show_progress_bar = True, batch_size = 32) # For Jina # #
toc = time.perf_counter()
time_out = f"The embedding took {toc - tic:0.1f} seconds"
print(time_out)
# If you want to save your files for next time
if return_intermediate_files == "Yes":
print("Saving embeddings to file")
if embeddings_super_compress == "No":
semantic_search_file_name = data_file_name_no_ext + '_' + 'embeddings.npz'
np.savez_compressed(semantic_search_file_name, embeddings_out)
else:
semantic_search_file_name = data_file_name_no_ext + '_' + 'embedding_compress.npz'
embeddings_out_round = np.round(embeddings_out, 3)
embeddings_out_round *= 100 # Rounding not currently used
np.savez_compressed(semantic_search_file_name, embeddings_out_round)
# Pre-reduce embeddings for visualisation purposes
if reduce_embeddings == "Yes":
if low_resource_mode_opt == "No":
reduced_embeddings = UMAP(n_neighbors=15, n_components=2, min_dist=0.0, metric='cosine', random_state=random_seed).fit_transform(embeddings_out)
return embeddings_out, reduced_embeddings
else:
reduced_embeddings = TruncatedSVD(2, random_state=random_seed).fit_transform(embeddings_out)
return embeddings_out, reduced_embeddings
return embeddings_out, None