Commit
·
c2becd8
1
Parent(s):
e4493fe
Added upgraded line to word parsing algorithm. Added dependencies and framework for Huggingface spaces deployment with ZeroGPU
Browse files- README.md +1 -1
- packages.txt +4 -0
- pyproject.toml +25 -7
- tools/config.py +3 -3
- tools/custom_image_analyser_engine.py +181 -151
- tools/word_segmenter.py +974 -0
README.md
CHANGED
|
@@ -10,7 +10,7 @@ license: agpl-3.0
|
|
| 10 |
---
|
| 11 |
# Document redaction
|
| 12 |
|
| 13 |
-
version: 1.
|
| 14 |
|
| 15 |
Redact personally identifiable information (PII) from documents (pdf, png, jpg), Word files (docx), or tabular data (xlsx/csv/parquet). Please see the [User Guide](#user-guide) for a full walkthrough of all the features in the app.
|
| 16 |
|
|
|
|
| 10 |
---
|
| 11 |
# Document redaction
|
| 12 |
|
| 13 |
+
version: 1.5.0
|
| 14 |
|
| 15 |
Redact personally identifiable information (PII) from documents (pdf, png, jpg), Word files (docx), or tabular data (xlsx/csv/parquet). Please see the [User Guide](#user-guide) for a full walkthrough of all the features in the app.
|
| 16 |
|
packages.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
tesseract-ocr
|
| 2 |
+
poppler-utils
|
| 3 |
+
libgl1
|
| 4 |
+
libglib2.0-0
|
pyproject.toml
CHANGED
|
@@ -4,11 +4,15 @@ build-backend = "setuptools.build_meta"
|
|
| 4 |
|
| 5 |
[project]
|
| 6 |
name = "doc_redaction"
|
| 7 |
-
version = "1.
|
| 8 |
description = "Redact PDF/image-based documents, Word, or CSV/XLSX files using a Gradio-based GUI interface"
|
| 9 |
readme = "README.md"
|
| 10 |
requires-python = ">=3.10"
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
dependencies = [
|
| 13 |
"pdfminer.six==20250506",
|
| 14 |
"pdf2image==1.17.0",
|
|
@@ -38,18 +42,32 @@ dependencies = [
|
|
| 38 |
"python-docx==1.2.0",
|
| 39 |
"polars==1.33.1",
|
| 40 |
"defusedxml==0.7.1",
|
| 41 |
-
|
| 42 |
-
#"paddleocr==3.3.0"
|
| 43 |
]
|
| 44 |
|
| 45 |
-
[project.urls]
|
| 46 |
-
Homepage = "https://seanpedrick-case.github.io/doc_redaction/"
|
| 47 |
-
repository = "https://github.com/seanpedrick-case/doc_redaction"
|
| 48 |
-
|
| 49 |
[project.optional-dependencies]
|
| 50 |
dev = ["pytest"]
|
| 51 |
test = ["pytest", "pytest-cov"]
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
# Configuration for Ruff linter:
|
| 54 |
[tool.ruff]
|
| 55 |
line-length = 88
|
|
|
|
| 4 |
|
| 5 |
[project]
|
| 6 |
name = "doc_redaction"
|
| 7 |
+
version = "1.5.0"
|
| 8 |
description = "Redact PDF/image-based documents, Word, or CSV/XLSX files using a Gradio-based GUI interface"
|
| 9 |
readme = "README.md"
|
| 10 |
requires-python = ">=3.10"
|
| 11 |
|
| 12 |
+
[project.urls]
|
| 13 |
+
Homepage = "https://seanpedrick-case.github.io/doc_redaction/"
|
| 14 |
+
repository = "https://github.com/seanpedrick-case/doc_redaction"
|
| 15 |
+
|
| 16 |
dependencies = [
|
| 17 |
"pdfminer.six==20250506",
|
| 18 |
"pdf2image==1.17.0",
|
|
|
|
| 42 |
"python-docx==1.2.0",
|
| 43 |
"polars==1.33.1",
|
| 44 |
"defusedxml==0.7.1",
|
| 45 |
+
"numpy==2.2.6"
|
|
|
|
| 46 |
]
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
[project.optional-dependencies]
|
| 49 |
dev = ["pytest"]
|
| 50 |
test = ["pytest", "pytest-cov"]
|
| 51 |
|
| 52 |
+
# To install the app with paddle and vlm support with pip, example command (in base folder and correct python environment): pip install .[paddle,vlm], or uv pip install .[ocr,vlm] if using uv. Note need to GPU version of Torch below
|
| 53 |
+
|
| 54 |
+
# New extra for PaddleOCR
|
| 55 |
+
paddle = [
|
| 56 |
+
"paddlepaddle==3.2.0",
|
| 57 |
+
"paddleocr==3.3.0",
|
| 58 |
+
]
|
| 59 |
+
|
| 60 |
+
# New extra for VLM models (including Torch)
|
| 61 |
+
vlm = [
|
| 62 |
+
"torch==2.6.0", # should use --index-url https://download.pytorch.org/whl/cu126 for cuda support for paddleocr, need to install manually
|
| 63 |
+
"torchvision==0.21",
|
| 64 |
+
"transformers==4.57.1",
|
| 65 |
+
"accelerate==1.11.0",
|
| 66 |
+
]
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
# Configuration for Ruff linter:
|
| 72 |
[tool.ruff]
|
| 73 |
line-length = 88
|
tools/config.py
CHANGED
|
@@ -512,9 +512,9 @@ HYBRID_OCR_PADDING = int(
|
|
| 512 |
get_or_create_env_var("HYBRID_OCR_PADDING", "1")
|
| 513 |
) # The padding to add to the text when passing it to PaddleOCR for re-extraction using the hybrid OCR method.
|
| 514 |
|
| 515 |
-
TESSERACT_SEGMENTATION_LEVEL = get_or_create_env_var(
|
| 516 |
-
"TESSERACT_SEGMENTATION_LEVEL", "
|
| 517 |
-
) # Tesseract segmentation level:
|
| 518 |
|
| 519 |
CONVERT_LINE_TO_WORD_LEVEL = convert_string_to_boolean(
|
| 520 |
get_or_create_env_var("CONVERT_LINE_TO_WORD_LEVEL", "False")
|
|
|
|
| 512 |
get_or_create_env_var("HYBRID_OCR_PADDING", "1")
|
| 513 |
) # The padding to add to the text when passing it to PaddleOCR for re-extraction using the hybrid OCR method.
|
| 514 |
|
| 515 |
+
TESSERACT_SEGMENTATION_LEVEL = int(get_or_create_env_var(
|
| 516 |
+
"TESSERACT_SEGMENTATION_LEVEL", "11"
|
| 517 |
+
)) # Tesseract segmentation level: PSM level to use for Tesseract OCR
|
| 518 |
|
| 519 |
CONVERT_LINE_TO_WORD_LEVEL = convert_string_to_boolean(
|
| 520 |
get_or_create_env_var("CONVERT_LINE_TO_WORD_LEVEL", "False")
|
tools/custom_image_analyser_engine.py
CHANGED
|
@@ -42,6 +42,7 @@ from tools.presidio_analyzer_custom import recognizer_result_from_dict
|
|
| 42 |
from tools.run_vlm import generate_image as vlm_generate_image
|
| 43 |
from tools.secure_path_utils import validate_folder_containment
|
| 44 |
from tools.secure_regex_utils import safe_sanitize_text
|
|
|
|
| 45 |
|
| 46 |
if PREPROCESS_LOCAL_OCR_IMAGES == "True":
|
| 47 |
PREPROCESS_LOCAL_OCR_IMAGES = True
|
|
@@ -553,7 +554,7 @@ def _get_tesseract_psm(segmentation_level: str) -> int:
|
|
| 553 |
|
| 554 |
def _vlm_ocr_predict(
|
| 555 |
image: Image.Image,
|
| 556 |
-
prompt: str = "Extract
|
| 557 |
) -> Dict[str, Any]:
|
| 558 |
"""
|
| 559 |
VLM OCR prediction function that mimics PaddleOCR's interface.
|
|
@@ -688,7 +689,8 @@ class CustomImageAnalyzerEngine:
|
|
| 688 |
if tesseract_config:
|
| 689 |
self.tesseract_config = tesseract_config
|
| 690 |
else:
|
| 691 |
-
|
|
|
|
| 692 |
self.tesseract_config = f"--oem 3 --psm {psm_value}"
|
| 693 |
# print(
|
| 694 |
# f"Tesseract configured for {TESSERACT_SEGMENTATION_LEVEL}-level segmentation (PSM {psm_value})"
|
|
@@ -772,152 +774,6 @@ class CustomImageAnalyzerEngine:
|
|
| 772 |
|
| 773 |
return f"{safe_original}_conf_{conf}_to_{safe_new}_conf_{new_conf}"
|
| 774 |
|
| 775 |
-
# def _convert_line_to_word_level(
|
| 776 |
-
# self, line_data: Dict[str, List], image_width: int, image_height: int
|
| 777 |
-
# ) -> Dict[str, List]:
|
| 778 |
-
# """
|
| 779 |
-
# Converts line-level OCR results to word-level results by splitting text and estimating word positions.
|
| 780 |
-
|
| 781 |
-
# Args:
|
| 782 |
-
# line_data: Dictionary with line-level OCR data (text, left, top, width, height, conf)
|
| 783 |
-
# image_width: Width of the original image
|
| 784 |
-
# image_height: Height of the original image
|
| 785 |
-
|
| 786 |
-
# Returns:
|
| 787 |
-
# Dictionary with word-level OCR data in Tesseract format
|
| 788 |
-
# """
|
| 789 |
-
# output = {
|
| 790 |
-
# "text": list(),
|
| 791 |
-
# "left": list(),
|
| 792 |
-
# "top": list(),
|
| 793 |
-
# "width": list(),
|
| 794 |
-
# "height": list(),
|
| 795 |
-
# "conf": list(),
|
| 796 |
-
# }
|
| 797 |
-
|
| 798 |
-
# if not line_data or not line_data.get("text"):
|
| 799 |
-
# return output
|
| 800 |
-
|
| 801 |
-
# for i in range(len(line_data["text"])):
|
| 802 |
-
# line_text = line_data["text"][i]
|
| 803 |
-
# line_left = line_data["left"][i]
|
| 804 |
-
# line_top = line_data["top"][i]
|
| 805 |
-
# line_width = line_data["width"][i]
|
| 806 |
-
# line_height = line_data["height"][i]
|
| 807 |
-
# line_conf = line_data["conf"][i]
|
| 808 |
-
|
| 809 |
-
# # Skip empty lines
|
| 810 |
-
# if not line_text.strip():
|
| 811 |
-
# continue
|
| 812 |
-
|
| 813 |
-
# # Split line into words
|
| 814 |
-
# words = line_text.split()
|
| 815 |
-
# if not words:
|
| 816 |
-
# continue
|
| 817 |
-
|
| 818 |
-
# # Calculate character width for this line
|
| 819 |
-
# total_chars = len(line_text)
|
| 820 |
-
# avg_char_width = line_width / total_chars if total_chars > 0 else 0
|
| 821 |
-
|
| 822 |
-
# current_char_offset = 0
|
| 823 |
-
|
| 824 |
-
# for word in words:
|
| 825 |
-
# # Calculate word width based on character count
|
| 826 |
-
# word_width = float(len(word) * avg_char_width)
|
| 827 |
-
# word_left = line_left + float(current_char_offset * avg_char_width)
|
| 828 |
-
|
| 829 |
-
# # Ensure word doesn't exceed image boundaries
|
| 830 |
-
# word_left = max(0, min(word_left, image_width - word_width))
|
| 831 |
-
# word_width = min(word_width, image_width - word_left)
|
| 832 |
-
|
| 833 |
-
# output["text"].append(word)
|
| 834 |
-
# output["left"].append(word_left)
|
| 835 |
-
# output["top"].append(line_top)
|
| 836 |
-
# output["width"].append(word_width)
|
| 837 |
-
# output["height"].append(line_height)
|
| 838 |
-
# output["conf"].append(line_conf)
|
| 839 |
-
|
| 840 |
-
# # Update offset for the next word (add word length + 1 for the space)
|
| 841 |
-
# current_char_offset += len(word) + 1
|
| 842 |
-
|
| 843 |
-
# return output
|
| 844 |
-
|
| 845 |
-
def _convert_line_to_word_level(
|
| 846 |
-
self, line_data: Dict[str, List], image_width: int, image_height: int
|
| 847 |
-
) -> Dict[str, List]:
|
| 848 |
-
"""
|
| 849 |
-
Converts line-level OCR results to word-level by using a more robust
|
| 850 |
-
proportional estimation method.
|
| 851 |
-
"""
|
| 852 |
-
output = {
|
| 853 |
-
"text": list(), "left": list(), "top": list(), "width": list(),
|
| 854 |
-
"height": list(), "conf": list(),
|
| 855 |
-
}
|
| 856 |
-
|
| 857 |
-
if not line_data or not line_data.get("text"):
|
| 858 |
-
return output
|
| 859 |
-
|
| 860 |
-
for i in range(len(line_data["text"])):
|
| 861 |
-
line_text = line_data["text"][i]
|
| 862 |
-
line_left = round(float(line_data["left"][i]), 2)
|
| 863 |
-
line_top = round(float(line_data["top"][i]), 2)
|
| 864 |
-
line_width = round(float(line_data["width"][i]), 2)
|
| 865 |
-
line_height = round(float(line_data["height"][i]), 2)
|
| 866 |
-
line_conf = line_data["conf"][i]
|
| 867 |
-
|
| 868 |
-
if not line_text.strip():
|
| 869 |
-
continue
|
| 870 |
-
|
| 871 |
-
words = line_text.split()
|
| 872 |
-
if not words:
|
| 873 |
-
continue
|
| 874 |
-
|
| 875 |
-
# --- Improved Logic Starts Here ---
|
| 876 |
-
|
| 877 |
-
# 1. Calculate counts of characters and spaces
|
| 878 |
-
num_chars = len("".join(words))
|
| 879 |
-
num_spaces = len(words) - 1
|
| 880 |
-
|
| 881 |
-
if num_chars == 0:
|
| 882 |
-
continue
|
| 883 |
-
|
| 884 |
-
# 2. Estimate the width of a single space. A common heuristic is that
|
| 885 |
-
# the total space between words takes up a certain fraction of the line.
|
| 886 |
-
# Let's assume text characters are, on average, twice as wide as a space.
|
| 887 |
-
# So, line_width = (num_chars * 2*space_width) + (num_spaces * space_width)
|
| 888 |
-
# This allows us to solve for space_width.
|
| 889 |
-
if (num_chars * 2 + num_spaces) > 0:
|
| 890 |
-
# Heuristic ratio: average char is 2x a space width
|
| 891 |
-
char_space_ratio = 2.0
|
| 892 |
-
estimated_space_width = line_width / (num_chars * char_space_ratio + num_spaces)
|
| 893 |
-
avg_char_width = estimated_space_width * char_space_ratio
|
| 894 |
-
else:
|
| 895 |
-
# Fallback to your original method if line has no spaces
|
| 896 |
-
avg_char_width = line_width / (num_chars if num_chars > 0 else 1)
|
| 897 |
-
estimated_space_width = avg_char_width
|
| 898 |
-
|
| 899 |
-
# --- End of Improved Logic ---
|
| 900 |
-
|
| 901 |
-
current_left = line_left
|
| 902 |
-
|
| 903 |
-
for word in words:
|
| 904 |
-
word_width = len(word) * avg_char_width
|
| 905 |
-
|
| 906 |
-
# Clamp values to be within image boundaries
|
| 907 |
-
clamped_left = max(0, min(current_left, image_width))
|
| 908 |
-
clamped_width = max(0, min(word_width, image_width - clamped_left))
|
| 909 |
-
|
| 910 |
-
output["text"].append(word)
|
| 911 |
-
output["left"].append(clamped_left)
|
| 912 |
-
output["top"].append(line_top)
|
| 913 |
-
output["width"].append(clamped_width)
|
| 914 |
-
output["height"].append(line_height)
|
| 915 |
-
output["conf"].append(line_conf) # Still a simplification
|
| 916 |
-
|
| 917 |
-
# Update the left offset for the next word
|
| 918 |
-
current_left += word_width + estimated_space_width
|
| 919 |
-
|
| 920 |
-
return output
|
| 921 |
|
| 922 |
def _is_line_level_data(self, ocr_data: Dict[str, List]) -> bool:
|
| 923 |
"""
|
|
@@ -1086,6 +942,142 @@ class CustomImageAnalyzerEngine:
|
|
| 1086 |
|
| 1087 |
return output
|
| 1088 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1089 |
def _visualize_tesseract_bounding_boxes(
|
| 1090 |
self,
|
| 1091 |
image: Image.Image,
|
|
@@ -1590,9 +1582,47 @@ class CustomImageAnalyzerEngine:
|
|
| 1590 |
# Convert line-level results to word-level if configured and needed
|
| 1591 |
if CONVERT_LINE_TO_WORD_LEVEL and self._is_line_level_data(ocr_data):
|
| 1592 |
print("Converting line-level OCR results to word-level...")
|
| 1593 |
-
|
| 1594 |
-
|
| 1595 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1596 |
|
| 1597 |
# Always check for scale_factor, even if preprocessing_metadata is empty
|
| 1598 |
# This ensures rescaling happens correctly when preprocessing was applied
|
|
|
|
| 42 |
from tools.run_vlm import generate_image as vlm_generate_image
|
| 43 |
from tools.secure_path_utils import validate_folder_containment
|
| 44 |
from tools.secure_regex_utils import safe_sanitize_text
|
| 45 |
+
from tools.word_segmenter import AdaptiveSegmenter
|
| 46 |
|
| 47 |
if PREPROCESS_LOCAL_OCR_IMAGES == "True":
|
| 48 |
PREPROCESS_LOCAL_OCR_IMAGES = True
|
|
|
|
| 554 |
|
| 555 |
def _vlm_ocr_predict(
|
| 556 |
image: Image.Image,
|
| 557 |
+
prompt: str = "Extract the text content from this image.",
|
| 558 |
) -> Dict[str, Any]:
|
| 559 |
"""
|
| 560 |
VLM OCR prediction function that mimics PaddleOCR's interface.
|
|
|
|
| 689 |
if tesseract_config:
|
| 690 |
self.tesseract_config = tesseract_config
|
| 691 |
else:
|
| 692 |
+
# Following function does not actually work correctly, so always use PSM 11
|
| 693 |
+
psm_value = TESSERACT_SEGMENTATION_LEVEL #_get_tesseract_psm(TESSERACT_SEGMENTATION_LEVEL)
|
| 694 |
self.tesseract_config = f"--oem 3 --psm {psm_value}"
|
| 695 |
# print(
|
| 696 |
# f"Tesseract configured for {TESSERACT_SEGMENTATION_LEVEL}-level segmentation (PSM {psm_value})"
|
|
|
|
| 774 |
|
| 775 |
return f"{safe_original}_conf_{conf}_to_{safe_new}_conf_{new_conf}"
|
| 776 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 777 |
|
| 778 |
def _is_line_level_data(self, ocr_data: Dict[str, List]) -> bool:
|
| 779 |
"""
|
|
|
|
| 942 |
|
| 943 |
return output
|
| 944 |
|
| 945 |
+
def _convert_line_to_word_level(
|
| 946 |
+
self, line_data: Dict[str, List], image_width: int, image_height: int, image: Image.Image, image_name: str = None
|
| 947 |
+
) -> Dict[str, List]:
|
| 948 |
+
"""
|
| 949 |
+
Converts line-level OCR results to word-level using AdaptiveSegmenter.segment().
|
| 950 |
+
This method processes each line individually using the adaptive segmentation algorithm.
|
| 951 |
+
|
| 952 |
+
Args:
|
| 953 |
+
line_data: Dictionary with keys "text", "left", "top", "width", "height", "conf" (all lists)
|
| 954 |
+
image_width: Width of the full image
|
| 955 |
+
image_height: Height of the full image
|
| 956 |
+
image: PIL Image object of the full image
|
| 957 |
+
image_name: Name of the image
|
| 958 |
+
Returns:
|
| 959 |
+
Dictionary with same keys as input, containing word-level bounding boxes
|
| 960 |
+
"""
|
| 961 |
+
output = {
|
| 962 |
+
"text": list(), "left": list(), "top": list(), "width": list(),
|
| 963 |
+
"height": list(), "conf": list(),
|
| 964 |
+
}
|
| 965 |
+
|
| 966 |
+
if not line_data or not line_data.get("text"):
|
| 967 |
+
return output
|
| 968 |
+
|
| 969 |
+
# Convert PIL Image to numpy array (BGR format for OpenCV)
|
| 970 |
+
if hasattr(image, 'size'): # PIL Image
|
| 971 |
+
image_np = np.array(image)
|
| 972 |
+
if len(image_np.shape) == 3:
|
| 973 |
+
# Convert RGB to BGR for OpenCV
|
| 974 |
+
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
| 975 |
+
elif len(image_np.shape) == 2:
|
| 976 |
+
# Grayscale - convert to BGR
|
| 977 |
+
image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2BGR)
|
| 978 |
+
else:
|
| 979 |
+
# Already numpy array
|
| 980 |
+
image_np = image.copy()
|
| 981 |
+
if len(image_np.shape) == 2:
|
| 982 |
+
image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2BGR)
|
| 983 |
+
|
| 984 |
+
segmenter = AdaptiveSegmenter(output_folder=self.output_folder)
|
| 985 |
+
|
| 986 |
+
# Process each line
|
| 987 |
+
for i in range(len(line_data["text"])):
|
| 988 |
+
line_text = line_data["text"][i]
|
| 989 |
+
line_conf = line_data["conf"][i]
|
| 990 |
+
|
| 991 |
+
# Get the float values
|
| 992 |
+
f_left = float(line_data["left"][i])
|
| 993 |
+
f_top = float(line_data["top"][i])
|
| 994 |
+
f_width = float(line_data["width"][i])
|
| 995 |
+
f_height = float(line_data["height"][i])
|
| 996 |
+
|
| 997 |
+
# A simple heuristic to check if coords are normalized
|
| 998 |
+
# If any value is > 1.0, assume they are already pixels
|
| 999 |
+
is_normalized = (f_left <= 1.0 and f_top <= 1.0 and f_width <= 1.0 and f_height <= 1.0)
|
| 1000 |
+
|
| 1001 |
+
if is_normalized:
|
| 1002 |
+
# Convert from normalized (0.0-1.0) to absolute pixels
|
| 1003 |
+
line_left = float(round(f_left * image_width))
|
| 1004 |
+
line_top = float(round(f_top * image_height))
|
| 1005 |
+
line_width = float(round(f_width * image_width))
|
| 1006 |
+
line_height = float(round(f_height * image_height))
|
| 1007 |
+
else:
|
| 1008 |
+
# They are already pixels, just convert to int
|
| 1009 |
+
line_left = float(round(f_left))
|
| 1010 |
+
line_top = float(round(f_top))
|
| 1011 |
+
line_width = float(round(f_width))
|
| 1012 |
+
line_height = float(round(f_height))
|
| 1013 |
+
|
| 1014 |
+
if not line_text.strip():
|
| 1015 |
+
continue
|
| 1016 |
+
|
| 1017 |
+
# Clamp bounding box to image boundaries
|
| 1018 |
+
line_left = int(max(0, min(line_left, image_width - 1)))
|
| 1019 |
+
line_top = int(max(0, min(line_top, image_height - 1)))
|
| 1020 |
+
line_width = int(max(1, min(line_width, image_width - line_left)))
|
| 1021 |
+
line_height = int(max(1, min(line_height, image_height - line_top)))
|
| 1022 |
+
|
| 1023 |
+
print(f"Line left: {line_left}, Line top: {line_top}, Line width: {line_width}, Line height: {line_height}")
|
| 1024 |
+
|
| 1025 |
+
# Crop the line image from the full image
|
| 1026 |
+
line_image = image_np[line_top:line_top + line_height, line_left:line_left + line_width]
|
| 1027 |
+
|
| 1028 |
+
if line_image.size == 0:
|
| 1029 |
+
continue
|
| 1030 |
+
|
| 1031 |
+
# Create single-line data structure for segment method
|
| 1032 |
+
single_line_data = {
|
| 1033 |
+
"text": [line_text],
|
| 1034 |
+
"left": [0], # Relative to cropped image
|
| 1035 |
+
"top": [0],
|
| 1036 |
+
"width": [line_width],
|
| 1037 |
+
"height": [line_height],
|
| 1038 |
+
"conf": [line_conf],
|
| 1039 |
+
}
|
| 1040 |
+
|
| 1041 |
+
# Use AdaptiveSegmenter.segment() to segment this line
|
| 1042 |
+
word_output, _ = segmenter.segment(single_line_data, line_image, image_name=image_name)
|
| 1043 |
+
|
| 1044 |
+
if not word_output or not word_output.get("text"):
|
| 1045 |
+
# If segmentation failed, fall back to proportional estimation
|
| 1046 |
+
words = line_text.split()
|
| 1047 |
+
if words:
|
| 1048 |
+
num_chars = len("".join(words))
|
| 1049 |
+
num_spaces = len(words) - 1
|
| 1050 |
+
if num_chars > 0:
|
| 1051 |
+
char_space_ratio = 2.0
|
| 1052 |
+
estimated_space_width = line_width / (num_chars * char_space_ratio + num_spaces) if (num_chars * char_space_ratio + num_spaces) > 0 else line_width / num_chars
|
| 1053 |
+
avg_char_width = estimated_space_width * char_space_ratio
|
| 1054 |
+
current_left = 0
|
| 1055 |
+
for word in words:
|
| 1056 |
+
word_width = len(word) * avg_char_width
|
| 1057 |
+
clamped_left = max(0, min(current_left, line_width))
|
| 1058 |
+
clamped_width = max(0, min(word_width, line_width - clamped_left))
|
| 1059 |
+
output["text"].append(word)
|
| 1060 |
+
output["left"].append(line_left + clamped_left) # Add line offset
|
| 1061 |
+
output["top"].append(line_top)
|
| 1062 |
+
output["width"].append(clamped_width)
|
| 1063 |
+
output["height"].append(line_height)
|
| 1064 |
+
output["conf"].append(line_conf)
|
| 1065 |
+
current_left += word_width + estimated_space_width
|
| 1066 |
+
continue
|
| 1067 |
+
|
| 1068 |
+
# Adjust coordinates back to full image coordinates
|
| 1069 |
+
for j in range(len(word_output["text"])):
|
| 1070 |
+
output["text"].append(word_output["text"][j])
|
| 1071 |
+
output["left"].append(line_left + word_output["left"][j])
|
| 1072 |
+
output["top"].append(line_top + word_output["top"][j])
|
| 1073 |
+
output["width"].append(word_output["width"][j])
|
| 1074 |
+
output["height"].append(word_output["height"][j])
|
| 1075 |
+
output["conf"].append(word_output["conf"][j])
|
| 1076 |
+
|
| 1077 |
+
print(f"Output: {output}")
|
| 1078 |
+
|
| 1079 |
+
return output
|
| 1080 |
+
|
| 1081 |
def _visualize_tesseract_bounding_boxes(
|
| 1082 |
self,
|
| 1083 |
image: Image.Image,
|
|
|
|
| 1582 |
# Convert line-level results to word-level if configured and needed
|
| 1583 |
if CONVERT_LINE_TO_WORD_LEVEL and self._is_line_level_data(ocr_data):
|
| 1584 |
print("Converting line-level OCR results to word-level...")
|
| 1585 |
+
# Check if coordinates need to be scaled to match the preprocessed image
|
| 1586 |
+
# For PaddleOCR: _convert_paddle_to_tesseract_format converts coordinates to original image space,
|
| 1587 |
+
# but we need to crop from the preprocessed image, so we need to scale coordinates up
|
| 1588 |
+
# For Tesseract: OCR runs on preprocessed image, so coordinates are already in preprocessed space,
|
| 1589 |
+
# matching the preprocessed image we're cropping from - no scaling needed
|
| 1590 |
+
needs_scaling = False
|
| 1591 |
+
if PREPROCESS_LOCAL_OCR_IMAGES and original_image_width and original_image_height:
|
| 1592 |
+
if self.ocr_engine == "paddle":
|
| 1593 |
+
# PaddleOCR coordinates are converted to original space by _convert_paddle_to_tesseract_format
|
| 1594 |
+
needs_scaling = True
|
| 1595 |
+
|
| 1596 |
+
if needs_scaling:
|
| 1597 |
+
# Calculate scale factors from original to preprocessed
|
| 1598 |
+
scale_x = image_width / original_image_width
|
| 1599 |
+
scale_y = image_height / original_image_height
|
| 1600 |
+
print(f"Scaling coordinates from original ({original_image_width}x{original_image_height}) to preprocessed ({image_width}x{image_height})")
|
| 1601 |
+
print(f"Scale factors: x={scale_x:.3f}, y={scale_y:.3f}")
|
| 1602 |
+
# Scale coordinates to preprocessed image space for cropping
|
| 1603 |
+
scaled_ocr_data = {
|
| 1604 |
+
"text": ocr_data["text"],
|
| 1605 |
+
"left": [x * scale_x for x in ocr_data["left"]],
|
| 1606 |
+
"top": [y * scale_y for y in ocr_data["top"]],
|
| 1607 |
+
"width": [w * scale_x for w in ocr_data["width"]],
|
| 1608 |
+
"height": [h * scale_y for h in ocr_data["height"]],
|
| 1609 |
+
"conf": ocr_data["conf"],
|
| 1610 |
+
}
|
| 1611 |
+
ocr_data = self._convert_line_to_word_level(
|
| 1612 |
+
scaled_ocr_data, image_width, image_height, image, image_name=image_name
|
| 1613 |
+
)
|
| 1614 |
+
# Scale word-level results back to original image space
|
| 1615 |
+
scale_factor_x = original_image_width / image_width
|
| 1616 |
+
scale_factor_y = original_image_height / image_height
|
| 1617 |
+
for i in range(len(ocr_data["left"])):
|
| 1618 |
+
ocr_data["left"][i] = ocr_data["left"][i] * scale_factor_x
|
| 1619 |
+
ocr_data["top"][i] = ocr_data["top"][i] * scale_factor_y
|
| 1620 |
+
ocr_data["width"][i] = ocr_data["width"][i] * scale_factor_x
|
| 1621 |
+
ocr_data["height"][i] = ocr_data["height"][i] * scale_factor_y
|
| 1622 |
+
else:
|
| 1623 |
+
ocr_data = self._convert_line_to_word_level(
|
| 1624 |
+
ocr_data, image_width, image_height, image, image_name=image_name
|
| 1625 |
+
)
|
| 1626 |
|
| 1627 |
# Always check for scale_factor, even if preprocessing_metadata is empty
|
| 1628 |
# This ensures rescaling happens correctly when preprocessing was applied
|
tools/word_segmenter.py
ADDED
|
@@ -0,0 +1,974 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
from typing import Dict, List, Tuple
|
| 4 |
+
import os
|
| 5 |
+
from tools.config import OUTPUT_FOLDER
|
| 6 |
+
|
| 7 |
+
INITIAL_KERNEL_WIDTH_FACTOR = 0.05 # Default 0.05
|
| 8 |
+
INITIAL_VALLEY_THRESHOLD_FACTOR = 0.05 # Default 0.05
|
| 9 |
+
MAIN_VALLEY_THRESHOLD_FACTOR = 0.15 # Default 0.15
|
| 10 |
+
C_VALUE = 4 # Default 4
|
| 11 |
+
BLOCK_SIZE_FACTOR = 1.5 # Default 1.5
|
| 12 |
+
MIN_SPACE_FACTOR = 0.3 # Default 0.4
|
| 13 |
+
MATCH_TOLERANCE = 0 # Default 0
|
| 14 |
+
MIN_AREA_THRESHOLD = 6 # Default 6
|
| 15 |
+
DEFAULT_TRIM_PERCENTAGE = 0.15 # Default 0.15
|
| 16 |
+
SHOW_OUTPUT_IMAGES = True # Default False
|
| 17 |
+
|
| 18 |
+
class AdaptiveSegmenter:
|
| 19 |
+
"""
|
| 20 |
+
The final, production-ready pipeline. It features:
|
| 21 |
+
1. Adaptive Thresholding.
|
| 22 |
+
2. Targeted Noise Removal using Connected Component Analysis to isolate the main text body.
|
| 23 |
+
3. The robust two-stage adaptive search (Valley -> Kernel).
|
| 24 |
+
4. CCA for final pixel-perfect refinement.
|
| 25 |
+
"""
|
| 26 |
+
def __init__(self, output_folder: str = OUTPUT_FOLDER):
|
| 27 |
+
self.output_folder = output_folder
|
| 28 |
+
|
| 29 |
+
def _deskew_image(self, gray_image: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
| 30 |
+
"""
|
| 31 |
+
Detects skew using a robust method that normalizes the output of
|
| 32 |
+
cv2.minAreaRect to correctly handle its angle/dimension ambiguity.
|
| 33 |
+
"""
|
| 34 |
+
h, w = gray_image.shape
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
# Use a single, reliable binarization method for detection.
|
| 39 |
+
block_size = 21
|
| 40 |
+
if h < block_size:
|
| 41 |
+
block_size = h if h % 2 != 0 else h - 1
|
| 42 |
+
|
| 43 |
+
if block_size > 3:
|
| 44 |
+
binary = cv2.adaptiveThreshold(gray_image, 255,
|
| 45 |
+
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
| 46 |
+
cv2.THRESH_BINARY_INV, block_size, 4)
|
| 47 |
+
else:
|
| 48 |
+
_, binary = cv2.threshold(gray_image, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
|
| 49 |
+
|
| 50 |
+
opening_kernel = np.ones((2, 2), np.uint8)
|
| 51 |
+
binary = cv2.morphologyEx(binary, cv2.MORPH_OPEN, opening_kernel)
|
| 52 |
+
|
| 53 |
+
coords = np.column_stack(np.where(binary > 0))
|
| 54 |
+
if len(coords) < 50:
|
| 55 |
+
print("Warning: Not enough text pixels to detect skew. Skipping.")
|
| 56 |
+
M = cv2.getRotationMatrix2D((w // 2, h // 2), 0, 1.0)
|
| 57 |
+
return gray_image, M
|
| 58 |
+
|
| 59 |
+
rect = cv2.minAreaRect(coords[:, ::-1])
|
| 60 |
+
|
| 61 |
+
rect_width, rect_height = rect[1]
|
| 62 |
+
angle = rect[2]
|
| 63 |
+
|
| 64 |
+
# If the rectangle is described as vertical, normalize it
|
| 65 |
+
if rect_width < rect_height:
|
| 66 |
+
# Swap dimensions
|
| 67 |
+
rect_width, rect_height = rect_height, rect_width
|
| 68 |
+
# Correct the angle
|
| 69 |
+
angle += 90
|
| 70 |
+
|
| 71 |
+
# The angle from minAreaRect is in [-90, 0). After normalization,
|
| 72 |
+
# our angle for a horizontal line will be close to 0 or -90/90.
|
| 73 |
+
# We need one last correction for angles near +/- 90.
|
| 74 |
+
if angle > 45:
|
| 75 |
+
angle -= 90
|
| 76 |
+
elif angle < -45:
|
| 77 |
+
angle += 90
|
| 78 |
+
|
| 79 |
+
correction_angle = angle
|
| 80 |
+
|
| 81 |
+
print(f"Normalized shape (W:{rect_width:.0f}, H:{rect_height:.0f}). Detected angle: {correction_angle:.2f} degrees.")
|
| 82 |
+
|
| 83 |
+
# Final sanity checks on the angle
|
| 84 |
+
MIN_SKEW_THRESHOLD = 0.5 # Ignore angles smaller than this (likely noise)
|
| 85 |
+
MAX_SKEW_THRESHOLD = 15.0 # Angles larger than this are extreme and likely errors
|
| 86 |
+
|
| 87 |
+
if abs(correction_angle) < MIN_SKEW_THRESHOLD:
|
| 88 |
+
print(f"Detected angle {correction_angle:.2f}° is too small (likely noise). Skipping deskew.")
|
| 89 |
+
correction_angle = 0.0
|
| 90 |
+
elif abs(correction_angle) > MAX_SKEW_THRESHOLD:
|
| 91 |
+
print(f"Warning: Corrected angle {correction_angle:.2f}° is extreme. Skipping deskew.")
|
| 92 |
+
correction_angle = 0.0
|
| 93 |
+
|
| 94 |
+
# Create rotation matrix and apply the final correction
|
| 95 |
+
center = (w // 2, h // 2)
|
| 96 |
+
M = cv2.getRotationMatrix2D(center, correction_angle, 1.0)
|
| 97 |
+
|
| 98 |
+
deskewed_gray = cv2.warpAffine(gray_image, M, (w, h),
|
| 99 |
+
flags=cv2.INTER_CUBIC,
|
| 100 |
+
borderMode=cv2.BORDER_REPLICATE)
|
| 101 |
+
|
| 102 |
+
return deskewed_gray, M
|
| 103 |
+
|
| 104 |
+
def _get_boxes_from_profile(self, binary_image: np.ndarray, stable_avg_char_width: float, min_space_factor: float, valley_threshold_factor: float) -> List:
|
| 105 |
+
# This helper function remains IDENTICAL. No changes needed.
|
| 106 |
+
# ... (code from the previous version)
|
| 107 |
+
img_h, img_w = binary_image.shape
|
| 108 |
+
vertical_projection = np.sum(binary_image, axis=0)
|
| 109 |
+
peaks = vertical_projection[vertical_projection > 0]
|
| 110 |
+
if len(peaks) == 0: return []
|
| 111 |
+
avg_peak_height = np.mean(peaks)
|
| 112 |
+
valley_threshold = int(avg_peak_height * valley_threshold_factor)
|
| 113 |
+
min_space_width = int(stable_avg_char_width * min_space_factor)
|
| 114 |
+
patched_projection = vertical_projection.copy()
|
| 115 |
+
in_gap = False; gap_start = 0
|
| 116 |
+
for x, col_sum in enumerate(patched_projection):
|
| 117 |
+
if col_sum <= valley_threshold and not in_gap: in_gap = True; gap_start = x
|
| 118 |
+
elif col_sum > valley_threshold and in_gap:
|
| 119 |
+
in_gap = False
|
| 120 |
+
if (x - gap_start) < min_space_width: patched_projection[gap_start:x] = int(avg_peak_height)
|
| 121 |
+
unlabeled_boxes = []
|
| 122 |
+
in_word = False; start_x = 0
|
| 123 |
+
for x, col_sum in enumerate(patched_projection):
|
| 124 |
+
if col_sum > valley_threshold and not in_word: start_x = x; in_word = True
|
| 125 |
+
elif col_sum <= valley_threshold and in_word: unlabeled_boxes.append((start_x, 0, x - start_x, img_h)); in_word = False
|
| 126 |
+
if in_word: unlabeled_boxes.append((start_x, 0, img_w - start_x, img_h))
|
| 127 |
+
return unlabeled_boxes
|
| 128 |
+
|
| 129 |
+
def segment(self, line_data: Dict[str, List], line_image: np.ndarray, min_space_factor=MIN_SPACE_FACTOR, match_tolerance=MATCH_TOLERANCE, image_name: str = None) -> Tuple[Dict[str, List], bool]:
|
| 130 |
+
if line_image is None: return ({}, False)
|
| 131 |
+
|
| 132 |
+
shortened_line_text = line_data["text"][0].replace(" ", "_")[:10]
|
| 133 |
+
|
| 134 |
+
if SHOW_OUTPUT_IMAGES:
|
| 135 |
+
os.makedirs(self.output_folder, exist_ok=True)
|
| 136 |
+
output_path = f'{self.output_folder}/paddle_visualisations/{image_name}_{shortened_line_text}_original.png'
|
| 137 |
+
os.makedirs(f'{self.output_folder}/paddle_visualisations', exist_ok=True)
|
| 138 |
+
cv2.imwrite(output_path, line_image)
|
| 139 |
+
print(f"\nSaved original image to '{output_path}'")
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
gray = cv2.cvtColor(line_image, cv2.COLOR_BGR2GRAY)
|
| 143 |
+
# Store the transformation matrix M
|
| 144 |
+
deskewed_gray, M = self._deskew_image(gray)
|
| 145 |
+
h, w = deskewed_gray.shape
|
| 146 |
+
deskewed_line_image = cv2.warpAffine(line_image, M, (w, h),
|
| 147 |
+
flags=cv2.INTER_CUBIC,
|
| 148 |
+
borderMode=cv2.BORDER_REPLICATE)
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
# Save deskewed image (optional, only if image_name is provided)
|
| 152 |
+
if SHOW_OUTPUT_IMAGES:
|
| 153 |
+
os.makedirs(self.output_folder, exist_ok=True)
|
| 154 |
+
output_path = f'{self.output_folder}/paddle_visualisations/{image_name}_{shortened_line_text}_deskewed.png'
|
| 155 |
+
os.makedirs(f'{self.output_folder}/paddle_visualisations', exist_ok=True)
|
| 156 |
+
cv2.imwrite(output_path, deskewed_line_image)
|
| 157 |
+
print(f"\nSaved deskewed image to '{output_path}'")
|
| 158 |
+
|
| 159 |
+
# --- Step 1: Binarization and Stable Width Calculation (Unchanged) ---
|
| 160 |
+
approx_char_count = len(line_data["text"][0].replace(" ", ""))
|
| 161 |
+
if approx_char_count == 0: return ({}, False)
|
| 162 |
+
img_h, img_w = deskewed_gray.shape
|
| 163 |
+
avg_char_width_approx = img_w / approx_char_count
|
| 164 |
+
block_size = int(avg_char_width_approx * BLOCK_SIZE_FACTOR)
|
| 165 |
+
if block_size % 2 == 0: block_size += 1
|
| 166 |
+
binary = cv2.adaptiveThreshold(deskewed_gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, block_size, C_VALUE)
|
| 167 |
+
|
| 168 |
+
# --- Step 2: Intelligent Noise Removal (Improved) ---
|
| 169 |
+
num_labels, labels, stats, _ = cv2.connectedComponentsWithStats(binary, 8, cv2.CV_32S)
|
| 170 |
+
clean_binary = np.zeros_like(binary)
|
| 171 |
+
|
| 172 |
+
if num_labels > 1:
|
| 173 |
+
areas = stats[1:, cv2.CC_STAT_AREA] # Get all component areas, skip background (label 0)
|
| 174 |
+
|
| 175 |
+
# Handle edge case of empty 'areas' array
|
| 176 |
+
if len(areas) == 0:
|
| 177 |
+
clean_binary = binary
|
| 178 |
+
print("Warning: No components found after binarization.")
|
| 179 |
+
areas = np.array([0]) # Add a dummy value to prevent crashes
|
| 180 |
+
|
| 181 |
+
# --- 1. Calculate the DEFAULT CONSERVATIVE threshold ---
|
| 182 |
+
# This is your existing logic, which works well for *clean* lines.
|
| 183 |
+
p1 = np.percentile(areas, 1)
|
| 184 |
+
img_h, img_w = binary.shape
|
| 185 |
+
estimated_char_height = img_h * 0.7
|
| 186 |
+
estimated_min_letter_area = max(2, int(estimated_char_height * 0.2 * estimated_char_height * 0.15))
|
| 187 |
+
|
| 188 |
+
# This is the "safe" threshold that protects small letters on clean lines.
|
| 189 |
+
area_threshold = max(MIN_AREA_THRESHOLD, min(p1, estimated_min_letter_area))
|
| 190 |
+
print(f"Noise Removal: Initial conservative threshold: {area_threshold:.1f} (p1={p1:.1f}, est_min={estimated_min_letter_area:.1f})")
|
| 191 |
+
|
| 192 |
+
# --- 2. Find a "Noise-to-Text" Gap (to enable AGGRESSIVE mode) ---
|
| 193 |
+
sorted_areas = np.sort(areas)
|
| 194 |
+
has_clear_gap = False
|
| 195 |
+
aggressive_threshold = -1
|
| 196 |
+
area_before_gap = -1
|
| 197 |
+
|
| 198 |
+
if len(sorted_areas) > 10: # Need enough components to analyze
|
| 199 |
+
area_diffs = np.diff(sorted_areas)
|
| 200 |
+
if len(area_diffs) > 0:
|
| 201 |
+
# Use your "gap" logic: find a jump > 3x the 95th percentile jump
|
| 202 |
+
jump_threshold = np.percentile(area_diffs, 95)
|
| 203 |
+
significant_jump_thresh = max(10, jump_threshold * 3) # Add a 10px minimum jump
|
| 204 |
+
|
| 205 |
+
jump_indices = np.where(area_diffs > significant_jump_thresh)[0]
|
| 206 |
+
|
| 207 |
+
if len(jump_indices) > 0:
|
| 208 |
+
has_clear_gap = True
|
| 209 |
+
# This is the index of the *last noise component*
|
| 210 |
+
gap_idx = jump_indices[0]
|
| 211 |
+
area_before_gap = sorted_areas[gap_idx]
|
| 212 |
+
|
| 213 |
+
# The aggressive threshold is 1 pixel *larger* than the biggest noise component
|
| 214 |
+
aggressive_threshold = area_before_gap + 1
|
| 215 |
+
|
| 216 |
+
# --- 3. ADAPTIVE DECISION: Override if conservative threshold is clearly noise ---
|
| 217 |
+
if has_clear_gap:
|
| 218 |
+
print(f"Noise Removal: Gap detected. Noise cluster ends at {area_before_gap}px. Aggressive threshold = {aggressive_threshold:.1f}")
|
| 219 |
+
|
| 220 |
+
# THIS IS THE KEY:
|
| 221 |
+
# Only use the aggressive threshold IF our "safe" threshold is clearly
|
| 222 |
+
# stuck *inside* the noise cluster.
|
| 223 |
+
# e.g., Safe threshold = 1, but noise goes up to 10.
|
| 224 |
+
# (We use 0.8 as a buffer, so if thresh=7 and gap=8, we don't switch)
|
| 225 |
+
if area_threshold < (area_before_gap * 0.8):
|
| 226 |
+
print(f"Noise Removal: Conservative threshold ({area_threshold:.1f}) is deep in noise cluster (ends at {area_before_gap}px).")
|
| 227 |
+
print(f"Noise Removal: Switching to AGGRESSIVE threshold: {aggressive_threshold:.1f}")
|
| 228 |
+
area_threshold = aggressive_threshold
|
| 229 |
+
else:
|
| 230 |
+
print(f"Noise Removal: Gap found, but conservative threshold ({area_threshold:.1f}) is sufficient. Sticking with conservative.")
|
| 231 |
+
|
| 232 |
+
# --- 4. Apply the final, determined threshold ---
|
| 233 |
+
print(f"Noise Removal: Final area threshold: {area_threshold:.1f}")
|
| 234 |
+
for i in range(1, num_labels):
|
| 235 |
+
# Use >= to be inclusive of the threshold itself
|
| 236 |
+
if stats[i, cv2.CC_STAT_AREA] >= area_threshold:
|
| 237 |
+
clean_binary[labels == i] = 255
|
| 238 |
+
else:
|
| 239 |
+
# No components found, or only background
|
| 240 |
+
clean_binary = binary
|
| 241 |
+
|
| 242 |
+
# Calculate the horizontal projection profile on the cleaned image
|
| 243 |
+
horizontal_projection = np.sum(clean_binary, axis=1)
|
| 244 |
+
|
| 245 |
+
# Find the top and bottom boundaries of the text
|
| 246 |
+
non_zero_rows = np.where(horizontal_projection > 0)[0]
|
| 247 |
+
if len(non_zero_rows) > 0:
|
| 248 |
+
text_top = non_zero_rows[0]
|
| 249 |
+
text_bottom = non_zero_rows[-1]
|
| 250 |
+
text_height = text_bottom - text_top
|
| 251 |
+
|
| 252 |
+
# Define a percentage to trim off the top and bottom
|
| 253 |
+
# This is a tunable parameter. 15% is a good starting point.
|
| 254 |
+
trim_percentage = DEFAULT_TRIM_PERCENTAGE
|
| 255 |
+
trim_pixels = int(text_height * trim_percentage)
|
| 256 |
+
|
| 257 |
+
# Calculate new, tighter boundaries
|
| 258 |
+
y_start = text_top + trim_pixels
|
| 259 |
+
y_end = text_bottom - trim_pixels
|
| 260 |
+
|
| 261 |
+
# Ensure the crop is valid
|
| 262 |
+
if y_start < y_end:
|
| 263 |
+
print(f"Original text height: {text_height}px. Cropping to middle {100 - (2*trim_percentage*100):.0f}% region.")
|
| 264 |
+
# Slice the image to get the vertically cropped ROI
|
| 265 |
+
analysis_image = clean_binary[y_start:y_end, :]
|
| 266 |
+
else:
|
| 267 |
+
# If trimming would result in an empty image, use the full text region
|
| 268 |
+
analysis_image = clean_binary[text_top:text_bottom, :]
|
| 269 |
+
else:
|
| 270 |
+
# If no text is found, use the original cleaned image
|
| 271 |
+
analysis_image = clean_binary
|
| 272 |
+
|
| 273 |
+
# Save cropped image (optional, only if image_name is provided)
|
| 274 |
+
if SHOW_OUTPUT_IMAGES:
|
| 275 |
+
if image_name is not None:
|
| 276 |
+
os.makedirs(self.output_folder, exist_ok=True)
|
| 277 |
+
output_path = f'{self.output_folder}/paddle_visualisations/{image_name}_{shortened_line_text}_cropped_adaptive.png'
|
| 278 |
+
os.makedirs(f'{self.output_folder}/paddle_visualisations', exist_ok=True)
|
| 279 |
+
cv2.imwrite(output_path, analysis_image)
|
| 280 |
+
print(f"\nSaved cropped image to '{output_path}'")
|
| 281 |
+
|
| 282 |
+
# --- Step 3: Hierarchical Adaptive Search (using the new clean_binary) ---
|
| 283 |
+
# The rest of the pipeline is identical but now operates on a superior image.
|
| 284 |
+
words = line_data["text"][0].split()
|
| 285 |
+
target_word_count = len(words)
|
| 286 |
+
|
| 287 |
+
print(f"Target word count: {target_word_count}")
|
| 288 |
+
|
| 289 |
+
best_boxes = None
|
| 290 |
+
successful_binary_image = None
|
| 291 |
+
|
| 292 |
+
# --- Step 3: Hierarchical Adaptive Search (using the CROPPED analysis_image) ---
|
| 293 |
+
words = line_data["text"][0].split()
|
| 294 |
+
target_word_count = len(words)
|
| 295 |
+
stage1_succeeded = False
|
| 296 |
+
|
| 297 |
+
print("--- Stage 1: Searching with adaptive valley threshold ---")
|
| 298 |
+
valley_factors_to_try = np.arange(INITIAL_VALLEY_THRESHOLD_FACTOR, 0.45, 0.05)
|
| 299 |
+
for v_factor in valley_factors_to_try:
|
| 300 |
+
# Pass the cropped image to the helper
|
| 301 |
+
unlabeled_boxes = self._get_boxes_from_profile(analysis_image, avg_char_width_approx, min_space_factor, v_factor)
|
| 302 |
+
if abs(target_word_count - len(unlabeled_boxes)) <= match_tolerance:
|
| 303 |
+
best_boxes = unlabeled_boxes
|
| 304 |
+
successful_binary_image = analysis_image
|
| 305 |
+
stage1_succeeded = True
|
| 306 |
+
break
|
| 307 |
+
|
| 308 |
+
if not stage1_succeeded:
|
| 309 |
+
print("\n--- Stage 1 failed. Starting Stage 2: Searching with adaptive kernel ---")
|
| 310 |
+
kernel_factors_to_try = np.arange(INITIAL_KERNEL_WIDTH_FACTOR, 0.5, 0.05)
|
| 311 |
+
fixed_valley_factor = MAIN_VALLEY_THRESHOLD_FACTOR
|
| 312 |
+
for k_factor in kernel_factors_to_try:
|
| 313 |
+
kernel_width = max(1, int(avg_char_width_approx * k_factor))
|
| 314 |
+
closing_kernel = np.ones((1, kernel_width), np.uint8)
|
| 315 |
+
# Apply closing on the original clean_binary, then crop it
|
| 316 |
+
closed_binary = cv2.morphologyEx(clean_binary, cv2.MORPH_CLOSE, closing_kernel)
|
| 317 |
+
# We need to re-apply the same vertical crop to this new image
|
| 318 |
+
if len(non_zero_rows) > 0 and y_start < y_end:
|
| 319 |
+
analysis_image = closed_binary[y_start:y_end, :]
|
| 320 |
+
else:
|
| 321 |
+
analysis_image = closed_binary
|
| 322 |
+
|
| 323 |
+
unlabeled_boxes = self._get_boxes_from_profile(analysis_image, avg_char_width_approx, min_space_factor, fixed_valley_factor)
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
print(f"Testing kernel factor {k_factor:.2f} ({kernel_width}px): Found {len(unlabeled_boxes)} boxes.")
|
| 327 |
+
if abs(target_word_count - len(unlabeled_boxes)) <= match_tolerance:
|
| 328 |
+
print(f"SUCCESS (Stage 2): Found a match.")
|
| 329 |
+
best_boxes = unlabeled_boxes
|
| 330 |
+
successful_binary_image = closed_binary # For Stage 2, the source is the closed_binary
|
| 331 |
+
break
|
| 332 |
+
|
| 333 |
+
final_output = None
|
| 334 |
+
used_fallback = False
|
| 335 |
+
|
| 336 |
+
if best_boxes is None:
|
| 337 |
+
print(f"\nWarning: All adaptive searches failed. Falling back.")
|
| 338 |
+
fallback_segmenter = HybridWordSegmenter()
|
| 339 |
+
used_fallback = True
|
| 340 |
+
final_output = fallback_segmenter.refine_words_bidirectional(line_data, deskewed_line_image)
|
| 341 |
+
|
| 342 |
+
else:
|
| 343 |
+
# --- CCA Refinement using the determined successful_binary_image ---
|
| 344 |
+
unlabeled_boxes = best_boxes
|
| 345 |
+
cca_source_image = successful_binary_image
|
| 346 |
+
|
| 347 |
+
if successful_binary_image is analysis_image: # This comparison might not work as intended
|
| 348 |
+
# A safer way is to check if Stage 1 succeeded
|
| 349 |
+
if any(v_factor in locals() and abs(target_word_count - len(self._get_boxes_from_profile(analysis_image, avg_char_width_approx, min_space_factor, v_factor))) <= match_tolerance for v_factor in np.arange(INITIAL_VALLEY_THRESHOLD_FACTOR, 0.45, 0.05)):
|
| 350 |
+
cca_source_image = clean_binary
|
| 351 |
+
else: # Stage 2 must have succeeded
|
| 352 |
+
# Recreate the successful closed_binary for CCA
|
| 353 |
+
successful_k_factor = locals().get('k_factor')
|
| 354 |
+
if successful_k_factor is not None:
|
| 355 |
+
kernel_width = max(1, int(avg_char_width_approx * successful_k_factor))
|
| 356 |
+
closing_kernel = np.ones((1, kernel_width), np.uint8)
|
| 357 |
+
cca_source_image = cv2.morphologyEx(clean_binary, cv2.MORPH_CLOSE, closing_kernel)
|
| 358 |
+
else:
|
| 359 |
+
cca_source_image = clean_binary # Fallback
|
| 360 |
+
else:
|
| 361 |
+
cca_source_image = successful_binary_image
|
| 362 |
+
|
| 363 |
+
# --- Proceed with CCA Refinement ---
|
| 364 |
+
unlabeled_boxes = best_boxes
|
| 365 |
+
num_labels, _, stats, _ = cv2.connectedComponentsWithStats(cca_source_image, 8, cv2.CV_32S)
|
| 366 |
+
|
| 367 |
+
refined_boxes_list = []
|
| 368 |
+
num_to_process = min(len(words), len(unlabeled_boxes))
|
| 369 |
+
for i in range(num_to_process):
|
| 370 |
+
word_label = words[i]
|
| 371 |
+
box_x, _, box_w, _ = unlabeled_boxes[i]
|
| 372 |
+
box_r = box_x + box_w # Box right edge
|
| 373 |
+
|
| 374 |
+
components_in_box = []
|
| 375 |
+
for j in range(1, num_labels): # Skip background
|
| 376 |
+
comp_x = stats[j, cv2.CC_STAT_LEFT]
|
| 377 |
+
comp_w = stats[j, cv2.CC_STAT_WIDTH]
|
| 378 |
+
comp_r = comp_x + comp_w # Component right edge
|
| 379 |
+
|
| 380 |
+
if comp_x < box_r and box_x < comp_r:
|
| 381 |
+
components_in_box.append(stats[j])
|
| 382 |
+
|
| 383 |
+
if not components_in_box: continue
|
| 384 |
+
|
| 385 |
+
# The rest of the CCA union logic is unchanged
|
| 386 |
+
min_x = min(c[cv2.CC_STAT_LEFT] for c in components_in_box)
|
| 387 |
+
min_y = min(c[cv2.CC_STAT_TOP] for c in components_in_box)
|
| 388 |
+
max_r = max(c[cv2.CC_STAT_LEFT] + c[cv2.CC_STAT_WIDTH] for c in components_in_box)
|
| 389 |
+
max_b = max(c[cv2.CC_STAT_TOP] + c[cv2.CC_STAT_HEIGHT] for c in components_in_box)
|
| 390 |
+
|
| 391 |
+
refined_boxes_list.append({
|
| 392 |
+
"text": word_label, "left": min_x, "top": min_y, "width": max_r - min_x, "height": max_b - min_y, "conf": line_data["conf"][0],
|
| 393 |
+
})
|
| 394 |
+
|
| 395 |
+
# Convert to dict format
|
| 396 |
+
final_output = {k: [] for k in ["text", "left", "top", "width", "height", "conf"]}
|
| 397 |
+
for box in refined_boxes_list:
|
| 398 |
+
for key in final_output.keys():
|
| 399 |
+
final_output[key].append(box[key])
|
| 400 |
+
|
| 401 |
+
# --- TRANSFORM COORDINATES BACK ---
|
| 402 |
+
|
| 403 |
+
# Get the inverse transformation matrix
|
| 404 |
+
M_inv = cv2.invertAffineTransform(M)
|
| 405 |
+
|
| 406 |
+
# Create a new list for the re-mapped boxes
|
| 407 |
+
remapped_boxes_list = []
|
| 408 |
+
|
| 409 |
+
# Iterate through the boxes found on the deskewed image
|
| 410 |
+
for i in range(len(final_output["text"])):
|
| 411 |
+
# Get the box coordinates from the deskewed image
|
| 412 |
+
l, t = final_output["left"][i], final_output["top"][i]
|
| 413 |
+
w, h = final_output["width"][i], final_output["height"][i]
|
| 414 |
+
|
| 415 |
+
# Define the 4 corners of this box
|
| 416 |
+
# Use float for accurate transformation
|
| 417 |
+
corners = np.array([
|
| 418 |
+
[l, t],
|
| 419 |
+
[l + w, t],
|
| 420 |
+
[l + w, t + h],
|
| 421 |
+
[l, t + h]
|
| 422 |
+
], dtype="float32")
|
| 423 |
+
|
| 424 |
+
# Add a '1' to each coordinate for the 2x3 affine matrix
|
| 425 |
+
# shape (4, 1, 2)
|
| 426 |
+
corners_expanded = np.expand_dims(corners, axis=1)
|
| 427 |
+
|
| 428 |
+
# Apply the inverse transformation
|
| 429 |
+
# shape (4, 1, 2)
|
| 430 |
+
original_corners = cv2.transform(corners_expanded, M_inv)
|
| 431 |
+
|
| 432 |
+
# Find the new axis-aligned bounding box in the original image
|
| 433 |
+
# original_corners is now [[ [x1,y1] ], [ [x2,y2] ], ...]
|
| 434 |
+
# We need to squeeze it to get [ [x1,y1], [x2,y2], ...]
|
| 435 |
+
squeezed_corners = original_corners.squeeze(axis=1)
|
| 436 |
+
|
| 437 |
+
# Find the min/max x and y
|
| 438 |
+
min_x = int(np.min(squeezed_corners[:, 0]))
|
| 439 |
+
max_x = int(np.max(squeezed_corners[:, 0]))
|
| 440 |
+
min_y = int(np.min(squeezed_corners[:, 1]))
|
| 441 |
+
max_y = int(np.max(squeezed_corners[:, 1]))
|
| 442 |
+
|
| 443 |
+
# Create the re-mapped box
|
| 444 |
+
remapped_box = {
|
| 445 |
+
"text": final_output["text"][i],
|
| 446 |
+
"left": min_x,
|
| 447 |
+
"top": min_y,
|
| 448 |
+
"width": max_x - min_x,
|
| 449 |
+
"height": max_y - min_y,
|
| 450 |
+
"conf": final_output["conf"][i]
|
| 451 |
+
}
|
| 452 |
+
remapped_boxes_list.append(remapped_box)
|
| 453 |
+
|
| 454 |
+
# Convert the remapped list back to the dictionary format
|
| 455 |
+
remapped_output = {k: [] for k in final_output.keys()}
|
| 456 |
+
for box in remapped_boxes_list:
|
| 457 |
+
for key in remapped_output.keys():
|
| 458 |
+
remapped_output[key].append(box[key])
|
| 459 |
+
|
| 460 |
+
if SHOW_OUTPUT_IMAGES:
|
| 461 |
+
# Visualisation
|
| 462 |
+
output_image_vis = deskewed_line_image.copy()
|
| 463 |
+
print(f"\nFinal refined {len(remapped_output['text'])} words:")
|
| 464 |
+
for i in range(len(remapped_output['text'])):
|
| 465 |
+
word = remapped_output['text'][i]
|
| 466 |
+
x, y, w, h = (
|
| 467 |
+
int(remapped_output['left'][i]), int(remapped_output['top'][i]),
|
| 468 |
+
int(remapped_output['width'][i]), int(remapped_output['height'][i])
|
| 469 |
+
)
|
| 470 |
+
print(f"- '{word}' at ({x}, {y}, {w}, {h})")
|
| 471 |
+
cv2.rectangle(output_image_vis, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
| 472 |
+
|
| 473 |
+
output_path = f'{self.output_folder}/paddle_visualisations/{image_name}_{shortened_line_text}_refined_adaptive.png'
|
| 474 |
+
os.makedirs(f'{self.output_folder}/paddle_visualisations', exist_ok=True)
|
| 475 |
+
cv2.imwrite(output_path, output_image_vis)
|
| 476 |
+
print(f"\nSaved visualisation to '{output_path}'")
|
| 477 |
+
|
| 478 |
+
return remapped_output, used_fallback
|
| 479 |
+
|
| 480 |
+
class HybridWordSegmenter:
|
| 481 |
+
"""
|
| 482 |
+
Implements a two-step approach for word segmentation:
|
| 483 |
+
1. Proportional estimation based on text.
|
| 484 |
+
2. Image-based refinement with a "Bounded Scan" to prevent
|
| 485 |
+
over-correction.
|
| 486 |
+
"""
|
| 487 |
+
|
| 488 |
+
def _convert_line_to_word_level_improved(
|
| 489 |
+
self, line_data: Dict[str, List], image_width: int, image_height: int
|
| 490 |
+
) -> Dict[str, List]:
|
| 491 |
+
"""
|
| 492 |
+
Step 1: Converts line-level OCR results to word-level by using a
|
| 493 |
+
robust proportional estimation method.
|
| 494 |
+
(This function is unchanged from the previous version)
|
| 495 |
+
"""
|
| 496 |
+
output = {
|
| 497 |
+
"text": list(), "left": list(), "top": list(), "width": list(),
|
| 498 |
+
"height": list(), "conf": list(),
|
| 499 |
+
}
|
| 500 |
+
|
| 501 |
+
if not line_data or not line_data.get("text"):
|
| 502 |
+
return output
|
| 503 |
+
|
| 504 |
+
i = 0 # Assuming a single line
|
| 505 |
+
line_text = line_data["text"][i]
|
| 506 |
+
line_left = float(line_data["left"][i])
|
| 507 |
+
line_top = float(line_data["top"][i])
|
| 508 |
+
line_width = float(line_data["width"][i])
|
| 509 |
+
line_height = float(line_data["height"][i])
|
| 510 |
+
line_conf = line_data["conf"][i]
|
| 511 |
+
|
| 512 |
+
if not line_text.strip(): return output
|
| 513 |
+
words = line_text.split()
|
| 514 |
+
if not words: return output
|
| 515 |
+
num_chars = len("".join(words))
|
| 516 |
+
num_spaces = len(words) - 1
|
| 517 |
+
if num_chars == 0: return output
|
| 518 |
+
|
| 519 |
+
if (num_chars * 2 + num_spaces) > 0:
|
| 520 |
+
char_space_ratio = 2.0
|
| 521 |
+
estimated_space_width = line_width / (num_chars * char_space_ratio + num_spaces)
|
| 522 |
+
avg_char_width = estimated_space_width * char_space_ratio
|
| 523 |
+
else:
|
| 524 |
+
avg_char_width = line_width / (num_chars if num_chars > 0 else 1)
|
| 525 |
+
estimated_space_width = avg_char_width
|
| 526 |
+
|
| 527 |
+
current_left = line_left
|
| 528 |
+
for word in words:
|
| 529 |
+
word_width = len(word) * avg_char_width
|
| 530 |
+
clamped_left = max(0, min(current_left, image_width))
|
| 531 |
+
clamped_width = max(0, min(word_width, image_width - clamped_left))
|
| 532 |
+
output["text"].append(word)
|
| 533 |
+
output["left"].append(clamped_left)
|
| 534 |
+
output["top"].append(line_top)
|
| 535 |
+
output["width"].append(clamped_width)
|
| 536 |
+
output["height"].append(line_height)
|
| 537 |
+
output["conf"].append(line_conf)
|
| 538 |
+
current_left += word_width + estimated_space_width
|
| 539 |
+
return output
|
| 540 |
+
|
| 541 |
+
def _run_single_pass(
|
| 542 |
+
self,
|
| 543 |
+
initial_boxes: List[Dict],
|
| 544 |
+
vertical_projection: np.ndarray,
|
| 545 |
+
max_scan_distance: int,
|
| 546 |
+
img_w: int,
|
| 547 |
+
direction: str = 'ltr'
|
| 548 |
+
) -> List[Dict]:
|
| 549 |
+
"""Helper function to run one pass of refinement (either LTR or RTL)."""
|
| 550 |
+
|
| 551 |
+
refined_boxes = [box.copy() for box in initial_boxes]
|
| 552 |
+
|
| 553 |
+
if direction == 'ltr':
|
| 554 |
+
last_corrected_right_edge = 0
|
| 555 |
+
indices = range(len(refined_boxes))
|
| 556 |
+
else: # rtl
|
| 557 |
+
next_corrected_left_edge = img_w
|
| 558 |
+
indices = range(len(refined_boxes) - 1, -1, -1)
|
| 559 |
+
|
| 560 |
+
for i in indices:
|
| 561 |
+
box = refined_boxes[i]
|
| 562 |
+
left = int(box['left'])
|
| 563 |
+
right = int(box['left'] + box['width'])
|
| 564 |
+
|
| 565 |
+
left = max(0, min(left, img_w - 1))
|
| 566 |
+
right = max(0, min(right, img_w - 1))
|
| 567 |
+
|
| 568 |
+
new_left, new_right = left, right
|
| 569 |
+
|
| 570 |
+
# Bounded Scan (logic is the same for both directions)
|
| 571 |
+
if right < img_w and vertical_projection[right] > 0:
|
| 572 |
+
scan_limit = min(img_w, right + max_scan_distance)
|
| 573 |
+
for x in range(right + 1, scan_limit):
|
| 574 |
+
if vertical_projection[x] == 0:
|
| 575 |
+
new_right = x
|
| 576 |
+
break
|
| 577 |
+
|
| 578 |
+
if left > 0 and vertical_projection[left] > 0:
|
| 579 |
+
scan_limit = max(0, left - max_scan_distance)
|
| 580 |
+
for x in range(left - 1, scan_limit, -1):
|
| 581 |
+
if vertical_projection[x] == 0:
|
| 582 |
+
new_left = x
|
| 583 |
+
break
|
| 584 |
+
|
| 585 |
+
# Directional De-overlapping
|
| 586 |
+
if direction == 'ltr':
|
| 587 |
+
if new_left < last_corrected_right_edge:
|
| 588 |
+
new_left = last_corrected_right_edge
|
| 589 |
+
last_corrected_right_edge = max(last_corrected_right_edge, new_right)
|
| 590 |
+
else: # rtl
|
| 591 |
+
if new_right > next_corrected_left_edge:
|
| 592 |
+
new_right = next_corrected_left_edge
|
| 593 |
+
next_corrected_left_edge = min(next_corrected_left_edge, new_left)
|
| 594 |
+
|
| 595 |
+
box['left'] = new_left
|
| 596 |
+
box['width'] = max(1, new_right - new_left)
|
| 597 |
+
|
| 598 |
+
return refined_boxes
|
| 599 |
+
|
| 600 |
+
def refine_words_bidirectional(
|
| 601 |
+
self,
|
| 602 |
+
line_data: Dict[str, List],
|
| 603 |
+
line_image: np.ndarray,
|
| 604 |
+
) -> Dict[str, List]:
|
| 605 |
+
"""
|
| 606 |
+
Refines boxes using a more robust bidirectional scan and averaging.
|
| 607 |
+
"""
|
| 608 |
+
if line_image is None: return line_data
|
| 609 |
+
|
| 610 |
+
gray = cv2.cvtColor(line_image, cv2.COLOR_BGR2GRAY)
|
| 611 |
+
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
|
| 612 |
+
img_h, img_w = binary.shape
|
| 613 |
+
vertical_projection = np.sum(binary, axis=0)
|
| 614 |
+
|
| 615 |
+
char_blobs = []
|
| 616 |
+
in_blob = False; blob_start = 0
|
| 617 |
+
for x, col_sum in enumerate(vertical_projection):
|
| 618 |
+
if col_sum > 0 and not in_blob: blob_start = x; in_blob = True
|
| 619 |
+
elif col_sum == 0 and in_blob: char_blobs.append((blob_start, x)); in_blob = False
|
| 620 |
+
if in_blob: char_blobs.append((blob_start, img_w))
|
| 621 |
+
|
| 622 |
+
if not char_blobs:
|
| 623 |
+
return self._convert_line_to_word_level_improved(line_data, img_w, img_h)
|
| 624 |
+
|
| 625 |
+
avg_char_width = np.mean([end - start for start, end in char_blobs])
|
| 626 |
+
max_scan_distance = int(avg_char_width * 1.5)
|
| 627 |
+
|
| 628 |
+
estimated_data = self._convert_line_to_word_level_improved(line_data, img_w, img_h)
|
| 629 |
+
if not estimated_data["text"]: return estimated_data
|
| 630 |
+
|
| 631 |
+
initial_boxes = []
|
| 632 |
+
for i in range(len(estimated_data["text"])):
|
| 633 |
+
initial_boxes.append({
|
| 634 |
+
"text": estimated_data["text"][i], "left": estimated_data["left"][i],
|
| 635 |
+
"top": estimated_data["top"][i], "width": estimated_data["width"][i],
|
| 636 |
+
"height": estimated_data["height"][i], "conf": estimated_data["conf"][i],
|
| 637 |
+
})
|
| 638 |
+
|
| 639 |
+
# 1. & 2. Perform both passes
|
| 640 |
+
ltr_boxes = self._run_single_pass(initial_boxes, vertical_projection, max_scan_distance, img_w, 'ltr')
|
| 641 |
+
rtl_boxes = self._run_single_pass(initial_boxes, vertical_projection, max_scan_distance, img_w, 'rtl')
|
| 642 |
+
|
| 643 |
+
# 3. Average the results
|
| 644 |
+
averaged_boxes = [box.copy() for box in initial_boxes]
|
| 645 |
+
for i in range(len(averaged_boxes)):
|
| 646 |
+
ltr_right = ltr_boxes[i]['left'] + ltr_boxes[i]['width']
|
| 647 |
+
rtl_right = rtl_boxes[i]['left'] + rtl_boxes[i]['width']
|
| 648 |
+
|
| 649 |
+
avg_left = (ltr_boxes[i]['left'] + rtl_boxes[i]['left']) / 2
|
| 650 |
+
avg_right = (ltr_right + rtl_right) / 2
|
| 651 |
+
|
| 652 |
+
averaged_boxes[i]['left'] = int(avg_left)
|
| 653 |
+
averaged_boxes[i]['width'] = int(avg_right - avg_left)
|
| 654 |
+
|
| 655 |
+
# 4. Final De-overlap Pass
|
| 656 |
+
last_corrected_right_edge = 0
|
| 657 |
+
for i, box in enumerate(averaged_boxes):
|
| 658 |
+
if box['left'] < last_corrected_right_edge:
|
| 659 |
+
box['width'] = max(1, box['width'] - (last_corrected_right_edge - box['left']))
|
| 660 |
+
box['left'] = last_corrected_right_edge
|
| 661 |
+
|
| 662 |
+
if box['width'] < 1:
|
| 663 |
+
# Handle edge case where a box is completely eliminated
|
| 664 |
+
if i < len(averaged_boxes) - 1:
|
| 665 |
+
next_left = averaged_boxes[i+1]['left']
|
| 666 |
+
box['width'] = max(1, next_left - box['left'])
|
| 667 |
+
else:
|
| 668 |
+
box['width'] = 1
|
| 669 |
+
|
| 670 |
+
last_corrected_right_edge = box['left'] + box['width']
|
| 671 |
+
|
| 672 |
+
# Convert back to Tesseract-style output dict
|
| 673 |
+
final_output = {k: [] for k in estimated_data.keys()}
|
| 674 |
+
for box in averaged_boxes:
|
| 675 |
+
if box['width'] > 0: # Ensure we don't add zero-width boxes
|
| 676 |
+
for key in final_output.keys():
|
| 677 |
+
final_output[key].append(box[key])
|
| 678 |
+
|
| 679 |
+
return final_output
|
| 680 |
+
|
| 681 |
+
def refine_words_with_image(
|
| 682 |
+
|
| 683 |
+
self,
|
| 684 |
+
|
| 685 |
+
line_data: Dict[str, List],
|
| 686 |
+
|
| 687 |
+
line_image: np.ndarray,
|
| 688 |
+
|
| 689 |
+
) -> Dict[str, List]:
|
| 690 |
+
|
| 691 |
+
"""
|
| 692 |
+
|
| 693 |
+
Step 2: Refines the estimated boxes using image data and a
|
| 694 |
+
|
| 695 |
+
"Bounded Scan" to avoid aggressive corrections.
|
| 696 |
+
|
| 697 |
+
"""
|
| 698 |
+
|
| 699 |
+
|
| 700 |
+
|
| 701 |
+
# --- 2a. Get Binarized Image and Projection Profile ---
|
| 702 |
+
|
| 703 |
+
if line_image is None:
|
| 704 |
+
|
| 705 |
+
print("Error: Invalid image passed.")
|
| 706 |
+
|
| 707 |
+
return line_data
|
| 708 |
+
|
| 709 |
+
|
| 710 |
+
|
| 711 |
+
gray = cv2.cvtColor(line_image, cv2.COLOR_BGR2GRAY)
|
| 712 |
+
|
| 713 |
+
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
|
| 714 |
+
|
| 715 |
+
img_h, img_w = binary.shape
|
| 716 |
+
|
| 717 |
+
vertical_projection = np.sum(binary, axis=0)
|
| 718 |
+
|
| 719 |
+
# --- Calculate Avg. Char Width and Max Scan Distance ---
|
| 720 |
+
|
| 721 |
+
char_blobs = []
|
| 722 |
+
|
| 723 |
+
in_blob = False
|
| 724 |
+
|
| 725 |
+
blob_start = 0
|
| 726 |
+
|
| 727 |
+
for x, col_sum in enumerate(vertical_projection):
|
| 728 |
+
|
| 729 |
+
if col_sum > 0 and not in_blob:
|
| 730 |
+
|
| 731 |
+
blob_start = x
|
| 732 |
+
|
| 733 |
+
in_blob = True
|
| 734 |
+
|
| 735 |
+
elif col_sum == 0 and in_blob:
|
| 736 |
+
|
| 737 |
+
char_blobs.append((blob_start, x))
|
| 738 |
+
|
| 739 |
+
in_blob = False
|
| 740 |
+
|
| 741 |
+
if in_blob:
|
| 742 |
+
|
| 743 |
+
char_blobs.append((blob_start, img_w))
|
| 744 |
+
|
| 745 |
+
|
| 746 |
+
|
| 747 |
+
if not char_blobs:
|
| 748 |
+
|
| 749 |
+
print("No text detected in image for refinement.")
|
| 750 |
+
|
| 751 |
+
return self._convert_line_to_word_level_improved(line_data, img_w, img_h)
|
| 752 |
+
|
| 753 |
+
|
| 754 |
+
avg_char_width = np.mean([end - start for start, end in char_blobs])
|
| 755 |
+
|
| 756 |
+
|
| 757 |
+
# This is our "horizontal buffer". We won't scan further than this.
|
| 758 |
+
|
| 759 |
+
# We use 1.5 as a heuristic, you can tune this.
|
| 760 |
+
|
| 761 |
+
max_scan_distance = int(avg_char_width * 1.5)
|
| 762 |
+
|
| 763 |
+
print(f"Calculated avg char width: {avg_char_width:.2f}px. Max scan: {max_scan_distance}px")
|
| 764 |
+
|
| 765 |
+
|
| 766 |
+
|
| 767 |
+
# --- 2b. Get Initial "Rough Draft" Estimates ---
|
| 768 |
+
|
| 769 |
+
estimated_data = self._convert_line_to_word_level_improved(line_data, img_w, img_h)
|
| 770 |
+
|
| 771 |
+
|
| 772 |
+
|
| 773 |
+
if not estimated_data["text"]:
|
| 774 |
+
|
| 775 |
+
return estimated_data
|
| 776 |
+
|
| 777 |
+
|
| 778 |
+
|
| 779 |
+
initial_boxes = []
|
| 780 |
+
|
| 781 |
+
for i in range(len(estimated_data["text"])):
|
| 782 |
+
|
| 783 |
+
initial_boxes.append({
|
| 784 |
+
|
| 785 |
+
"text": estimated_data["text"][i],
|
| 786 |
+
|
| 787 |
+
"left": estimated_data["left"][i],
|
| 788 |
+
|
| 789 |
+
"top": estimated_data["top"][i],
|
| 790 |
+
|
| 791 |
+
"width": estimated_data["width"][i],
|
| 792 |
+
|
| 793 |
+
"height": estimated_data["height"][i],
|
| 794 |
+
|
| 795 |
+
"conf": estimated_data["conf"][i],
|
| 796 |
+
|
| 797 |
+
})
|
| 798 |
+
|
| 799 |
+
# --- 2c. Iterate, Refine, and De-overlap (Now with Bounded Scan) ---
|
| 800 |
+
|
| 801 |
+
refined_boxes_list = []
|
| 802 |
+
|
| 803 |
+
last_corrected_right_edge = 0
|
| 804 |
+
|
| 805 |
+
|
| 806 |
+
|
| 807 |
+
for i, box in enumerate(initial_boxes):
|
| 808 |
+
|
| 809 |
+
left = int(box['left'])
|
| 810 |
+
|
| 811 |
+
right = int(box['left'] + box['width'])
|
| 812 |
+
|
| 813 |
+
|
| 814 |
+
|
| 815 |
+
left = max(0, min(left, img_w - 1))
|
| 816 |
+
|
| 817 |
+
right = max(0, min(right, img_w - 1))
|
| 818 |
+
|
| 819 |
+
|
| 820 |
+
|
| 821 |
+
new_left = left
|
| 822 |
+
|
| 823 |
+
new_right = right
|
| 824 |
+
|
| 825 |
+
|
| 826 |
+
|
| 827 |
+
# **Check Right Boundary (Bounded Scan)**
|
| 828 |
+
|
| 829 |
+
if right < img_w and vertical_projection[right] > 0:
|
| 830 |
+
|
| 831 |
+
scan_limit = min(img_w, right + max_scan_distance) # Don't scan past buffer
|
| 832 |
+
|
| 833 |
+
for x in range(right + 1, scan_limit):
|
| 834 |
+
|
| 835 |
+
if vertical_projection[x] == 0:
|
| 836 |
+
|
| 837 |
+
new_right = x # Found clear space *within* buffer
|
| 838 |
+
|
| 839 |
+
break
|
| 840 |
+
|
| 841 |
+
# If loop finishes without break, new_right is unchanged
|
| 842 |
+
# (i.e., we give up and keep the original estimate)
|
| 843 |
+
|
| 844 |
+
# **Check Left Boundary (Bounded Scan)**
|
| 845 |
+
|
| 846 |
+
if left > 0 and vertical_projection[left] > 0:
|
| 847 |
+
|
| 848 |
+
scan_limit = max(0, left - max_scan_distance) # Don't scan past buffer
|
| 849 |
+
|
| 850 |
+
for x in range(left - 1, scan_limit, -1):
|
| 851 |
+
|
| 852 |
+
if vertical_projection[x] == 0:
|
| 853 |
+
|
| 854 |
+
new_left = x # Found clear space *within* buffer
|
| 855 |
+
|
| 856 |
+
break
|
| 857 |
+
|
| 858 |
+
# If loop finishes without break, new_left is unchanged
|
| 859 |
+
|
| 860 |
+
|
| 861 |
+
|
| 862 |
+
# **De-overlapping Logic:** (Unchanged)
|
| 863 |
+
|
| 864 |
+
if new_left < last_corrected_right_edge:
|
| 865 |
+
|
| 866 |
+
new_left = last_corrected_right_edge
|
| 867 |
+
|
| 868 |
+
|
| 869 |
+
|
| 870 |
+
# **Validity Check:** (Unchanged)
|
| 871 |
+
|
| 872 |
+
new_width = new_right - new_left
|
| 873 |
+
|
| 874 |
+
if new_width > 1:
|
| 875 |
+
|
| 876 |
+
box['left'] = new_left
|
| 877 |
+
|
| 878 |
+
box['width'] = new_width
|
| 879 |
+
|
| 880 |
+
refined_boxes_list.append(box)
|
| 881 |
+
|
| 882 |
+
last_corrected_right_edge = new_right
|
| 883 |
+
|
| 884 |
+
elif i > 0:
|
| 885 |
+
|
| 886 |
+
# If the box has collapsed (e.g., fully overlapped),
|
| 887 |
+
|
| 888 |
+
# try to give it a 1px space just to keep it from disappearing.
|
| 889 |
+
|
| 890 |
+
# This is an edge case.
|
| 891 |
+
|
| 892 |
+
new_left = last_corrected_right_edge + 1
|
| 893 |
+
|
| 894 |
+
new_right = new_left + 1
|
| 895 |
+
|
| 896 |
+
if new_right < img_w:
|
| 897 |
+
|
| 898 |
+
box['left'] = new_left
|
| 899 |
+
|
| 900 |
+
box['width'] = 1
|
| 901 |
+
|
| 902 |
+
refined_boxes_list.append(box)
|
| 903 |
+
|
| 904 |
+
last_corrected_right_edge = new_right
|
| 905 |
+
|
| 906 |
+
|
| 907 |
+
|
| 908 |
+
|
| 909 |
+
|
| 910 |
+
# --- 2d. Convert back to Tesseract-style output dict ---
|
| 911 |
+
|
| 912 |
+
final_output = {k: [] for k in estimated_data.keys()}
|
| 913 |
+
|
| 914 |
+
for box in refined_boxes_list:
|
| 915 |
+
|
| 916 |
+
for key in final_output.keys():
|
| 917 |
+
|
| 918 |
+
final_output[key].append(box[key])
|
| 919 |
+
|
| 920 |
+
|
| 921 |
+
|
| 922 |
+
return final_output
|
| 923 |
+
|
| 924 |
+
# --- Example Usage ---
|
| 925 |
+
if __name__ == '__main__':
|
| 926 |
+
# Make sure you have the previous class available to import for the fallback
|
| 927 |
+
#image_path = 'inputs/example_partnership_p6_1.PNG'
|
| 928 |
+
#image_path = 'inputs/example_partnership_p6_2.PNG'
|
| 929 |
+
#image_path = 'inputs/example_partnership_p4_1.PNG'
|
| 930 |
+
image_path = 'inputs/line_image_3.png'
|
| 931 |
+
image_basename = os.path.basename(image_path)
|
| 932 |
+
image_name = os.path.splitext(image_basename)[0]
|
| 933 |
+
output_path = f'outputs/{image_name}_refined_morph.png'
|
| 934 |
+
if not os.path.exists("outputs"):
|
| 935 |
+
os.makedirs("outputs")
|
| 936 |
+
line_image_cv = cv2.imread(image_path)
|
| 937 |
+
h, w, _ = line_image_cv.shape
|
| 938 |
+
|
| 939 |
+
# Read in related text
|
| 940 |
+
with open(f'inputs/{image_name}_text.txt', 'r') as file:
|
| 941 |
+
text = file.read()
|
| 942 |
+
line_data = {
|
| 943 |
+
"text": [text],
|
| 944 |
+
"left": [0], "top": [0], "width": [w], "height": [h], "conf": [95.0]
|
| 945 |
+
}
|
| 946 |
+
segmenter = AdaptiveSegmenter()
|
| 947 |
+
final_word_data, used_fallback = segmenter.segment(line_data, line_image_cv)
|
| 948 |
+
|
| 949 |
+
# Visualisation
|
| 950 |
+
output_image_vis = line_image_cv.copy()
|
| 951 |
+
print(f"\nFinal refined {len(final_word_data['text'])} words:")
|
| 952 |
+
for i in range(len(final_word_data['text'])):
|
| 953 |
+
word = final_word_data['text'][i]
|
| 954 |
+
x, y, w, h = (
|
| 955 |
+
int(final_word_data['left'][i]), int(final_word_data['top'][i]),
|
| 956 |
+
int(final_word_data['width'][i]), int(final_word_data['height'][i])
|
| 957 |
+
)
|
| 958 |
+
print(f"- '{word}' at ({x}, {y}, {w}, {h})")
|
| 959 |
+
cv2.rectangle(output_image_vis, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
| 960 |
+
|
| 961 |
+
cv2.imwrite(output_path, output_image_vis)
|
| 962 |
+
print(f"\nSaved visualisation to '{output_path}'")
|
| 963 |
+
|
| 964 |
+
# You can also use matplotlib to display it in a notebook
|
| 965 |
+
import matplotlib.pyplot as plt
|
| 966 |
+
plt.figure(figsize=(10, 5))
|
| 967 |
+
plt.imshow(cv2.cvtColor(output_image_vis, cv2.COLOR_BGR2RGB))
|
| 968 |
+
|
| 969 |
+
if used_fallback:
|
| 970 |
+
plt.title("Refined with Bounded Scan")
|
| 971 |
+
else:
|
| 972 |
+
plt.title("Refined with Morphological Closing")
|
| 973 |
+
plt.axis('off')
|
| 974 |
+
plt.show()
|