Spaces:
Running
on
Zero
Running
on
Zero
| import time | |
| import numpy as np | |
| from torch import cuda | |
| from sklearn.pipeline import make_pipeline | |
| from sklearn.decomposition import TruncatedSVD | |
| from sklearn.feature_extraction.text import TfidfVectorizer | |
| random_seed = 42 | |
| if cuda.is_available(): | |
| torch_device = "gpu" | |
| else: | |
| torch_device = "cpu" | |
| def make_or_load_embeddings(docs, file_list, embeddings_out, embedding_model, embeddings_super_compress, low_resource_mode_opt): | |
| # If no embeddings found, make or load in | |
| if embeddings_out.size == 0: | |
| print("Embeddings not found. Loading or generating new ones.") | |
| embeddings_file_names = [string.lower() for string in file_list if "embedding" in string.lower()] | |
| if embeddings_file_names: | |
| embeddings_file_name = embeddings_file_names[0] | |
| print("Loading embeddings from file.") | |
| embeddings_out = np.load(embeddings_file_name)['arr_0'] | |
| # If embedding files have 'super_compress' in the title, they have been multiplied by 100 before save | |
| if "compress" in embeddings_file_name: | |
| embeddings_out /= 100 | |
| if not embeddings_file_names: | |
| tic = time.perf_counter() | |
| print("Starting to embed documents.") | |
| # Custom model | |
| # If on CPU, don't resort to embedding models | |
| if low_resource_mode_opt == "Yes": | |
| print("Creating simplified 'sparse' embeddings based on TfIDF") | |
| embedding_model = make_pipeline( | |
| TfidfVectorizer(), | |
| TruncatedSVD(100, random_state=random_seed) | |
| ) | |
| # Fit the pipeline to the text data | |
| embedding_model.fit(docs) | |
| # Transform text data to embeddings | |
| embeddings_out = embedding_model.transform(docs) | |
| #embeddings_out = embedding_model.encode(sentences=docs, show_progress_bar = True, batch_size = 32) | |
| elif low_resource_mode_opt == "No": | |
| print("Creating dense embeddings based on transformers model") | |
| #embeddings_out = embedding_model.encode(sentences=docs, max_length=1024, show_progress_bar = True, batch_size = 32) # For Jina # # | |
| embeddings_out = embedding_model.encode(sentences=docs, show_progress_bar = True, batch_size = 32) # For BGE | |
| toc = time.perf_counter() | |
| time_out = f"The embedding took {toc - tic:0.1f} seconds" | |
| print(time_out) | |
| # If the user has chosen to go with super compressed embedding files to save disk space | |
| if embeddings_super_compress == "Yes": | |
| embeddings_out = np.round(embeddings_out, 3) | |
| embeddings_out *= 100 | |
| return embeddings_out | |
| else: | |
| print("Found pre-loaded embeddings.") | |
| return embeddings_out |