File size: 30,527 Bytes
ffe5eb2
 
 
b4510a6
ffe5eb2
 
 
 
b4510a6
 
 
ffe5eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d87c3c
 
ffe5eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b27bab2
ffe5eb2
 
b27bab2
ffe5eb2
 
b27bab2
 
ffe5eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b27bab2
 
ffe5eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4510a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b27bab2
b4510a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b27bab2
b4510a6
 
 
 
 
 
b27bab2
b4510a6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from plotly.subplots import make_subplots

from umap import UMAP
from typing import List, Union

import itertools
import numpy as np

# Shamelessly taken and adapted from Bertopic original implementation here (Maarten Grootendorst): https://github.com/MaartenGr/BERTopic/blob/master/bertopic/plotting/_documents.py

def visualize_documents_custom(topic_model,
                        docs: List[str],
                        hover_labels: List[str],
                        topics: List[int] = None,
                        embeddings: np.ndarray = None,
                        reduced_embeddings: np.ndarray = None,
                        sample: float = None,
                        hide_annotations: bool = False,
                        hide_document_hover: bool = False,
                        custom_labels: Union[bool, str] = False,
                        title: str = "<b>Documents and Topics</b>",
                        width: int = 1200,
                        height: int = 750):
    """ Visualize documents and their topics in 2D

    Arguments:
        topic_model: A fitted BERTopic instance.
        docs: The documents you used when calling either `fit` or `fit_transform`
        topics: A selection of topics to visualize.
                Not to be confused with the topics that you get from `.fit_transform`.
                For example, if you want to visualize only topics 1 through 5:
                `topics = [1, 2, 3, 4, 5]`.
        embeddings: The embeddings of all documents in `docs`.
        reduced_embeddings: The 2D reduced embeddings of all documents in `docs`.
        sample: The percentage of documents in each topic that you would like to keep.
                Value can be between 0 and 1. Setting this value to, for example,
                0.1 (10% of documents in each topic) makes it easier to visualize
                millions of documents as a subset is chosen.
        hide_annotations: Hide the names of the traces on top of each cluster.
        hide_document_hover: Hide the content of the documents when hovering over
                             specific points. Helps to speed up generation of visualization.
        custom_labels: If bool, whether to use custom topic labels that were defined using 
                       `topic_model.set_topic_labels`.
                       If `str`, it uses labels from other aspects, e.g., "Aspect1".
        title: Title of the plot.
        width: The width of the figure.
        height: The height of the figure.

    Examples:

    To visualize the topics simply run:

    ```python
    topic_model.visualize_documents(docs)
    ```

    Do note that this re-calculates the embeddings and reduces them to 2D.
    The advised and prefered pipeline for using this function is as follows:

    ```python
    from sklearn.datasets import fetch_20newsgroups
    from sentence_transformers import SentenceTransformer
    from bertopic import BERTopic
    from umap import UMAP

    # Prepare embeddings
    docs = fetch_20newsgroups(subset='all',  remove=('headers', 'footers', 'quotes'))['data']
    sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
    embeddings = sentence_model.encode(docs, show_progress_bar=False)

    # Train BERTopic
    topic_model = BERTopic().fit(docs, embeddings)

    # Reduce dimensionality of embeddings, this step is optional
    # reduced_embeddings = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit_transform(embeddings)

    # Run the visualization with the original embeddings
    topic_model.visualize_documents(docs, embeddings=embeddings)

    # Or, if you have reduced the original embeddings already:
    topic_model.visualize_documents(docs, reduced_embeddings=reduced_embeddings)
    ```

    Or if you want to save the resulting figure:

    ```python
    fig = topic_model.visualize_documents(docs, reduced_embeddings=reduced_embeddings)
    fig.write_html("path/to/file.html")
    ```

    <iframe src="../../getting_started/visualization/documents.html"
    style="width:1000px; height: 800px; border: 0px;""></iframe>
    """
    topic_per_doc = topic_model.topics_

    # Add <br> tags to hover labels to get them to appear on multiple lines
    def wrap_by_word(s, n):
        '''returns a string up to 300 words where \\n is inserted between every n words'''
        a = s.split()[:300]
        ret = ''
        for i in range(0, len(a), n):
            ret += ' '.join(a[i:i+n]) + '<br>'
        return ret
    
    # Apply the function to every element in the list
    hover_labels = [wrap_by_word(s, n=20) for s in hover_labels]


    # Sample the data to optimize for visualization and dimensionality reduction
    if sample is None or sample > 1:
        sample = 1

    indices = []
    for topic in set(topic_per_doc):
        s = np.where(np.array(topic_per_doc) == topic)[0]
        size = len(s) if len(s) < 100 else int(len(s) * sample)
        indices.extend(np.random.choice(s, size=size, replace=False))
    indices = np.array(indices)

    df = pd.DataFrame({"topic": np.array(topic_per_doc)[indices]})
    df["doc"] = [docs[index] for index in indices]
    df["hover_labels"] = [hover_labels[index] for index in indices]
    df["topic"] = [topic_per_doc[index] for index in indices]

    # Extract embeddings if not already done
    if sample is None:
        if embeddings is None and reduced_embeddings is None:
            embeddings_to_reduce = topic_model._extract_embeddings(df.doc.to_list(), method="document")
        else:
            embeddings_to_reduce = embeddings
    else:
        if embeddings is not None:
            embeddings_to_reduce = embeddings[indices]
        elif embeddings is None and reduced_embeddings is None:
            embeddings_to_reduce = topic_model._extract_embeddings(df.doc.to_list(), method="document")

    # Reduce input embeddings
    if reduced_embeddings is None:
        umap_model = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit(embeddings_to_reduce)
        embeddings_2d = umap_model.embedding_
    elif sample is not None and reduced_embeddings is not None:
        embeddings_2d = reduced_embeddings[indices]
    elif sample is None and reduced_embeddings is not None:
        embeddings_2d = reduced_embeddings

    unique_topics = set(topic_per_doc)
    if topics is None:
        topics = unique_topics

    # Combine data
    df["x"] = embeddings_2d[:, 0]
    df["y"] = embeddings_2d[:, 1]

    # Prepare text and names
    if isinstance(custom_labels, str):
        names = [[[str(topic), None]] + topic_model.topic_aspects_[custom_labels][topic] for topic in unique_topics]
        names = ["_".join([label[0] for label in labels[:4]]) for labels in names]
        names = [label if len(label) < 30 else label[:27] + "..." for label in names]
    elif topic_model.custom_labels_ is not None and custom_labels:
        print("Using custom labels: ", topic_model.custom_labels_)
        names = [topic_model.custom_labels_[topic + topic_model._outliers] for topic in unique_topics]
    else:
        print("Not using custom labels")
        names = [f"{topic}_" + "_".join([word for word, value in topic_model.get_topic(topic)][:3]) for topic in unique_topics]

    print(names)

    # Visualize
    fig = go.Figure()

    # Outliers and non-selected topics
    non_selected_topics = set(unique_topics).difference(topics)
    if len(non_selected_topics) == 0:
        non_selected_topics = [-1]

    selection = df.loc[df.topic.isin(non_selected_topics), :]
    selection["text"] = ""
    selection.loc[len(selection), :] = [None, None, None, selection.x.mean(), selection.y.mean(), "Other documents"]

    fig.add_trace(
        go.Scattergl(
            x=selection.x,
            y=selection.y,
            hovertext=selection.hover_labels if not hide_document_hover else None,
            hoverinfo="text",
            mode='markers+text',
            name="other",
            showlegend=False,
            marker=dict(color='#CFD8DC', size=5, opacity=0.5),
            hoverlabel=dict(align='left')
        )
    )

    # Selected topics
    for name, topic in zip(names, unique_topics):
        #print(name)
        #print(topic)
        if topic in topics and topic != -1:
            selection = df.loc[df.topic == topic, :]
            selection["text"] = ""

            if not hide_annotations:
                selection.loc[len(selection), :] = [None, None, selection.x.mean(), selection.y.mean(), name]

            fig.add_trace(
                go.Scattergl(
                    x=selection.x,
                    y=selection.y,
                    hovertext=selection.hover_labels if not hide_document_hover else None,
                    hoverinfo="text",
                    text=selection.text,
                    mode='markers+text',
                    name=name,
                    textfont=dict(
                        size=12,
                    ),
                    marker=dict(size=5, opacity=0.5),
                    hoverlabel=dict(align='left')
            ))

    # Add grid in a 'plus' shape
    x_range = (df.x.min() - abs((df.x.min()) * .15), df.x.max() + abs((df.x.max()) * .15))
    y_range = (df.y.min() - abs((df.y.min()) * .15), df.y.max() + abs((df.y.max()) * .15))
    fig.add_shape(type="line",
                  x0=sum(x_range) / 2, y0=y_range[0], x1=sum(x_range) / 2, y1=y_range[1],
                  line=dict(color="#CFD8DC", width=2))
    fig.add_shape(type="line",
                  x0=x_range[0], y0=sum(y_range) / 2, x1=x_range[1], y1=sum(y_range) / 2,
                  line=dict(color="#9E9E9E", width=2))
    fig.add_annotation(x=x_range[0], y=sum(y_range) / 2, text="D1", showarrow=False, yshift=10)
    fig.add_annotation(y=y_range[1], x=sum(x_range) / 2, text="D2", showarrow=False, xshift=10)

    # Stylize layout
    fig.update_layout(
        template="simple_white",
        title={
            'text': f"{title}",
            'x': 0.5,
            'xanchor': 'center',
            'yanchor': 'top',
            'font': dict(
                size=22,
                color="Black")
        },
        hoverlabel_align = 'left',
        width=width,
        height=height
    )

    fig.update_xaxes(visible=False)
    fig.update_yaxes(visible=False)
    return fig

def visualize_hierarchical_documents_custom(topic_model,
                                     docs: List[str],
                                     hover_labels: List[str],
                                     hierarchical_topics: pd.DataFrame,
                                     topics: List[int] = None,
                                     embeddings: np.ndarray = None,
                                     reduced_embeddings: np.ndarray = None,
                                     sample: Union[float, int] = None,
                                     hide_annotations: bool = False,
                                     hide_document_hover: bool = True,
                                     nr_levels: int = 10,
                                     level_scale: str = 'linear', 
                                     custom_labels: Union[bool, str] = False,
                                     title: str = "<b>Hierarchical Documents and Topics</b>",
                                     width: int = 1200,
                                     height: int = 750) -> go.Figure:
    """ Visualize documents and their topics in 2D at different levels of hierarchy

    Arguments:
        docs: The documents you used when calling either `fit` or `fit_transform`
        hierarchical_topics: A dataframe that contains a hierarchy of topics
                             represented by their parents and their children
        topics: A selection of topics to visualize.
                Not to be confused with the topics that you get from `.fit_transform`.
                For example, if you want to visualize only topics 1 through 5:
                `topics = [1, 2, 3, 4, 5]`.
        embeddings: The embeddings of all documents in `docs`.
        reduced_embeddings: The 2D reduced embeddings of all documents in `docs`.
        sample: The percentage of documents in each topic that you would like to keep.
                Value can be between 0 and 1. Setting this value to, for example,
                0.1 (10% of documents in each topic) makes it easier to visualize
                millions of documents as a subset is chosen.
        hide_annotations: Hide the names of the traces on top of each cluster.
        hide_document_hover: Hide the content of the documents when hovering over
                             specific points. Helps to speed up generation of visualizations.
        nr_levels: The number of levels to be visualized in the hierarchy. First, the distances
                   in `hierarchical_topics.Distance` are split in `nr_levels` lists of distances. 
                   Then, for each list of distances, the merged topics are selected that have a 
                   distance less or equal to the maximum distance of the selected list of distances.
                   NOTE: To get all possible merged steps, make sure that `nr_levels` is equal to
                   the length of `hierarchical_topics`.
        level_scale: Whether to apply a linear or logarithmic (log) scale levels of the distance 
                     vector. Linear scaling will perform an equal number of merges at each level 
                     while logarithmic scaling will perform more mergers in earlier levels to 
                     provide more resolution at higher levels (this can be used for when the number 
                     of topics is large). 
        custom_labels: If bool, whether to use custom topic labels that were defined using 
                       `topic_model.set_topic_labels`.
                       If `str`, it uses labels from other aspects, e.g., "Aspect1".
                       NOTE: Custom labels are only generated for the original 
                       un-merged topics.
        title: Title of the plot.
        width: The width of the figure.
        height: The height of the figure.

    Examples:

    To visualize the topics simply run:

    ```python
    topic_model.visualize_hierarchical_documents(docs, hierarchical_topics)
    ```

    Do note that this re-calculates the embeddings and reduces them to 2D.
    The advised and prefered pipeline for using this function is as follows:

    ```python
    from sklearn.datasets import fetch_20newsgroups
    from sentence_transformers import SentenceTransformer
    from bertopic import BERTopic
    from umap import UMAP

    # Prepare embeddings
    docs = fetch_20newsgroups(subset='all',  remove=('headers', 'footers', 'quotes'))['data']
    sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
    embeddings = sentence_model.encode(docs, show_progress_bar=False)

    # Train BERTopic and extract hierarchical topics
    topic_model = BERTopic().fit(docs, embeddings)
    hierarchical_topics = topic_model.hierarchical_topics(docs)

    # Reduce dimensionality of embeddings, this step is optional
    # reduced_embeddings = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit_transform(embeddings)

    # Run the visualization with the original embeddings
    topic_model.visualize_hierarchical_documents(docs, hierarchical_topics, embeddings=embeddings)

    # Or, if you have reduced the original embeddings already:
    topic_model.visualize_hierarchical_documents(docs, hierarchical_topics, reduced_embeddings=reduced_embeddings)
    ```

    Or if you want to save the resulting figure:

    ```python
    fig = topic_model.visualize_hierarchical_documents(docs, hierarchical_topics, reduced_embeddings=reduced_embeddings)
    fig.write_html("path/to/file.html")
    ```

    NOTE:
        This visualization was inspired by the scatter plot representation of Doc2Map:
        https://github.com/louisgeisler/Doc2Map

    <iframe src="../../getting_started/visualization/hierarchical_documents.html"
    style="width:1000px; height: 770px; border: 0px;""></iframe>
    """
    topic_per_doc = topic_model.topics_

    # Add <br> tags to hover labels to get them to appear on multiple lines
    def wrap_by_word(s, n):
        '''returns a string up to 300 words where \\n is inserted between every n words'''
        a = s.split()[:300]
        ret = ''
        for i in range(0, len(a), n):
            ret += ' '.join(a[i:i+n]) + '<br>'
        return ret
    
    # Apply the function to every element in the list
    hover_labels = [wrap_by_word(s, n=20) for s in hover_labels]

    # Sample the data to optimize for visualization and dimensionality reduction
    if sample is None or sample > 1:
        sample = 1

    indices = []
    for topic in set(topic_per_doc):
        s = np.where(np.array(topic_per_doc) == topic)[0]
        size = len(s) if len(s) < 100 else int(len(s)*sample)
        indices.extend(np.random.choice(s, size=size, replace=False))
    indices = np.array(indices)

    

    df = pd.DataFrame({"topic": np.array(topic_per_doc)[indices]})
    df["doc"] = [docs[index] for index in indices]
    df["hover_labels"] = [hover_labels[index] for index in indices]
    df["topic"] = [topic_per_doc[index] for index in indices]

    # Extract embeddings if not already done
    if sample is None:
        if embeddings is None and reduced_embeddings is None:
            embeddings_to_reduce = topic_model._extract_embeddings(df.doc.to_list(), method="document")
        else:
            embeddings_to_reduce = embeddings
    else:
        if embeddings is not None:
            embeddings_to_reduce = embeddings[indices]
        elif embeddings is None and reduced_embeddings is None:
            embeddings_to_reduce = topic_model._extract_embeddings(df.doc.to_list(), method="document")

    # Reduce input embeddings
    if reduced_embeddings is None:
        umap_model = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit(embeddings_to_reduce)
        embeddings_2d = umap_model.embedding_
    elif sample is not None and reduced_embeddings is not None:
        embeddings_2d = reduced_embeddings[indices]
    elif sample is None and reduced_embeddings is not None:
        embeddings_2d = reduced_embeddings

    # Combine data
    df["x"] = embeddings_2d[:, 0]
    df["y"] = embeddings_2d[:, 1]

    # Create topic list for each level, levels are created by calculating the distance
    distances = hierarchical_topics.Distance.to_list()
    if level_scale == 'log' or level_scale == 'logarithmic':
        log_indices = np.round(np.logspace(start=math.log(1,10), stop=math.log(len(distances)-1,10), num=nr_levels)).astype(int).tolist()
        log_indices.reverse()
        max_distances = [distances[i] for i in log_indices]
    elif level_scale == 'lin' or level_scale == 'linear':
        max_distances = [distances[indices[-1]] for indices in np.array_split(range(len(hierarchical_topics)), nr_levels)][::-1]
    else:
        raise ValueError("level_scale needs to be one of 'log' or 'linear'")
    
    for index, max_distance in enumerate(max_distances):

        # Get topics below `max_distance`
        mapping = {topic: topic for topic in df.topic.unique()}
        selection = hierarchical_topics.loc[hierarchical_topics.Distance <= max_distance, :]
        selection.Parent_ID = selection.Parent_ID.astype(int)
        selection = selection.sort_values("Parent_ID")

        for row in selection.iterrows():
            for topic in row[1].Topics:
                mapping[topic] = row[1].Parent_ID

        # Make sure the mappings are mapped 1:1
        mappings = [True for _ in mapping]
        while any(mappings):
            for i, (key, value) in enumerate(mapping.items()):
                if value in mapping.keys() and key != value:
                    mapping[key] = mapping[value]
                else:
                    mappings[i] = False

        # Create new column
        df[f"level_{index+1}"] = df.topic.map(mapping)
        df[f"level_{index+1}"] = df[f"level_{index+1}"].astype(int)

    # Prepare topic names of original and merged topics
    trace_names = []
    topic_names = {}
    for topic in range(hierarchical_topics.Parent_ID.astype(int).max()):
        if topic < hierarchical_topics.Parent_ID.astype(int).min():
            if topic_model.get_topic(topic):
                if isinstance(custom_labels, str):
                    trace_name = f"{topic}_" + "_".join(list(zip(*topic_model.topic_aspects_[custom_labels][topic]))[0][:3])
                elif topic_model.custom_labels_ is not None and custom_labels:
                    trace_name = topic_model.custom_labels_[topic + topic_model._outliers]
                else:
                    trace_name = f"{topic}_" + "_".join([word[:20] for word, _ in topic_model.get_topic(topic)][:3])
                topic_names[topic] = {"trace_name": trace_name[:40], "plot_text": trace_name[:40]}
                trace_names.append(trace_name)
        else:
            trace_name = f"{topic}_" + hierarchical_topics.loc[hierarchical_topics.Parent_ID == str(topic), "Parent_Name"].values[0]
            plot_text = "_".join([name[:20] for name in trace_name.split("_")[:3]])
            topic_names[topic] = {"trace_name": trace_name[:40], "plot_text": plot_text[:40]}
            trace_names.append(trace_name)

    # Prepare traces
    all_traces = []
    for level in range(len(max_distances)):
        traces = []

        # Outliers
        if topic_model._outliers:
            traces.append(
                    go.Scattergl(
                        x=df.loc[(df[f"level_{level+1}"] == -1), "x"],
                        y=df.loc[df[f"level_{level+1}"] == -1, "y"],
                        mode='markers+text',
                        name="other",
                        hoverinfo="text",
                        hovertext=df.loc[(df[f"level_{level+1}"] == -1), "hover_labels"] if not hide_document_hover else None,
                        showlegend=False,
                        marker=dict(color='#CFD8DC', size=5, opacity=0.5),
                        hoverlabel=dict(align='left')
                    )
                )

        # Selected topics
        if topics:
            selection = df.loc[(df.topic.isin(topics)), :]
            unique_topics = sorted([int(topic) for topic in selection[f"level_{level+1}"].unique()])
        else:
            unique_topics = sorted([int(topic) for topic in df[f"level_{level+1}"].unique()])

        for topic in unique_topics:
            if topic != -1:
                if topics:
                    selection = df.loc[(df[f"level_{level+1}"] == topic) &
                                       (df.topic.isin(topics)), :]
                else:
                    selection = df.loc[df[f"level_{level+1}"] == topic, :]

                if not hide_annotations:
                    selection.loc[len(selection), :] = None
                    selection["text"] = ""
                    selection.loc[len(selection) - 1, "x"] = selection.x.mean()
                    selection.loc[len(selection) - 1, "y"] = selection.y.mean()
                    selection.loc[len(selection) - 1, "text"] = topic_names[int(topic)]["plot_text"]

                traces.append(
                    go.Scattergl(
                        x=selection.x,
                        y=selection.y,
                        text=selection.text if not hide_annotations else None,
                        hovertext=selection.hover_labels if not hide_document_hover else None,
                        hoverinfo="text",
                        name=topic_names[int(topic)]["trace_name"],
                        mode='markers+text',
                        marker=dict(size=5, opacity=0.5),
                        hoverlabel=dict(align='left')
                    )
                )

        all_traces.append(traces)

    # Track and count traces
    nr_traces_per_set = [len(traces) for traces in all_traces]
    trace_indices = [(0, nr_traces_per_set[0])]
    for index, nr_traces in enumerate(nr_traces_per_set[1:]):
        start = trace_indices[index][1]
        end = nr_traces + start
        trace_indices.append((start, end))

    # Visualization
    fig = go.Figure()
    for traces in all_traces:
        for trace in traces:
            fig.add_trace(trace)

    for index in range(len(fig.data)):
        if index >= nr_traces_per_set[0]:
            fig.data[index].visible = False

    # Create and add slider
    steps = []
    for index, indices in enumerate(trace_indices):
        step = dict(
            method="update",
            label=str(index),
            args=[{"visible": [False] * len(fig.data)}]
        )
        for index in range(indices[1]-indices[0]):
            step["args"][0]["visible"][index+indices[0]] = True
        steps.append(step)

    sliders = [dict(
        currentvalue={"prefix": "Level: "},
        pad={"t": 20},
        steps=steps
    )]

    # Add grid in a 'plus' shape
    x_range = (df.x.min() - abs((df.x.min()) * .15), df.x.max() + abs((df.x.max()) * .15))
    y_range = (df.y.min() - abs((df.y.min()) * .15), df.y.max() + abs((df.y.max()) * .15))
    fig.add_shape(type="line",
                  x0=sum(x_range) / 2, y0=y_range[0], x1=sum(x_range) / 2, y1=y_range[1],
                  line=dict(color="#CFD8DC", width=2))
    fig.add_shape(type="line",
                  x0=x_range[0], y0=sum(y_range) / 2, x1=x_range[1], y1=sum(y_range) / 2,
                  line=dict(color="#9E9E9E", width=2))
    fig.add_annotation(x=x_range[0], y=sum(y_range) / 2, text="D1", showarrow=False, yshift=10)
    fig.add_annotation(y=y_range[1], x=sum(x_range) / 2, text="D2", showarrow=False, xshift=10)

    # Stylize layout
    fig.update_layout(
        sliders=sliders,
        template="simple_white",
        title={
            'text': f"{title}",
            'x': 0.5,
            'xanchor': 'center',
            'yanchor': 'top',
            'font': dict(
                size=22,
                color="Black")
        },
        width=width,
        height=height,
    )

    fig.update_xaxes(visible=False)
    fig.update_yaxes(visible=False)
    return fig

def visualize_barchart_custom(topic_model,
                       topics: List[int] = None,
                       top_n_topics: int = 8,
                       n_words: int = 5,
                       custom_labels: Union[bool, str] = False,
                       title: str = "<b>Topic Word Scores</b>",
                       width: int = 250,
                       height: int = 250) -> go.Figure:
    """ Visualize a barchart of selected topics

    Arguments:
        topic_model: A fitted BERTopic instance.
        topics: A selection of topics to visualize.
        top_n_topics: Only select the top n most frequent topics.
        n_words: Number of words to show in a topic
        custom_labels: If bool, whether to use custom topic labels that were defined using 
                       `topic_model.set_topic_labels`.
                       If `str`, it uses labels from other aspects, e.g., "Aspect1".
        title: Title of the plot.
        width: The width of each figure.
        height: The height of each figure.

    Returns:
        fig: A plotly figure

    Examples:

    To visualize the barchart of selected topics
    simply run:

    ```python
    topic_model.visualize_barchart()
    ```

    Or if you want to save the resulting figure:

    ```python
    fig = topic_model.visualize_barchart()
    fig.write_html("path/to/file.html")
    ```
    <iframe src="../../getting_started/visualization/bar_chart.html"
    style="width:1100px; height: 660px; border: 0px;""></iframe>
    """
    colors = itertools.cycle(["#D55E00", "#0072B2", "#CC79A7", "#E69F00", "#56B4E9", "#009E73", "#F0E442"])

    # Select topics based on top_n and topics args
    freq_df = topic_model.get_topic_freq()
    freq_df = freq_df.loc[freq_df.Topic != -1, :]
    if topics is not None:
        topics = list(topics)
    elif top_n_topics is not None:
        topics = sorted(freq_df.Topic.to_list()[:top_n_topics])
    else:
        topics = sorted(freq_df.Topic.to_list()[0:6])

    # Initialize figure
    if isinstance(custom_labels, str):
        subplot_titles = [[[str(topic), None]] + topic_model.topic_aspects_[custom_labels][topic] for topic in topics]
        subplot_titles = ["_".join([label[0] for label in labels[:4]]) for labels in subplot_titles]
        subplot_titles = [label if len(label) < 30 else label[:27] + "..." for label in subplot_titles]
    elif topic_model.custom_labels_ is not None and custom_labels:
        subplot_titles = [topic_model.custom_labels_[topic + topic_model._outliers] for topic in topics]
    else:
        subplot_titles = [f"Topic {topic}" for topic in topics]
    columns = 3
    rows = int(np.ceil(len(topics) / columns))
    fig = make_subplots(rows=rows,
                        cols=columns,
                        shared_xaxes=False,
                        horizontal_spacing=.1,
                        vertical_spacing=.4 / rows if rows > 1 else 0,
                        subplot_titles=subplot_titles)

    # Add barchart for each topic
    row = 1
    column = 1
    for topic in topics:
        words = [word + "  " for word, _ in topic_model.get_topic(topic)][:n_words][::-1]
        scores = [score for _, score in topic_model.get_topic(topic)][:n_words][::-1]

        fig.add_trace(
            go.Bar(x=scores,
                   y=words,
                   orientation='h',
                   marker_color=next(colors)),
            row=row, col=column)

        if column == columns:
            column = 1
            row += 1
        else:
            column += 1

    # Stylize graph
    fig.update_layout(
        template="plotly_white",
        showlegend=False,
        title={
            'text': f"{title}",
            'x': .5,
            'xanchor': 'center',
            'yanchor': 'top',
            'font': dict(
                size=14,
                color="Black")
        },
        width=width*4,
        height=height*rows if rows > 1 else height * 1.3,
        hoverlabel=dict(
            bgcolor="white",
            font_size=14,
            font_family="Rockwell"
        ),
    )

    fig.update_xaxes(showgrid=True)
    fig.update_yaxes(showgrid=True)

    return fig