Commit
·
2c00d05
1
Parent(s):
01c8eb6
Improved paddle and hybrid OCR analysis across all options. Tried to revise requirements for spaces
Browse files- README.md +11 -1
- app.py +1 -4
- example_data/partnership_toolkit_redact_custom_deny_list.csv +2 -4
- pre-requirements.txt +1 -1
- pyproject.toml +4 -4
- requirements.txt +4 -6
- src/app_settings.qmd +1 -1
- src/user_guide.qmd +1 -1
- tools/config.py +16 -12
- tools/custom_image_analyser_engine.py +689 -200
- tools/file_redaction.py +213 -60
- tools/run_vlm.py +1 -1
- tools/secure_regex_utils.py +5 -2
- tools/word_segmenter.py +208 -91
README.md
CHANGED
|
@@ -131,6 +131,16 @@ Alternatively, you can use the full `requirements.txt` file, that contains refer
|
|
| 131 |
pip install -r requirements.txt
|
| 132 |
```
|
| 133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
### 3. Run the Application
|
| 135 |
|
| 136 |
With all dependencies installed, you can now start the Gradio application.
|
|
@@ -938,7 +948,7 @@ The hybrid OCR mode uses several configurable parameters:
|
|
| 938 |
- **HYBRID_OCR_CONFIDENCE_THRESHOLD** (default: 65): Tesseract confidence score below which PaddleOCR will be used for re-extraction
|
| 939 |
- **HYBRID_OCR_PADDING** (default: 1): Padding added to word bounding boxes before re-extraction
|
| 940 |
- **SAVE_EXAMPLE_HYBRID_IMAGES** (default: False): Save comparison images when using hybrid mode
|
| 941 |
-
- **
|
| 942 |
|
| 943 |
### When to use different OCR models
|
| 944 |
|
|
|
|
| 131 |
pip install -r requirements.txt
|
| 132 |
```
|
| 133 |
|
| 134 |
+
Note that the versions of both PaddleOCR and Torch installed by default are the CPU-only versions. If you want to install the equivalent GPU versions, you will need to run the following commands:
|
| 135 |
+
```bash
|
| 136 |
+
pip install paddlepaddle-gpu==3.2.1 --index-url https://www.paddlepaddle.org.cn/packages/stable/cu126/
|
| 137 |
+
```
|
| 138 |
+
|
| 139 |
+
```bash
|
| 140 |
+
pip install torch==2.8.0 --index-url https://download.pytorch.org/whl/cu126
|
| 141 |
+
pip install torchvision --index-url https://download.pytorch.org/whl/cu126
|
| 142 |
+
```
|
| 143 |
+
|
| 144 |
### 3. Run the Application
|
| 145 |
|
| 146 |
With all dependencies installed, you can now start the Gradio application.
|
|
|
|
| 948 |
- **HYBRID_OCR_CONFIDENCE_THRESHOLD** (default: 65): Tesseract confidence score below which PaddleOCR will be used for re-extraction
|
| 949 |
- **HYBRID_OCR_PADDING** (default: 1): Padding added to word bounding boxes before re-extraction
|
| 950 |
- **SAVE_EXAMPLE_HYBRID_IMAGES** (default: False): Save comparison images when using hybrid mode
|
| 951 |
+
- **SAVE_PAGE_OCR_VISUALISATIONS** (default: False): Save images with PaddleOCR bounding boxes overlaid
|
| 952 |
|
| 953 |
### When to use different OCR models
|
| 954 |
|
app.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import os
|
| 2 |
-
import spaces
|
| 3 |
from pathlib import Path
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
import pandas as pd
|
|
|
|
| 7 |
from fastapi import FastAPI, status
|
| 8 |
from gradio_image_annotation import image_annotator
|
| 9 |
|
|
@@ -260,9 +260,6 @@ app = FastAPI()
|
|
| 260 |
from fastapi.middleware.cors import CORSMiddleware
|
| 261 |
from fastapi.middleware.trustedhost import TrustedHostMiddleware
|
| 262 |
|
| 263 |
-
|
| 264 |
-
spaces.annotations
|
| 265 |
-
|
| 266 |
###
|
| 267 |
# Load in Gradio app components
|
| 268 |
###
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
from pathlib import Path
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
import pandas as pd
|
| 6 |
+
import spaces
|
| 7 |
from fastapi import FastAPI, status
|
| 8 |
from gradio_image_annotation import image_annotator
|
| 9 |
|
|
|
|
| 260 |
from fastapi.middleware.cors import CORSMiddleware
|
| 261 |
from fastapi.middleware.trustedhost import TrustedHostMiddleware
|
| 262 |
|
|
|
|
|
|
|
|
|
|
| 263 |
###
|
| 264 |
# Load in Gradio app components
|
| 265 |
###
|
example_data/partnership_toolkit_redact_custom_deny_list.csv
CHANGED
|
@@ -1,4 +1,2 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
Sister Cities
|
| 4 |
-
Friendship City
|
|
|
|
| 1 |
+
Friendship City
|
| 2 |
+
United States
|
|
|
|
|
|
pre-requirements.txt
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
# --- PaddleOCR (CUDA 12.6) ---
|
| 2 |
--extra-index-url https://www.paddlepaddle.org.cn/packages/stable/cu126/
|
| 3 |
-
paddlepaddle-gpu
|
| 4 |
paddleocr<=3.3.0
|
|
|
|
| 1 |
# --- PaddleOCR (CUDA 12.6) ---
|
| 2 |
--extra-index-url https://www.paddlepaddle.org.cn/packages/stable/cu126/
|
| 3 |
+
paddlepaddle-gpu<=3.2.1
|
| 4 |
paddleocr<=3.3.0
|
pyproject.toml
CHANGED
|
@@ -55,14 +55,14 @@ test = ["pytest", "pytest-cov"]
|
|
| 55 |
|
| 56 |
# Extra dependencies for PaddleOCR
|
| 57 |
paddle = [
|
| 58 |
-
"paddlepaddle
|
| 59 |
-
"paddleocr
|
| 60 |
]
|
| 61 |
|
| 62 |
# Extra dependencies for VLM models
|
| 63 |
vlm = [
|
| 64 |
-
"torch
|
| 65 |
-
"torchvision
|
| 66 |
"transformers==4.57.1",
|
| 67 |
"accelerate==1.11.0",
|
| 68 |
]
|
|
|
|
| 55 |
|
| 56 |
# Extra dependencies for PaddleOCR
|
| 57 |
paddle = [
|
| 58 |
+
"paddlepaddle<=3.2.1", # If you want the GPU-accelerated version, run manually pip install paddlepaddle-gpu<=3.2.1 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
|
| 59 |
+
"paddleocr<=3.3.0",
|
| 60 |
]
|
| 61 |
|
| 62 |
# Extra dependencies for VLM models
|
| 63 |
vlm = [
|
| 64 |
+
"torch<=2.8.0", # should use --index-url https://download.pytorch.org/whl/cu126 for cuda support for paddleocr, need to install manually
|
| 65 |
+
"torchvision>=0.20.1",
|
| 66 |
"transformers==4.57.1",
|
| 67 |
"accelerate==1.11.0",
|
| 68 |
]
|
requirements.txt
CHANGED
|
@@ -37,16 +37,14 @@ scikit-learn==1.7.2
|
|
| 37 |
spacy==3.8.7
|
| 38 |
spaczz==0.6.1
|
| 39 |
en_core_web_lg @ https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.8.0/en_core_web_lg-3.8.0.tar.gz
|
|
|
|
|
|
|
| 40 |
|
| 41 |
# --- Testing ---
|
| 42 |
pytest>=7.0.0
|
| 43 |
pytest-cov>=4.0.0
|
| 44 |
|
| 45 |
-
transformers==4.57.1
|
| 46 |
-
accelerate==1.11.0
|
| 47 |
-
|
| 48 |
# --- PyTorch (CUDA 12.6) ---
|
| 49 |
-
nvidia-nccl-cu12==2.21.5
|
| 50 |
--extra-index-url https://download.pytorch.org/whl/cu126
|
| 51 |
-
torch
|
| 52 |
-
torchvision>=0.20.1
|
|
|
|
| 37 |
spacy==3.8.7
|
| 38 |
spaczz==0.6.1
|
| 39 |
en_core_web_lg @ https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.8.0/en_core_web_lg-3.8.0.tar.gz
|
| 40 |
+
transformers==4.57.1
|
| 41 |
+
accelerate==1.11.0
|
| 42 |
|
| 43 |
# --- Testing ---
|
| 44 |
pytest>=7.0.0
|
| 45 |
pytest-cov>=4.0.0
|
| 46 |
|
|
|
|
|
|
|
|
|
|
| 47 |
# --- PyTorch (CUDA 12.6) ---
|
|
|
|
| 48 |
--extra-index-url https://download.pytorch.org/whl/cu126
|
| 49 |
+
torch<=2.8.0
|
| 50 |
+
torchvision>=0.20.1
|
src/app_settings.qmd
CHANGED
|
@@ -327,7 +327,7 @@ Configurations related to text extraction, PII detection, and the redaction proc
|
|
| 327 |
* **Description:** Saves comparison images when using "hybrid-paddle" OCR mode.
|
| 328 |
* **Default Value:** `"False"`
|
| 329 |
|
| 330 |
-
* **`
|
| 331 |
* **Description:** Saves images with PaddleOCR's detected bounding boxes overlaid.
|
| 332 |
* **Default Value:** `"False"`
|
| 333 |
|
|
|
|
| 327 |
* **Description:** Saves comparison images when using "hybrid-paddle" OCR mode.
|
| 328 |
* **Default Value:** `"False"`
|
| 329 |
|
| 330 |
+
* **`SAVE_PAGE_OCR_VISUALISATIONS`**
|
| 331 |
* **Description:** Saves images with PaddleOCR's detected bounding boxes overlaid.
|
| 332 |
* **Default Value:** `"False"`
|
| 333 |
|
src/user_guide.qmd
CHANGED
|
@@ -722,7 +722,7 @@ The hybrid OCR mode uses several configurable parameters:
|
|
| 722 |
- **HYBRID_OCR_CONFIDENCE_THRESHOLD** (default: 65): Tesseract confidence score below which PaddleOCR will be used for re-extraction
|
| 723 |
- **HYBRID_OCR_PADDING** (default: 1): Padding added to word bounding boxes before re-extraction
|
| 724 |
- **SAVE_EXAMPLE_HYBRID_IMAGES** (default: False): Save comparison images when using hybrid mode
|
| 725 |
-
- **
|
| 726 |
|
| 727 |
### When to use different OCR models
|
| 728 |
|
|
|
|
| 722 |
- **HYBRID_OCR_CONFIDENCE_THRESHOLD** (default: 65): Tesseract confidence score below which PaddleOCR will be used for re-extraction
|
| 723 |
- **HYBRID_OCR_PADDING** (default: 1): Padding added to word bounding boxes before re-extraction
|
| 724 |
- **SAVE_EXAMPLE_HYBRID_IMAGES** (default: False): Save comparison images when using hybrid mode
|
| 725 |
+
- **SAVE_PAGE_OCR_VISUALISATIONS** (default: False): Save images with PaddleOCR bounding boxes overlaid
|
| 726 |
|
| 727 |
### When to use different OCR models
|
| 728 |
|
tools/config.py
CHANGED
|
@@ -473,6 +473,14 @@ MAX_INPUT_TOKEN_LENGTH = int(
|
|
| 473 |
get_or_create_env_var("MAX_INPUT_TOKEN_LENGTH", "4096")
|
| 474 |
) # Maximum number of tokens to input to the VLM
|
| 475 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 476 |
USE_FLASH_ATTENTION = convert_string_to_boolean(
|
| 477 |
get_or_create_env_var("USE_FLASH_ATTENTION", "False")
|
| 478 |
) # Whether to use flash attention for the VLM
|
|
@@ -506,7 +514,7 @@ MODEL_CACHE_PATH = get_or_create_env_var("MODEL_CACHE_PATH", "./model_cache")
|
|
| 506 |
|
| 507 |
|
| 508 |
HYBRID_OCR_CONFIDENCE_THRESHOLD = int(
|
| 509 |
-
get_or_create_env_var("HYBRID_OCR_CONFIDENCE_THRESHOLD", "
|
| 510 |
) # The tesseract confidence threshold under which the text will be passed to PaddleOCR for re-extraction using the hybrid OCR method.
|
| 511 |
HYBRID_OCR_PADDING = int(
|
| 512 |
get_or_create_env_var("HYBRID_OCR_PADDING", "1")
|
|
@@ -536,17 +544,9 @@ SAVE_EXAMPLE_HYBRID_IMAGES = convert_string_to_boolean(
|
|
| 536 |
get_or_create_env_var("SAVE_EXAMPLE_HYBRID_IMAGES", "False")
|
| 537 |
) # Whether to save example images of Tesseract vs PaddleOCR re-extraction in hybrid OCR mode.
|
| 538 |
|
| 539 |
-
|
| 540 |
-
get_or_create_env_var("
|
| 541 |
-
) # Whether to save visualisations of PaddleOCR bounding boxes.
|
| 542 |
-
|
| 543 |
-
SAVE_TESSERACT_VISUALISATIONS = convert_string_to_boolean(
|
| 544 |
-
get_or_create_env_var("SAVE_TESSERACT_VISUALISATIONS", "False")
|
| 545 |
-
) # Whether to save visualisations of Tesseract bounding boxes.
|
| 546 |
-
|
| 547 |
-
SAVE_TEXTRACT_VISUALISATIONS = convert_string_to_boolean(
|
| 548 |
-
get_or_create_env_var("SAVE_TEXTRACT_VISUALISATIONS", "False")
|
| 549 |
-
) # Whether to save visualisations of AWS Textract bounding boxes.
|
| 550 |
|
| 551 |
# Model storage paths for Lambda compatibility
|
| 552 |
PADDLE_MODEL_PATH = get_or_create_env_var(
|
|
@@ -565,6 +565,10 @@ SAVE_PREPROCESS_IMAGES = convert_string_to_boolean(
|
|
| 565 |
get_or_create_env_var("SAVE_PREPROCESS_IMAGES", "False")
|
| 566 |
) # Whether to save the pre-processed images.
|
| 567 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 568 |
# Entities for redaction
|
| 569 |
CHOSEN_COMPREHEND_ENTITIES = get_or_create_env_var(
|
| 570 |
"CHOSEN_COMPREHEND_ENTITIES",
|
|
|
|
| 473 |
get_or_create_env_var("MAX_INPUT_TOKEN_LENGTH", "4096")
|
| 474 |
) # Maximum number of tokens to input to the VLM
|
| 475 |
|
| 476 |
+
VLM_MAX_IMAGE_SIZE = int(
|
| 477 |
+
get_or_create_env_var("VLM_MAX_IMAGE_SIZE", "1000000")
|
| 478 |
+
) # Maximum total pixels (width * height) for images passed to VLM. Images with more pixels will be resized while maintaining aspect ratio. Default is 1000000 (1000x1000).
|
| 479 |
+
|
| 480 |
+
VLM_MAX_DPI = float(
|
| 481 |
+
get_or_create_env_var("VLM_MAX_DPI", "300.0")
|
| 482 |
+
) # Maximum DPI for images passed to VLM. Images with higher DPI will be resized accordingly.
|
| 483 |
+
|
| 484 |
USE_FLASH_ATTENTION = convert_string_to_boolean(
|
| 485 |
get_or_create_env_var("USE_FLASH_ATTENTION", "False")
|
| 486 |
) # Whether to use flash attention for the VLM
|
|
|
|
| 514 |
|
| 515 |
|
| 516 |
HYBRID_OCR_CONFIDENCE_THRESHOLD = int(
|
| 517 |
+
get_or_create_env_var("HYBRID_OCR_CONFIDENCE_THRESHOLD", "80")
|
| 518 |
) # The tesseract confidence threshold under which the text will be passed to PaddleOCR for re-extraction using the hybrid OCR method.
|
| 519 |
HYBRID_OCR_PADDING = int(
|
| 520 |
get_or_create_env_var("HYBRID_OCR_PADDING", "1")
|
|
|
|
| 544 |
get_or_create_env_var("SAVE_EXAMPLE_HYBRID_IMAGES", "False")
|
| 545 |
) # Whether to save example images of Tesseract vs PaddleOCR re-extraction in hybrid OCR mode.
|
| 546 |
|
| 547 |
+
SAVE_PAGE_OCR_VISUALISATIONS = convert_string_to_boolean(
|
| 548 |
+
get_or_create_env_var("SAVE_PAGE_OCR_VISUALISATIONS", "False")
|
| 549 |
+
) # Whether to save visualisations of Tesseract, PaddleOCR, and Textract bounding boxes.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 550 |
|
| 551 |
# Model storage paths for Lambda compatibility
|
| 552 |
PADDLE_MODEL_PATH = get_or_create_env_var(
|
|
|
|
| 565 |
get_or_create_env_var("SAVE_PREPROCESS_IMAGES", "False")
|
| 566 |
) # Whether to save the pre-processed images.
|
| 567 |
|
| 568 |
+
SAVE_VLM_INPUT_IMAGES = convert_string_to_boolean(
|
| 569 |
+
get_or_create_env_var("SAVE_VLM_INPUT_IMAGES", "False")
|
| 570 |
+
) # Whether to save input images sent to VLM OCR for debugging.
|
| 571 |
+
|
| 572 |
# Entities for redaction
|
| 573 |
CHOSEN_COMPREHEND_ENTITIES = get_or_create_env_var(
|
| 574 |
"CHOSEN_COMPREHEND_ENTITIES",
|
tools/custom_image_analyser_engine.py
CHANGED
|
@@ -29,15 +29,18 @@ from tools.config import (
|
|
| 29 |
PADDLE_USE_TEXTLINE_ORIENTATION,
|
| 30 |
PREPROCESS_LOCAL_OCR_IMAGES,
|
| 31 |
SAVE_EXAMPLE_HYBRID_IMAGES,
|
| 32 |
-
|
| 33 |
SAVE_PREPROCESS_IMAGES,
|
|
|
|
| 34 |
SELECTED_MODEL,
|
| 35 |
TESSERACT_SEGMENTATION_LEVEL,
|
|
|
|
|
|
|
| 36 |
)
|
| 37 |
from tools.helper_functions import clean_unicode_text
|
| 38 |
from tools.load_spacy_model_custom_recognisers import custom_entities
|
| 39 |
from tools.presidio_analyzer_custom import recognizer_result_from_dict
|
| 40 |
-
from tools.run_vlm import
|
| 41 |
from tools.secure_path_utils import validate_folder_containment
|
| 42 |
from tools.secure_regex_utils import safe_sanitize_text
|
| 43 |
from tools.word_segmenter import AdaptiveSegmenter
|
|
@@ -554,6 +557,84 @@ def _get_tesseract_psm(segmentation_level: str) -> int:
|
|
| 554 |
return 11
|
| 555 |
|
| 556 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 557 |
def _vlm_ocr_predict(
|
| 558 |
image: Image.Image,
|
| 559 |
prompt: str = "Extract the text content from this image.",
|
|
@@ -569,10 +650,47 @@ def _vlm_ocr_predict(
|
|
| 569 |
Dictionary in PaddleOCR format with 'rec_texts' and 'rec_scores'
|
| 570 |
"""
|
| 571 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 572 |
# Use the VLM to extract text
|
| 573 |
# Pass None for parameters to prioritize model-specific defaults from run_vlm.py
|
| 574 |
# If model defaults are not available, general defaults will be used (matching current values)
|
| 575 |
-
|
|
|
|
| 576 |
text=prompt,
|
| 577 |
image=image,
|
| 578 |
max_new_tokens=None, # Use model default if available, otherwise MAX_NEW_TOKENS from config
|
|
@@ -582,15 +700,32 @@ def _vlm_ocr_predict(
|
|
| 582 |
repetition_penalty=None, # Use model default if available, otherwise 1.3
|
| 583 |
)
|
| 584 |
|
| 585 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 586 |
# Clean the text
|
| 587 |
-
|
|
|
|
|
|
|
| 588 |
|
| 589 |
# Split into words for compatibility with PaddleOCR format
|
| 590 |
words = cleaned_text.split()
|
| 591 |
|
| 592 |
-
# If text has more than
|
| 593 |
-
if len(words) >
|
|
|
|
|
|
|
|
|
|
| 594 |
return {"rec_texts": [], "rec_scores": []}
|
| 595 |
|
| 596 |
# Create PaddleOCR-compatible result
|
|
@@ -601,10 +736,12 @@ def _vlm_ocr_predict(
|
|
| 601 |
|
| 602 |
return result
|
| 603 |
else:
|
|
|
|
| 604 |
return {"rec_texts": [], "rec_scores": []}
|
| 605 |
|
| 606 |
-
except Exception
|
| 607 |
-
print(f"VLM OCR error: {e}")
|
|
|
|
| 608 |
return {"rec_texts": [], "rec_scores": []}
|
| 609 |
|
| 610 |
|
|
@@ -814,6 +951,8 @@ class CustomImageAnalyzerEngine:
|
|
| 814 |
paddle_results: List[Any],
|
| 815 |
input_image_width: int = None,
|
| 816 |
input_image_height: int = None,
|
|
|
|
|
|
|
| 817 |
) -> Dict[str, List]:
|
| 818 |
"""Converts PaddleOCR result format to Tesseract's dictionary format using relative coordinates.
|
| 819 |
|
|
@@ -825,6 +964,8 @@ class CustomImageAnalyzerEngine:
|
|
| 825 |
paddle_results: List of PaddleOCR result dictionaries
|
| 826 |
input_image_width: Width of the input image passed to PaddleOCR (target dimensions for scaling)
|
| 827 |
input_image_height: Height of the input image passed to PaddleOCR (target dimensions for scaling)
|
|
|
|
|
|
|
| 828 |
"""
|
| 829 |
|
| 830 |
output = {
|
|
@@ -834,6 +975,7 @@ class CustomImageAnalyzerEngine:
|
|
| 834 |
"width": list(),
|
| 835 |
"height": list(),
|
| 836 |
"conf": list(),
|
|
|
|
| 837 |
}
|
| 838 |
|
| 839 |
# paddle_results is now a list of dictionaries with detailed information
|
|
@@ -848,19 +990,24 @@ class CustomImageAnalyzerEngine:
|
|
| 848 |
# Fallback: we'll try to detect from coordinates, but this is less reliable
|
| 849 |
use_relative_coords = False
|
| 850 |
else:
|
| 851 |
-
use_relative_coords =
|
| 852 |
|
| 853 |
for page_result in paddle_results:
|
| 854 |
# Extract text recognition results from the new format
|
| 855 |
rec_texts = page_result.get("rec_texts", list())
|
| 856 |
rec_scores = page_result.get("rec_scores", list())
|
| 857 |
rec_polys = page_result.get("rec_polys", list())
|
|
|
|
| 858 |
|
| 859 |
# PaddleOCR may return image dimensions in the result - check for them
|
| 860 |
# Some versions of PaddleOCR include this information
|
| 861 |
result_image_width = page_result.get("image_width")
|
| 862 |
result_image_height = page_result.get("image_height")
|
| 863 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 864 |
# First pass: determine PaddleOCR's coordinate space by finding max coordinates
|
| 865 |
# This tells us what coordinate space PaddleOCR is actually using
|
| 866 |
max_x_coord = 0
|
|
@@ -879,22 +1026,45 @@ class CustomImageAnalyzerEngine:
|
|
| 879 |
max_y_coord = max(max_y_coord, max(y_coords) if y_coords else 0)
|
| 880 |
|
| 881 |
# Determine PaddleOCR's coordinate space dimensions
|
| 882 |
-
# Priority: result metadata >
|
| 883 |
-
|
| 884 |
-
|
| 885 |
-
|
| 886 |
-
|
| 887 |
-
|
| 888 |
-
|
| 889 |
-
|
| 890 |
-
if
|
| 891 |
-
|
| 892 |
-
|
| 893 |
-
|
| 894 |
-
|
| 895 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 896 |
paddle_coord_width = input_image_width
|
| 897 |
paddle_coord_height = input_image_height
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 898 |
use_relative_coords = False
|
| 899 |
|
| 900 |
if paddle_coord_width <= 0 or paddle_coord_height <= 0:
|
|
@@ -905,9 +1075,43 @@ class CustomImageAnalyzerEngine:
|
|
| 905 |
paddle_coord_height = input_image_height or 1
|
| 906 |
use_relative_coords = False
|
| 907 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 908 |
# Second pass: convert coordinates using relative coordinate approach
|
| 909 |
-
|
| 910 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 911 |
):
|
| 912 |
# bounding_box is now a numpy array with shape (4, 2)
|
| 913 |
# Convert to list of coordinates if it's a numpy array
|
|
@@ -974,6 +1178,7 @@ class CustomImageAnalyzerEngine:
|
|
| 974 |
output["width"].append(round(line_width, 2))
|
| 975 |
output["height"].append(round(line_height, 2))
|
| 976 |
output["conf"].append(int(line_confidence * 100))
|
|
|
|
| 977 |
|
| 978 |
return output
|
| 979 |
|
|
@@ -1005,6 +1210,7 @@ class CustomImageAnalyzerEngine:
|
|
| 1005 |
"width": list(),
|
| 1006 |
"height": list(),
|
| 1007 |
"conf": list(),
|
|
|
|
| 1008 |
}
|
| 1009 |
|
| 1010 |
if not line_data or not line_data.get("text"):
|
|
@@ -1043,6 +1249,11 @@ class CustomImageAnalyzerEngine:
|
|
| 1043 |
for i in range(len(line_data["text"])):
|
| 1044 |
line_text = line_data["text"][i]
|
| 1045 |
line_conf = line_data["conf"][i]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1046 |
|
| 1047 |
# Get the float values
|
| 1048 |
f_left = float(line_data["left"][i])
|
|
@@ -1171,6 +1382,7 @@ class CustomImageAnalyzerEngine:
|
|
| 1171 |
output["width"].append(clamped_width)
|
| 1172 |
output["height"].append(line_height)
|
| 1173 |
output["conf"].append(line_conf)
|
|
|
|
| 1174 |
current_left += word_width + estimated_space_width
|
| 1175 |
continue
|
| 1176 |
|
|
@@ -1182,6 +1394,8 @@ class CustomImageAnalyzerEngine:
|
|
| 1182 |
output["width"].append(word_output["width"][j])
|
| 1183 |
output["height"].append(word_output["height"][j])
|
| 1184 |
output["conf"].append(word_output["conf"][j])
|
|
|
|
|
|
|
| 1185 |
|
| 1186 |
return output
|
| 1187 |
|
|
@@ -1563,19 +1777,21 @@ class CustomImageAnalyzerEngine:
|
|
| 1563 |
self,
|
| 1564 |
image: Image.Image,
|
| 1565 |
ocr: Optional[Any] = None,
|
|
|
|
| 1566 |
confidence_threshold: int = HYBRID_OCR_CONFIDENCE_THRESHOLD,
|
| 1567 |
padding: int = HYBRID_OCR_PADDING,
|
| 1568 |
image_name: str = "unknown_image_name",
|
| 1569 |
input_image_width: int = None,
|
| 1570 |
input_image_height: int = None,
|
| 1571 |
-
) ->
|
| 1572 |
"""
|
| 1573 |
Performs OCR using PaddleOCR at line level, then VLM for low-confidence lines.
|
| 1574 |
-
Returns
|
| 1575 |
|
| 1576 |
Args:
|
| 1577 |
image: PIL Image to process
|
| 1578 |
ocr: PaddleOCR instance (optional, uses self.paddle_ocr if not provided)
|
|
|
|
| 1579 |
confidence_threshold: Confidence threshold below which VLM is used
|
| 1580 |
padding: Padding to add around line crops
|
| 1581 |
image_name: Name of the image for logging/debugging
|
|
@@ -1583,7 +1799,7 @@ class CustomImageAnalyzerEngine:
|
|
| 1583 |
input_image_height: Original image height (before preprocessing)
|
| 1584 |
|
| 1585 |
Returns:
|
| 1586 |
-
|
| 1587 |
"""
|
| 1588 |
if ocr is None:
|
| 1589 |
if hasattr(self, "paddle_ocr") and self.paddle_ocr is not None:
|
|
@@ -1593,6 +1809,9 @@ class CustomImageAnalyzerEngine:
|
|
| 1593 |
"No OCR object provided and 'paddle_ocr' is not initialized."
|
| 1594 |
)
|
| 1595 |
|
|
|
|
|
|
|
|
|
|
| 1596 |
print("Starting hybrid PaddleOCR + VLM OCR process...")
|
| 1597 |
|
| 1598 |
# Get image dimensions
|
|
@@ -1604,154 +1823,312 @@ class CustomImageAnalyzerEngine:
|
|
| 1604 |
if input_image_height is None:
|
| 1605 |
input_image_height = img_height
|
| 1606 |
|
| 1607 |
-
#
|
| 1608 |
-
|
| 1609 |
-
if len(image_np.shape) == 2:
|
| 1610 |
-
image_np = np.stack([image_np] * 3, axis=-1)
|
| 1611 |
|
| 1612 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1613 |
|
| 1614 |
-
|
| 1615 |
-
|
| 1616 |
-
|
| 1617 |
-
|
| 1618 |
-
|
| 1619 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1620 |
|
| 1621 |
-
|
| 1622 |
-
|
| 1623 |
-
"
|
| 1624 |
-
|
| 1625 |
-
|
| 1626 |
-
|
| 1627 |
-
|
| 1628 |
-
|
| 1629 |
-
|
| 1630 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1631 |
|
| 1632 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1633 |
|
| 1634 |
-
|
| 1635 |
-
|
| 1636 |
-
|
| 1637 |
-
line_conf = int(paddle_line_data["conf"][i])
|
| 1638 |
-
line_left = float(paddle_line_data["left"][i])
|
| 1639 |
-
line_top = float(paddle_line_data["top"][i])
|
| 1640 |
-
line_width = float(paddle_line_data["width"][i])
|
| 1641 |
-
line_height = float(paddle_line_data["height"][i])
|
| 1642 |
-
|
| 1643 |
-
# Skip empty lines
|
| 1644 |
-
if not line_text.strip():
|
| 1645 |
-
continue
|
| 1646 |
|
| 1647 |
-
|
| 1648 |
-
|
|
|
|
| 1649 |
|
| 1650 |
-
#
|
| 1651 |
-
|
| 1652 |
-
paddle_word_count = len(paddle_words)
|
| 1653 |
|
| 1654 |
-
|
| 1655 |
-
|
| 1656 |
-
|
| 1657 |
-
|
| 1658 |
-
crop_top = max(0, int(line_top - padding))
|
| 1659 |
-
crop_right = min(img_width, int(line_left + line_width + padding))
|
| 1660 |
-
crop_bottom = min(img_height, int(line_top + line_height + padding))
|
| 1661 |
|
| 1662 |
-
#
|
| 1663 |
-
if
|
| 1664 |
-
# Invalid crop, keep original PaddleOCR result
|
| 1665 |
-
final_data["text"].append(clean_unicode_text(line_text))
|
| 1666 |
-
final_data["left"].append(line_left)
|
| 1667 |
-
final_data["top"].append(line_top)
|
| 1668 |
-
final_data["width"].append(line_width)
|
| 1669 |
-
final_data["height"].append(line_height)
|
| 1670 |
-
final_data["conf"].append(line_conf)
|
| 1671 |
-
final_data["model"].append(model_used)
|
| 1672 |
continue
|
| 1673 |
|
| 1674 |
-
#
|
| 1675 |
-
|
| 1676 |
-
|
| 1677 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1678 |
|
| 1679 |
-
#
|
| 1680 |
-
|
| 1681 |
-
|
| 1682 |
-
|
|
|
|
|
|
|
| 1683 |
|
| 1684 |
-
|
| 1685 |
-
|
| 1686 |
-
|
| 1687 |
-
|
| 1688 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1689 |
|
| 1690 |
-
|
| 1691 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1692 |
print(
|
| 1693 |
-
f"
|
| 1694 |
-
f"
|
| 1695 |
)
|
| 1696 |
|
| 1697 |
-
|
| 1698 |
-
|
| 1699 |
-
|
| 1700 |
-
|
|
|
|
| 1701 |
|
| 1702 |
-
|
| 1703 |
-
|
| 1704 |
-
|
| 1705 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1706 |
)
|
| 1707 |
-
if (
|
| 1708 |
-
".." in normalized_image_name
|
| 1709 |
-
or "/" in normalized_image_name
|
| 1710 |
-
or "\\" in normalized_image_name
|
| 1711 |
-
):
|
| 1712 |
-
normalized_image_name = "safe_image"
|
| 1713 |
|
| 1714 |
-
|
| 1715 |
-
|
| 1716 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1717 |
)
|
| 1718 |
-
# Validate the constructed path is safe
|
| 1719 |
-
if not validate_folder_containment(
|
| 1720 |
-
hybrid_ocr_examples_folder, OUTPUT_FOLDER
|
| 1721 |
-
):
|
| 1722 |
-
raise ValueError(
|
| 1723 |
-
f"Unsafe hybrid_ocr_examples folder path: {hybrid_ocr_examples_folder}"
|
| 1724 |
-
)
|
| 1725 |
|
| 1726 |
-
|
| 1727 |
-
|
| 1728 |
-
|
| 1729 |
-
|
|
|
|
|
|
|
|
|
|
| 1730 |
)
|
| 1731 |
-
print(f"Saving example image to {output_image_path}")
|
| 1732 |
-
cropped_image.save(output_image_path)
|
| 1733 |
|
| 1734 |
-
|
| 1735 |
-
|
| 1736 |
-
|
| 1737 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1738 |
else:
|
| 1739 |
-
|
| 1740 |
-
|
| 1741 |
-
|
| 1742 |
-
|
| 1743 |
-
|
|
|
|
| 1744 |
|
| 1745 |
-
|
| 1746 |
-
|
| 1747 |
-
|
| 1748 |
-
|
| 1749 |
-
|
| 1750 |
-
|
| 1751 |
-
|
| 1752 |
-
|
| 1753 |
|
| 1754 |
-
return
|
| 1755 |
|
| 1756 |
def perform_ocr(
|
| 1757 |
self, image: Union[str, Image.Image, np.ndarray], ocr: Optional[Any] = None
|
|
@@ -1772,11 +2149,16 @@ class CustomImageAnalyzerEngine:
|
|
| 1772 |
# Store original dimensions BEFORE preprocessing (needed for coordinate conversion)
|
| 1773 |
original_image_width = None
|
| 1774 |
original_image_height = None
|
|
|
|
|
|
|
|
|
|
| 1775 |
|
| 1776 |
if PREPROCESS_LOCAL_OCR_IMAGES:
|
| 1777 |
print("Pre-processing image...")
|
| 1778 |
# Get original dimensions before preprocessing
|
| 1779 |
original_image_width, original_image_height = image.size
|
|
|
|
|
|
|
| 1780 |
image, preprocessing_metadata = self.image_preprocessor.preprocess_image(
|
| 1781 |
image
|
| 1782 |
)
|
|
@@ -1794,9 +2176,15 @@ class CustomImageAnalyzerEngine:
|
|
| 1794 |
else:
|
| 1795 |
preprocessing_metadata = dict()
|
| 1796 |
original_image_width, original_image_height = image.size
|
|
|
|
|
|
|
| 1797 |
|
| 1798 |
image_width, image_height = image.size
|
| 1799 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1800 |
# Note: In testing I haven't seen that this necessarily improves results
|
| 1801 |
if self.ocr_engine == "hybrid-paddle":
|
| 1802 |
# Try hybrid with original image for cropping:
|
|
@@ -1806,23 +2194,6 @@ class CustomImageAnalyzerEngine:
|
|
| 1806 |
# Try hybrid VLM with original image for cropping:
|
| 1807 |
ocr_data = self._perform_hybrid_ocr(image, image_name=image_name)
|
| 1808 |
|
| 1809 |
-
elif self.ocr_engine == "hybrid-paddle-vlm":
|
| 1810 |
-
# Hybrid PaddleOCR + VLM: use PaddleOCR at line level, then VLM for low-confidence lines
|
| 1811 |
-
if ocr is None:
|
| 1812 |
-
if hasattr(self, "paddle_ocr") and self.paddle_ocr is not None:
|
| 1813 |
-
ocr = self.paddle_ocr
|
| 1814 |
-
else:
|
| 1815 |
-
raise ValueError(
|
| 1816 |
-
"No OCR object provided and 'paddle_ocr' is not initialized."
|
| 1817 |
-
)
|
| 1818 |
-
ocr_data = self._perform_hybrid_paddle_vlm_ocr(
|
| 1819 |
-
image,
|
| 1820 |
-
ocr=ocr,
|
| 1821 |
-
image_name=image_name,
|
| 1822 |
-
input_image_width=original_image_width,
|
| 1823 |
-
input_image_height=original_image_height,
|
| 1824 |
-
)
|
| 1825 |
-
|
| 1826 |
elif self.ocr_engine == "tesseract":
|
| 1827 |
|
| 1828 |
ocr_data = pytesseract.image_to_data(
|
|
@@ -1832,7 +2203,7 @@ class CustomImageAnalyzerEngine:
|
|
| 1832 |
lang=self.tesseract_lang, # Ensure the Tesseract language data (e.g., fra.traineddata) is installed on your system.
|
| 1833 |
)
|
| 1834 |
|
| 1835 |
-
elif self.ocr_engine == "paddle":
|
| 1836 |
|
| 1837 |
if ocr is None:
|
| 1838 |
if hasattr(self, "paddle_ocr") and self.paddle_ocr is not None:
|
|
@@ -1863,6 +2234,8 @@ class CustomImageAnalyzerEngine:
|
|
| 1863 |
paddle_input_height = image_np.shape[0]
|
| 1864 |
|
| 1865 |
paddle_results = ocr.predict(image_np)
|
|
|
|
|
|
|
| 1866 |
else:
|
| 1867 |
# When using image path, load image to get dimensions
|
| 1868 |
temp_image = Image.open(image_path)
|
|
@@ -1870,9 +2243,13 @@ class CustomImageAnalyzerEngine:
|
|
| 1870 |
# For file path, use the original dimensions (before preprocessing)
|
| 1871 |
# original_image_width and original_image_height are already set above
|
| 1872 |
paddle_results = ocr.predict(image_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1873 |
|
| 1874 |
# Save PaddleOCR visualization with bounding boxes
|
| 1875 |
-
if paddle_results and
|
| 1876 |
|
| 1877 |
for res in paddle_results:
|
| 1878 |
# self.output_folder is already validated and normalized at construction time
|
|
@@ -1890,24 +2267,137 @@ class CustomImageAnalyzerEngine:
|
|
| 1890 |
os.makedirs(paddle_viz_folder, exist_ok=True)
|
| 1891 |
res.save_to_img(paddle_viz_folder)
|
| 1892 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1893 |
ocr_data = self._convert_paddle_to_tesseract_format(
|
| 1894 |
paddle_results,
|
| 1895 |
input_image_width=original_image_width,
|
| 1896 |
input_image_height=original_image_height,
|
| 1897 |
)
|
| 1898 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1899 |
else:
|
| 1900 |
raise RuntimeError(f"Unsupported OCR engine: {self.ocr_engine}")
|
| 1901 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1902 |
# Convert line-level results to word-level if configured and needed
|
| 1903 |
if CONVERT_LINE_TO_WORD_LEVEL and self._is_line_level_data(ocr_data):
|
| 1904 |
print("Converting line-level OCR results to word-level...")
|
| 1905 |
-
# Check if coordinates need to be scaled to match the
|
| 1906 |
-
# For PaddleOCR: _convert_paddle_to_tesseract_format converts coordinates to original image space
|
| 1907 |
-
#
|
|
|
|
| 1908 |
# For Tesseract: OCR runs on preprocessed image, so coordinates are already in preprocessed space,
|
| 1909 |
# matching the preprocessed image we're cropping from - no scaling needed
|
|
|
|
| 1910 |
needs_scaling = False
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1911 |
if (
|
| 1912 |
PREPROCESS_LOCAL_OCR_IMAGES
|
| 1913 |
and original_image_width
|
|
@@ -1919,7 +2409,19 @@ class CustomImageAnalyzerEngine:
|
|
| 1919 |
):
|
| 1920 |
# PaddleOCR coordinates are converted to original space by _convert_paddle_to_tesseract_format
|
| 1921 |
# hybrid-paddle-vlm also uses PaddleOCR and converts to original space
|
| 1922 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1923 |
|
| 1924 |
if needs_scaling:
|
| 1925 |
# Calculate scale factors from original to preprocessed
|
|
@@ -1937,12 +2439,13 @@ class CustomImageAnalyzerEngine:
|
|
| 1937 |
"width": [w * scale_x for w in ocr_data["width"]],
|
| 1938 |
"height": [h * scale_y for h in ocr_data["height"]],
|
| 1939 |
"conf": ocr_data["conf"],
|
|
|
|
| 1940 |
}
|
| 1941 |
ocr_data = self._convert_line_to_word_level(
|
| 1942 |
scaled_ocr_data,
|
| 1943 |
-
|
| 1944 |
-
|
| 1945 |
-
|
| 1946 |
image_name=image_name,
|
| 1947 |
)
|
| 1948 |
# Scale word-level results back to original image space
|
|
@@ -1954,27 +2457,15 @@ class CustomImageAnalyzerEngine:
|
|
| 1954 |
ocr_data["width"][i] = ocr_data["width"][i] * scale_factor_x
|
| 1955 |
ocr_data["height"][i] = ocr_data["height"][i] * scale_factor_y
|
| 1956 |
else:
|
|
|
|
| 1957 |
ocr_data = self._convert_line_to_word_level(
|
| 1958 |
-
ocr_data,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1959 |
)
|
| 1960 |
|
| 1961 |
-
# Always check for scale_factor, even if preprocessing_metadata is empty
|
| 1962 |
-
# This ensures rescaling happens correctly when preprocessing was applied
|
| 1963 |
-
scale_factor = (
|
| 1964 |
-
preprocessing_metadata.get("scale_factor", 1.0)
|
| 1965 |
-
if preprocessing_metadata
|
| 1966 |
-
else 1.0
|
| 1967 |
-
)
|
| 1968 |
-
if scale_factor != 1.0:
|
| 1969 |
-
# Skip rescaling for PaddleOCR since _convert_paddle_to_tesseract_format
|
| 1970 |
-
# already scales coordinates directly to original image dimensions
|
| 1971 |
-
# hybrid-paddle-vlm also uses PaddleOCR and converts to original space
|
| 1972 |
-
if self.ocr_engine == "paddle" or self.ocr_engine == "hybrid-paddle-vlm":
|
| 1973 |
-
pass
|
| 1974 |
-
# print(f"Skipping rescale_ocr_data for PaddleOCR (already scaled to original dimensions)")
|
| 1975 |
-
else:
|
| 1976 |
-
ocr_data = rescale_ocr_data(ocr_data, scale_factor)
|
| 1977 |
-
|
| 1978 |
# The rest of your processing pipeline now works for both engines
|
| 1979 |
ocr_result = ocr_data
|
| 1980 |
|
|
@@ -1986,9 +2477,7 @@ class CustomImageAnalyzerEngine:
|
|
| 1986 |
]
|
| 1987 |
|
| 1988 |
# Determine default model based on OCR engine if model field is not present
|
| 1989 |
-
if "model" in ocr_result
|
| 1990 |
-
ocr_result["text"]
|
| 1991 |
-
):
|
| 1992 |
# Model field exists and has correct length - use it
|
| 1993 |
def get_model(idx):
|
| 1994 |
return ocr_result["model"][idx]
|
|
@@ -2002,13 +2491,13 @@ class CustomImageAnalyzerEngine:
|
|
| 2002 |
"Paddle"
|
| 2003 |
if self.ocr_engine == "paddle"
|
| 2004 |
else (
|
| 2005 |
-
"
|
| 2006 |
if self.ocr_engine == "hybrid-paddle"
|
| 2007 |
else (
|
| 2008 |
-
"
|
| 2009 |
if self.ocr_engine == "hybrid-vlm"
|
| 2010 |
else (
|
| 2011 |
-
"
|
| 2012 |
if self.ocr_engine == "hybrid-paddle-vlm"
|
| 2013 |
else None
|
| 2014 |
)
|
|
|
|
| 29 |
PADDLE_USE_TEXTLINE_ORIENTATION,
|
| 30 |
PREPROCESS_LOCAL_OCR_IMAGES,
|
| 31 |
SAVE_EXAMPLE_HYBRID_IMAGES,
|
| 32 |
+
SAVE_PAGE_OCR_VISUALISATIONS,
|
| 33 |
SAVE_PREPROCESS_IMAGES,
|
| 34 |
+
SAVE_VLM_INPUT_IMAGES,
|
| 35 |
SELECTED_MODEL,
|
| 36 |
TESSERACT_SEGMENTATION_LEVEL,
|
| 37 |
+
VLM_MAX_DPI,
|
| 38 |
+
VLM_MAX_IMAGE_SIZE,
|
| 39 |
)
|
| 40 |
from tools.helper_functions import clean_unicode_text
|
| 41 |
from tools.load_spacy_model_custom_recognisers import custom_entities
|
| 42 |
from tools.presidio_analyzer_custom import recognizer_result_from_dict
|
| 43 |
+
from tools.run_vlm import extract_text_from_image_vlm
|
| 44 |
from tools.secure_path_utils import validate_folder_containment
|
| 45 |
from tools.secure_regex_utils import safe_sanitize_text
|
| 46 |
from tools.word_segmenter import AdaptiveSegmenter
|
|
|
|
| 557 |
return 11
|
| 558 |
|
| 559 |
|
| 560 |
+
def _prepare_image_for_vlm(image: Image.Image) -> Image.Image:
|
| 561 |
+
"""
|
| 562 |
+
Prepare image for VLM by ensuring it doesn't exceed maximum size and DPI limits.
|
| 563 |
+
|
| 564 |
+
Args:
|
| 565 |
+
image: PIL Image to prepare
|
| 566 |
+
|
| 567 |
+
Returns:
|
| 568 |
+
PIL Image that has been resized if necessary to meet size and DPI constraints
|
| 569 |
+
"""
|
| 570 |
+
if image is None:
|
| 571 |
+
return image
|
| 572 |
+
|
| 573 |
+
width, height = image.size
|
| 574 |
+
|
| 575 |
+
# Get DPI information (if available)
|
| 576 |
+
dpi = image.info.get("dpi", (72, 72)) # Default to 72 DPI if not specified
|
| 577 |
+
if isinstance(dpi, tuple):
|
| 578 |
+
dpi_x, dpi_y = dpi
|
| 579 |
+
# Use the maximum DPI value
|
| 580 |
+
current_dpi = max(dpi_x, dpi_y)
|
| 581 |
+
else:
|
| 582 |
+
current_dpi = float(dpi) if dpi else 72.0
|
| 583 |
+
|
| 584 |
+
# Calculate scale factors needed
|
| 585 |
+
size_scale = 1.0
|
| 586 |
+
dpi_scale = 1.0
|
| 587 |
+
|
| 588 |
+
# Check if total pixels exceed maximum
|
| 589 |
+
total_pixels = width * height
|
| 590 |
+
if total_pixels > VLM_MAX_IMAGE_SIZE:
|
| 591 |
+
# Calculate scale factor to reduce total pixels to maximum
|
| 592 |
+
# Since area scales with scale^2, we need sqrt of the ratio
|
| 593 |
+
size_scale = (VLM_MAX_IMAGE_SIZE / total_pixels) ** 0.5
|
| 594 |
+
print(
|
| 595 |
+
f"VLM image size check: Image has {total_pixels:,} pixels ({width}x{height}), exceeds maximum {VLM_MAX_IMAGE_SIZE:,} pixels. Will resize by factor {size_scale:.3f}"
|
| 596 |
+
)
|
| 597 |
+
|
| 598 |
+
# Check if DPI exceeds maximum
|
| 599 |
+
if current_dpi > VLM_MAX_DPI:
|
| 600 |
+
dpi_scale = VLM_MAX_DPI / current_dpi
|
| 601 |
+
print(
|
| 602 |
+
f"VLM DPI check: Image DPI {current_dpi:.1f} exceeds maximum {VLM_MAX_DPI:.1f} DPI. Will resize by factor {dpi_scale:.3f}"
|
| 603 |
+
)
|
| 604 |
+
|
| 605 |
+
# Use the smaller scale factor to ensure both constraints are met
|
| 606 |
+
final_scale = min(size_scale, dpi_scale)
|
| 607 |
+
|
| 608 |
+
# Resize if necessary
|
| 609 |
+
if final_scale < 1.0:
|
| 610 |
+
new_width = int(width * final_scale)
|
| 611 |
+
new_height = int(height * final_scale)
|
| 612 |
+
print(
|
| 613 |
+
f"VLM image preparation: Resizing image from {width}x{height} to {new_width}x{new_height} (scale: {final_scale:.3f})"
|
| 614 |
+
)
|
| 615 |
+
|
| 616 |
+
# Use high-quality resampling for downscaling
|
| 617 |
+
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
| 618 |
+
|
| 619 |
+
# Update DPI info if it was set
|
| 620 |
+
if "dpi" in image.info:
|
| 621 |
+
new_dpi = (current_dpi * final_scale, current_dpi * final_scale)
|
| 622 |
+
# Create a copy with updated DPI info
|
| 623 |
+
image_info = image.info.copy()
|
| 624 |
+
image_info["dpi"] = new_dpi
|
| 625 |
+
# Note: PIL doesn't allow direct modification of info dict, so we'll just note it
|
| 626 |
+
print(
|
| 627 |
+
f"VLM image preparation: Effective DPI after resize: {new_dpi[0]:.1f}"
|
| 628 |
+
)
|
| 629 |
+
else:
|
| 630 |
+
total_pixels = width * height
|
| 631 |
+
print(
|
| 632 |
+
f"VLM image preparation: Image size {width}x{height} ({total_pixels:,} pixels) and DPI {current_dpi:.1f} are within limits (max pixels: {VLM_MAX_IMAGE_SIZE:,}, max DPI: {VLM_MAX_DPI})"
|
| 633 |
+
)
|
| 634 |
+
|
| 635 |
+
return image
|
| 636 |
+
|
| 637 |
+
|
| 638 |
def _vlm_ocr_predict(
|
| 639 |
image: Image.Image,
|
| 640 |
prompt: str = "Extract the text content from this image.",
|
|
|
|
| 650 |
Dictionary in PaddleOCR format with 'rec_texts' and 'rec_scores'
|
| 651 |
"""
|
| 652 |
try:
|
| 653 |
+
# Validate image exists and is not None
|
| 654 |
+
if image is None:
|
| 655 |
+
print("VLM OCR error: Image is None")
|
| 656 |
+
return {"rec_texts": [], "rec_scores": []}
|
| 657 |
+
|
| 658 |
+
# Validate image has valid size (at least 10x10 pixels)
|
| 659 |
+
try:
|
| 660 |
+
width, height = image.size
|
| 661 |
+
if width < 10 or height < 10:
|
| 662 |
+
print(
|
| 663 |
+
f"VLM OCR error: Image is too small ({width}x{height} pixels). Minimum size is 10x10."
|
| 664 |
+
)
|
| 665 |
+
return {"rec_texts": [], "rec_scores": []}
|
| 666 |
+
except Exception as size_error:
|
| 667 |
+
print(f"VLM OCR error: Could not get image size: {size_error}")
|
| 668 |
+
return {"rec_texts": [], "rec_scores": []}
|
| 669 |
+
|
| 670 |
+
# Ensure image is in RGB mode (convert if needed)
|
| 671 |
+
try:
|
| 672 |
+
if image.mode != "RGB":
|
| 673 |
+
print(f"VLM OCR: Converting image from {image.mode} to RGB mode")
|
| 674 |
+
image = image.convert("RGB")
|
| 675 |
+
# Update width/height after conversion (should be same, but ensure consistency)
|
| 676 |
+
width, height = image.size
|
| 677 |
+
except Exception as convert_error:
|
| 678 |
+
print(f"VLM OCR error: Could not convert image to RGB: {convert_error}")
|
| 679 |
+
return {"rec_texts": [], "rec_scores": []}
|
| 680 |
+
|
| 681 |
+
# Check and resize image if it exceeds maximum size or DPI limits
|
| 682 |
+
try:
|
| 683 |
+
image = _prepare_image_for_vlm(image)
|
| 684 |
+
width, height = image.size
|
| 685 |
+
except Exception as prep_error:
|
| 686 |
+
print(f"VLM OCR error: Could not prepare image for VLM: {prep_error}")
|
| 687 |
+
return {"rec_texts": [], "rec_scores": []}
|
| 688 |
+
|
| 689 |
# Use the VLM to extract text
|
| 690 |
# Pass None for parameters to prioritize model-specific defaults from run_vlm.py
|
| 691 |
# If model defaults are not available, general defaults will be used (matching current values)
|
| 692 |
+
print(f"Calling extract_text_from_image_vlm with image size: {width}x{height}")
|
| 693 |
+
extracted_text = extract_text_from_image_vlm(
|
| 694 |
text=prompt,
|
| 695 |
image=image,
|
| 696 |
max_new_tokens=None, # Use model default if available, otherwise MAX_NEW_TOKENS from config
|
|
|
|
| 700 |
repetition_penalty=None, # Use model default if available, otherwise 1.3
|
| 701 |
)
|
| 702 |
|
| 703 |
+
# print(f"VLM OCR extracted text type: {type(extracted_text)}, value: {extracted_text}")
|
| 704 |
+
|
| 705 |
+
# Check if extracted_text is None or empty
|
| 706 |
+
if extracted_text is None:
|
| 707 |
+
# print("VLM OCR warning: extract_text_from_image_vlm returned None")
|
| 708 |
+
return {"rec_texts": [], "rec_scores": []}
|
| 709 |
+
|
| 710 |
+
if not isinstance(extracted_text, str):
|
| 711 |
+
# print(f"VLM OCR warning: extract_text_from_image_vlm returned unexpected type: {type(extracted_text)}")
|
| 712 |
+
return {"rec_texts": [], "rec_scores": []}
|
| 713 |
+
|
| 714 |
+
if extracted_text.strip():
|
| 715 |
+
|
| 716 |
# Clean the text
|
| 717 |
+
|
| 718 |
+
cleaned_text = re.sub(r"[\r\n]+", " ", extracted_text)
|
| 719 |
+
cleaned_text = cleaned_text.strip()
|
| 720 |
|
| 721 |
# Split into words for compatibility with PaddleOCR format
|
| 722 |
words = cleaned_text.split()
|
| 723 |
|
| 724 |
+
# If text has more than 30 words, assume something went wrong and skip it
|
| 725 |
+
if len(words) > 30:
|
| 726 |
+
print(
|
| 727 |
+
f"VLM OCR warning: Extracted text has {len(words)} words, which exceeds the 30 word limit. Skipping."
|
| 728 |
+
)
|
| 729 |
return {"rec_texts": [], "rec_scores": []}
|
| 730 |
|
| 731 |
# Create PaddleOCR-compatible result
|
|
|
|
| 736 |
|
| 737 |
return result
|
| 738 |
else:
|
| 739 |
+
# print("VLM OCR warning: Extracted text is empty after stripping")
|
| 740 |
return {"rec_texts": [], "rec_scores": []}
|
| 741 |
|
| 742 |
+
except Exception:
|
| 743 |
+
# print(f"VLM OCR error: {e}")
|
| 744 |
+
# print(f"VLM OCR error traceback: {traceback.format_exc()}")
|
| 745 |
return {"rec_texts": [], "rec_scores": []}
|
| 746 |
|
| 747 |
|
|
|
|
| 951 |
paddle_results: List[Any],
|
| 952 |
input_image_width: int = None,
|
| 953 |
input_image_height: int = None,
|
| 954 |
+
image_name: str = None,
|
| 955 |
+
image: Image.Image = None,
|
| 956 |
) -> Dict[str, List]:
|
| 957 |
"""Converts PaddleOCR result format to Tesseract's dictionary format using relative coordinates.
|
| 958 |
|
|
|
|
| 964 |
paddle_results: List of PaddleOCR result dictionaries
|
| 965 |
input_image_width: Width of the input image passed to PaddleOCR (target dimensions for scaling)
|
| 966 |
input_image_height: Height of the input image passed to PaddleOCR (target dimensions for scaling)
|
| 967 |
+
image_name: Name of the image
|
| 968 |
+
image: Image object
|
| 969 |
"""
|
| 970 |
|
| 971 |
output = {
|
|
|
|
| 975 |
"width": list(),
|
| 976 |
"height": list(),
|
| 977 |
"conf": list(),
|
| 978 |
+
"model": list(),
|
| 979 |
}
|
| 980 |
|
| 981 |
# paddle_results is now a list of dictionaries with detailed information
|
|
|
|
| 990 |
# Fallback: we'll try to detect from coordinates, but this is less reliable
|
| 991 |
use_relative_coords = False
|
| 992 |
else:
|
| 993 |
+
use_relative_coords = True
|
| 994 |
|
| 995 |
for page_result in paddle_results:
|
| 996 |
# Extract text recognition results from the new format
|
| 997 |
rec_texts = page_result.get("rec_texts", list())
|
| 998 |
rec_scores = page_result.get("rec_scores", list())
|
| 999 |
rec_polys = page_result.get("rec_polys", list())
|
| 1000 |
+
rec_models = page_result.get("rec_models", list())
|
| 1001 |
|
| 1002 |
# PaddleOCR may return image dimensions in the result - check for them
|
| 1003 |
# Some versions of PaddleOCR include this information
|
| 1004 |
result_image_width = page_result.get("image_width")
|
| 1005 |
result_image_height = page_result.get("image_height")
|
| 1006 |
|
| 1007 |
+
# PaddleOCR typically returns coordinates in the input image space
|
| 1008 |
+
# However, it may internally resize images, so we need to check if coordinates
|
| 1009 |
+
# are in a different space by comparing with explicit metadata or detecting from coordinates
|
| 1010 |
+
|
| 1011 |
# First pass: determine PaddleOCR's coordinate space by finding max coordinates
|
| 1012 |
# This tells us what coordinate space PaddleOCR is actually using
|
| 1013 |
max_x_coord = 0
|
|
|
|
| 1026 |
max_y_coord = max(max_y_coord, max(y_coords) if y_coords else 0)
|
| 1027 |
|
| 1028 |
# Determine PaddleOCR's coordinate space dimensions
|
| 1029 |
+
# Priority: explicit result metadata > input dimensions (standard PaddleOCR behavior)
|
| 1030 |
+
# Note: PaddleOCR typically returns coordinates in the input image space.
|
| 1031 |
+
# We only use a different coordinate space if PaddleOCR provides explicit metadata.
|
| 1032 |
+
# Using max coordinates to detect coordinate space is unreliable because:
|
| 1033 |
+
# 1. Text might not extend to image edges
|
| 1034 |
+
# 2. There might be padding
|
| 1035 |
+
# 3. Max coordinates don't necessarily equal image dimensions
|
| 1036 |
+
if result_image_width is not None and result_image_height is not None:
|
| 1037 |
+
# Use explicit metadata from PaddleOCR if available (most reliable)
|
| 1038 |
+
paddle_coord_width = result_image_width
|
| 1039 |
+
paddle_coord_height = result_image_height
|
| 1040 |
+
# Only use relative conversion if coordinate space differs from input
|
| 1041 |
+
if (
|
| 1042 |
+
paddle_coord_width != input_image_width
|
| 1043 |
+
or paddle_coord_height != input_image_height
|
| 1044 |
+
):
|
| 1045 |
+
print(
|
| 1046 |
+
f"PaddleOCR metadata indicates coordinate space ({paddle_coord_width}x{paddle_coord_height}) "
|
| 1047 |
+
f"differs from input ({input_image_width}x{input_image_height}). "
|
| 1048 |
+
f"Using metadata for coordinate conversion."
|
| 1049 |
+
)
|
| 1050 |
+
elif input_image_width is not None and input_image_height is not None:
|
| 1051 |
+
# Default: assume coordinates are in input image space (standard PaddleOCR behavior)
|
| 1052 |
+
# This is the most common case and avoids incorrect scaling
|
| 1053 |
paddle_coord_width = input_image_width
|
| 1054 |
paddle_coord_height = input_image_height
|
| 1055 |
+
else:
|
| 1056 |
+
# Fallback: use max coordinates if we have no other information
|
| 1057 |
+
paddle_coord_width = max_x_coord if max_x_coord > 0 else 1
|
| 1058 |
+
paddle_coord_height = max_y_coord if max_y_coord > 0 else 1
|
| 1059 |
+
use_relative_coords = False
|
| 1060 |
+
print(
|
| 1061 |
+
f"Warning: No input dimensions provided. Using detected coordinate space ({paddle_coord_width}x{paddle_coord_height}) from max coordinates."
|
| 1062 |
+
)
|
| 1063 |
+
|
| 1064 |
+
# Validate coordinate space dimensions
|
| 1065 |
+
if paddle_coord_width is None or paddle_coord_height is None:
|
| 1066 |
+
paddle_coord_width = input_image_width or 1
|
| 1067 |
+
paddle_coord_height = input_image_height or 1
|
| 1068 |
use_relative_coords = False
|
| 1069 |
|
| 1070 |
if paddle_coord_width <= 0 or paddle_coord_height <= 0:
|
|
|
|
| 1075 |
paddle_coord_height = input_image_height or 1
|
| 1076 |
use_relative_coords = False
|
| 1077 |
|
| 1078 |
+
# If coordinate space matches input dimensions, coordinates are already in the correct space
|
| 1079 |
+
# Only use relative coordinate conversion if coordinate space differs from input
|
| 1080 |
+
if (
|
| 1081 |
+
paddle_coord_width == input_image_width
|
| 1082 |
+
and paddle_coord_height == input_image_height
|
| 1083 |
+
and input_image_width is not None
|
| 1084 |
+
and input_image_height is not None
|
| 1085 |
+
):
|
| 1086 |
+
# Coordinates are already in input space, no conversion needed
|
| 1087 |
+
use_relative_coords = False
|
| 1088 |
+
print(
|
| 1089 |
+
f"PaddleOCR coordinates are in input image space ({input_image_width}x{input_image_height}). "
|
| 1090 |
+
f"Using coordinates directly without conversion."
|
| 1091 |
+
)
|
| 1092 |
+
|
| 1093 |
# Second pass: convert coordinates using relative coordinate approach
|
| 1094 |
+
# Use default "Paddle" if rec_models is not available or doesn't match length
|
| 1095 |
+
if len(rec_models) != len(rec_texts):
|
| 1096 |
+
print(
|
| 1097 |
+
f"Warning: rec_models length ({len(rec_models)}) doesn't match rec_texts length ({len(rec_texts)}). Using default 'Paddle' for all."
|
| 1098 |
+
)
|
| 1099 |
+
rec_models = ["Paddle"] * len(rec_texts)
|
| 1100 |
+
# Update page_result to keep it consistent
|
| 1101 |
+
page_result["rec_models"] = rec_models
|
| 1102 |
+
else:
|
| 1103 |
+
# Ensure we're using the rec_models from page_result (which may have been modified)
|
| 1104 |
+
rec_models = page_result.get("rec_models", rec_models)
|
| 1105 |
+
|
| 1106 |
+
# Debug: Print model distribution
|
| 1107 |
+
vlm_count = sum(1 for m in rec_models if m == "VLM")
|
| 1108 |
+
if vlm_count > 0:
|
| 1109 |
+
print(
|
| 1110 |
+
f"Found {vlm_count} VLM-labeled lines out of {len(rec_models)} total lines in page_result"
|
| 1111 |
+
)
|
| 1112 |
+
|
| 1113 |
+
for line_text, line_confidence, bounding_box, line_model in zip(
|
| 1114 |
+
rec_texts, rec_scores, rec_polys, rec_models
|
| 1115 |
):
|
| 1116 |
# bounding_box is now a numpy array with shape (4, 2)
|
| 1117 |
# Convert to list of coordinates if it's a numpy array
|
|
|
|
| 1178 |
output["width"].append(round(line_width, 2))
|
| 1179 |
output["height"].append(round(line_height, 2))
|
| 1180 |
output["conf"].append(int(line_confidence * 100))
|
| 1181 |
+
output["model"].append(line_model if line_model else "Paddle")
|
| 1182 |
|
| 1183 |
return output
|
| 1184 |
|
|
|
|
| 1210 |
"width": list(),
|
| 1211 |
"height": list(),
|
| 1212 |
"conf": list(),
|
| 1213 |
+
"model": list(),
|
| 1214 |
}
|
| 1215 |
|
| 1216 |
if not line_data or not line_data.get("text"):
|
|
|
|
| 1249 |
for i in range(len(line_data["text"])):
|
| 1250 |
line_text = line_data["text"][i]
|
| 1251 |
line_conf = line_data["conf"][i]
|
| 1252 |
+
# Extract model, defaulting to "Paddle" if not available
|
| 1253 |
+
if "model" in line_data and len(line_data["model"]) > i:
|
| 1254 |
+
line_model = line_data["model"][i]
|
| 1255 |
+
else:
|
| 1256 |
+
line_model = "Paddle"
|
| 1257 |
|
| 1258 |
# Get the float values
|
| 1259 |
f_left = float(line_data["left"][i])
|
|
|
|
| 1382 |
output["width"].append(clamped_width)
|
| 1383 |
output["height"].append(line_height)
|
| 1384 |
output["conf"].append(line_conf)
|
| 1385 |
+
output["model"].append(line_model)
|
| 1386 |
current_left += word_width + estimated_space_width
|
| 1387 |
continue
|
| 1388 |
|
|
|
|
| 1394 |
output["width"].append(word_output["width"][j])
|
| 1395 |
output["height"].append(word_output["height"][j])
|
| 1396 |
output["conf"].append(word_output["conf"][j])
|
| 1397 |
+
# Preserve the model from the line-level data
|
| 1398 |
+
output["model"].append(line_model)
|
| 1399 |
|
| 1400 |
return output
|
| 1401 |
|
|
|
|
| 1777 |
self,
|
| 1778 |
image: Image.Image,
|
| 1779 |
ocr: Optional[Any] = None,
|
| 1780 |
+
paddle_results: List[Any] = None,
|
| 1781 |
confidence_threshold: int = HYBRID_OCR_CONFIDENCE_THRESHOLD,
|
| 1782 |
padding: int = HYBRID_OCR_PADDING,
|
| 1783 |
image_name: str = "unknown_image_name",
|
| 1784 |
input_image_width: int = None,
|
| 1785 |
input_image_height: int = None,
|
| 1786 |
+
) -> List[Any]:
|
| 1787 |
"""
|
| 1788 |
Performs OCR using PaddleOCR at line level, then VLM for low-confidence lines.
|
| 1789 |
+
Returns modified paddle_results in the same format as PaddleOCR output.
|
| 1790 |
|
| 1791 |
Args:
|
| 1792 |
image: PIL Image to process
|
| 1793 |
ocr: PaddleOCR instance (optional, uses self.paddle_ocr if not provided)
|
| 1794 |
+
paddle_results: PaddleOCR results in original format (List of dicts with rec_texts, rec_scores, rec_polys)
|
| 1795 |
confidence_threshold: Confidence threshold below which VLM is used
|
| 1796 |
padding: Padding to add around line crops
|
| 1797 |
image_name: Name of the image for logging/debugging
|
|
|
|
| 1799 |
input_image_height: Original image height (before preprocessing)
|
| 1800 |
|
| 1801 |
Returns:
|
| 1802 |
+
Modified paddle_results with VLM replacements for low-confidence lines
|
| 1803 |
"""
|
| 1804 |
if ocr is None:
|
| 1805 |
if hasattr(self, "paddle_ocr") and self.paddle_ocr is not None:
|
|
|
|
| 1809 |
"No OCR object provided and 'paddle_ocr' is not initialized."
|
| 1810 |
)
|
| 1811 |
|
| 1812 |
+
if paddle_results is None or not paddle_results:
|
| 1813 |
+
return paddle_results
|
| 1814 |
+
|
| 1815 |
print("Starting hybrid PaddleOCR + VLM OCR process...")
|
| 1816 |
|
| 1817 |
# Get image dimensions
|
|
|
|
| 1823 |
if input_image_height is None:
|
| 1824 |
input_image_height = img_height
|
| 1825 |
|
| 1826 |
+
# Create a deep copy of paddle_results to modify
|
| 1827 |
+
modified_paddle_results = copy.deepcopy(paddle_results)
|
|
|
|
|
|
|
| 1828 |
|
| 1829 |
+
# Process each page result in paddle_results
|
| 1830 |
+
for page_result in modified_paddle_results:
|
| 1831 |
+
# Extract text recognition results from the paddle format
|
| 1832 |
+
rec_texts = page_result.get("rec_texts", list())
|
| 1833 |
+
rec_scores = page_result.get("rec_scores", list())
|
| 1834 |
+
rec_polys = page_result.get("rec_polys", list())
|
| 1835 |
|
| 1836 |
+
# Initialize rec_models list with "Paddle" as default for all lines
|
| 1837 |
+
num_lines = len(rec_texts)
|
| 1838 |
+
if (
|
| 1839 |
+
"rec_models" not in page_result
|
| 1840 |
+
or len(page_result.get("rec_models", [])) != num_lines
|
| 1841 |
+
):
|
| 1842 |
+
rec_models = ["Paddle"] * num_lines
|
| 1843 |
+
page_result["rec_models"] = rec_models
|
| 1844 |
+
else:
|
| 1845 |
+
rec_models = page_result["rec_models"]
|
| 1846 |
|
| 1847 |
+
# Get image dimensions from result if available
|
| 1848 |
+
result_image_width = page_result.get("image_width")
|
| 1849 |
+
result_image_height = page_result.get("image_height")
|
| 1850 |
+
|
| 1851 |
+
# Determine PaddleOCR's coordinate space dimensions
|
| 1852 |
+
max_x_coord = 0
|
| 1853 |
+
max_y_coord = 0
|
| 1854 |
+
for bounding_box in rec_polys:
|
| 1855 |
+
if hasattr(bounding_box, "tolist"):
|
| 1856 |
+
box = bounding_box.tolist()
|
| 1857 |
+
else:
|
| 1858 |
+
box = bounding_box
|
| 1859 |
+
if box and len(box) > 0:
|
| 1860 |
+
x_coords = [p[0] for p in box]
|
| 1861 |
+
y_coords = [p[1] for p in box]
|
| 1862 |
+
max_x_coord = max(max_x_coord, max(x_coords) if x_coords else 0)
|
| 1863 |
+
max_y_coord = max(max_y_coord, max(y_coords) if y_coords else 0)
|
| 1864 |
|
| 1865 |
+
paddle_coord_width = (
|
| 1866 |
+
result_image_width
|
| 1867 |
+
if result_image_width is not None
|
| 1868 |
+
else max_x_coord if max_x_coord > 0 else input_image_width
|
| 1869 |
+
)
|
| 1870 |
+
paddle_coord_height = (
|
| 1871 |
+
result_image_height
|
| 1872 |
+
if result_image_height is not None
|
| 1873 |
+
else max_y_coord if max_y_coord > 0 else input_image_height
|
| 1874 |
+
)
|
| 1875 |
|
| 1876 |
+
if paddle_coord_width is None or paddle_coord_height is None:
|
| 1877 |
+
paddle_coord_width = input_image_width or img_width
|
| 1878 |
+
paddle_coord_height = input_image_height or img_height
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1879 |
|
| 1880 |
+
if paddle_coord_width <= 0 or paddle_coord_height <= 0:
|
| 1881 |
+
paddle_coord_width = input_image_width or img_width
|
| 1882 |
+
paddle_coord_height = input_image_height or img_height
|
| 1883 |
|
| 1884 |
+
# Process each line
|
| 1885 |
+
print(f"Processing {num_lines} lines from PaddleOCR results...")
|
|
|
|
| 1886 |
|
| 1887 |
+
for i in range(num_lines):
|
| 1888 |
+
line_text = rec_texts[i]
|
| 1889 |
+
line_conf = float(rec_scores[i]) * 100 # Convert to percentage
|
| 1890 |
+
bounding_box = rec_polys[i]
|
|
|
|
|
|
|
|
|
|
| 1891 |
|
| 1892 |
+
# Skip empty lines
|
| 1893 |
+
if not line_text.strip():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1894 |
continue
|
| 1895 |
|
| 1896 |
+
# Extract bounding box coordinates
|
| 1897 |
+
if hasattr(bounding_box, "tolist"):
|
| 1898 |
+
box = bounding_box.tolist()
|
| 1899 |
+
else:
|
| 1900 |
+
box = bounding_box
|
| 1901 |
+
|
| 1902 |
+
if not box or len(box) == 0:
|
| 1903 |
+
continue
|
| 1904 |
+
|
| 1905 |
+
# Convert polygon to bounding box
|
| 1906 |
+
x_coords = [p[0] for p in box]
|
| 1907 |
+
y_coords = [p[1] for p in box]
|
| 1908 |
+
line_left_paddle = float(min(x_coords))
|
| 1909 |
+
line_top_paddle = float(min(y_coords))
|
| 1910 |
+
line_right_paddle = float(max(x_coords))
|
| 1911 |
+
line_bottom_paddle = float(max(y_coords))
|
| 1912 |
+
line_width_paddle = line_right_paddle - line_left_paddle
|
| 1913 |
+
line_height_paddle = line_bottom_paddle - line_top_paddle
|
| 1914 |
|
| 1915 |
+
# Convert to image coordinate space (scale from paddle coordinates to image coordinates)
|
| 1916 |
+
if paddle_coord_width > 0 and paddle_coord_height > 0:
|
| 1917 |
+
rel_left = line_left_paddle / paddle_coord_width
|
| 1918 |
+
rel_top = line_top_paddle / paddle_coord_height
|
| 1919 |
+
rel_width = line_width_paddle / paddle_coord_width
|
| 1920 |
+
rel_height = line_height_paddle / paddle_coord_height
|
| 1921 |
|
| 1922 |
+
line_left = rel_left * img_width
|
| 1923 |
+
line_top = rel_top * img_height
|
| 1924 |
+
line_width = rel_width * img_width
|
| 1925 |
+
line_height = rel_height * img_height
|
| 1926 |
+
else:
|
| 1927 |
+
line_left = line_left_paddle
|
| 1928 |
+
line_top = line_top_paddle
|
| 1929 |
+
line_width = line_width_paddle
|
| 1930 |
+
line_height = line_height_paddle
|
| 1931 |
|
| 1932 |
+
# Initialize model as PaddleOCR (default)
|
| 1933 |
+
|
| 1934 |
+
# Count words in PaddleOCR output
|
| 1935 |
+
paddle_words = line_text.split()
|
| 1936 |
+
paddle_word_count = len(paddle_words)
|
| 1937 |
+
|
| 1938 |
+
# If confidence is low, use VLM for a second opinion
|
| 1939 |
+
if line_conf < confidence_threshold:
|
| 1940 |
+
# Debug: Print line dimensions before cropping
|
| 1941 |
+
# print(
|
| 1942 |
+
# f" Line {i}: '{line_text[:50]}...' "
|
| 1943 |
+
# f"conf={line_conf}, "
|
| 1944 |
+
# f"bbox=({line_left:.1f}, {line_top:.1f}, {line_width:.1f}, {line_height:.1f})"
|
| 1945 |
+
# )
|
| 1946 |
+
|
| 1947 |
+
# Ensure minimum line height for VLM processing
|
| 1948 |
+
# If line_height is too small, use a minimum height based on typical text line height
|
| 1949 |
+
min_line_height = max(
|
| 1950 |
+
line_height, 20
|
| 1951 |
+
) # Minimum 20 pixels for text line
|
| 1952 |
+
if line_height < 20:
|
| 1953 |
print(
|
| 1954 |
+
f" Warning: Line height ({line_height:.1f}px) is too small. "
|
| 1955 |
+
f"Using minimum height of {min_line_height}px for cropping."
|
| 1956 |
)
|
| 1957 |
|
| 1958 |
+
# Calculate crop coordinates
|
| 1959 |
+
crop_left = line_left
|
| 1960 |
+
crop_top = line_top
|
| 1961 |
+
crop_right = line_left + line_width
|
| 1962 |
+
crop_bottom = line_top + min_line_height
|
| 1963 |
|
| 1964 |
+
print(
|
| 1965 |
+
f" Crop coordinates: left={crop_left}, top={crop_top}, "
|
| 1966 |
+
f"right={crop_right}, bottom={crop_bottom}, "
|
| 1967 |
+
f"size=({crop_right - crop_left}x{crop_bottom - crop_top})"
|
| 1968 |
+
)
|
| 1969 |
+
|
| 1970 |
+
# Ensure crop dimensions are valid
|
| 1971 |
+
if crop_right <= crop_left or crop_bottom <= crop_top:
|
| 1972 |
+
# Invalid crop, keep original PaddleOCR result
|
| 1973 |
+
continue
|
| 1974 |
+
|
| 1975 |
+
# Crop the line image
|
| 1976 |
+
cropped_image = image.crop(
|
| 1977 |
+
(crop_left, crop_top, crop_right, crop_bottom)
|
| 1978 |
+
)
|
| 1979 |
+
|
| 1980 |
+
# Check if cropped image is too small for VLM processing
|
| 1981 |
+
crop_width = crop_right - crop_left
|
| 1982 |
+
crop_height = crop_bottom - crop_top
|
| 1983 |
+
if crop_width < 10 or crop_height < 10:
|
| 1984 |
+
print(
|
| 1985 |
+
f" Line: '{line_text}' (conf: {line_conf}) -> "
|
| 1986 |
+
f"Cropped image too small ({crop_width}x{crop_height} pixels). "
|
| 1987 |
+
f"Skipping VLM, keeping PaddleOCR result."
|
| 1988 |
+
)
|
| 1989 |
+
# Keep original PaddleOCR result for this line
|
| 1990 |
+
continue
|
| 1991 |
+
|
| 1992 |
+
# Ensure cropped image is in RGB mode before passing to VLM
|
| 1993 |
+
if cropped_image.mode != "RGB":
|
| 1994 |
+
cropped_image = cropped_image.convert("RGB")
|
| 1995 |
+
|
| 1996 |
+
# Save input image for debugging if environment variable is set
|
| 1997 |
+
if SAVE_VLM_INPUT_IMAGES:
|
| 1998 |
+
try:
|
| 1999 |
+
vlm_debug_dir = os.path.join(
|
| 2000 |
+
OUTPUT_FOLDER,
|
| 2001 |
+
"hybrid_paddle_vlm_visualisations/vlm_input_images",
|
| 2002 |
+
)
|
| 2003 |
+
os.makedirs(vlm_debug_dir, exist_ok=True)
|
| 2004 |
+
line_text_safe = safe_sanitize_text(line_text)
|
| 2005 |
+
line_text_shortened = line_text_safe[:20]
|
| 2006 |
+
image_name_safe = safe_sanitize_text(image_name)
|
| 2007 |
+
image_name_shortened = image_name_safe[:20]
|
| 2008 |
+
filename = f"{image_name_shortened}_{line_text_shortened}_vlm_input_image.png"
|
| 2009 |
+
filepath = os.path.join(vlm_debug_dir, filename)
|
| 2010 |
+
cropped_image.save(filepath)
|
| 2011 |
+
print(f"Saved VLM input image to: {filepath}")
|
| 2012 |
+
except Exception as save_error:
|
| 2013 |
+
print(
|
| 2014 |
+
f"Warning: Could not save VLM input image: {save_error}"
|
| 2015 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2016 |
|
| 2017 |
+
# Use VLM for OCR on this line with error handling
|
| 2018 |
+
vlm_result = None
|
| 2019 |
+
vlm_rec_texts = []
|
| 2020 |
+
vlm_rec_scores = []
|
| 2021 |
+
|
| 2022 |
+
try:
|
| 2023 |
+
vlm_result = _vlm_ocr_predict(cropped_image)
|
| 2024 |
+
vlm_rec_texts = (
|
| 2025 |
+
vlm_result.get("rec_texts", []) if vlm_result else []
|
| 2026 |
+
)
|
| 2027 |
+
vlm_rec_scores = (
|
| 2028 |
+
vlm_result.get("rec_scores", []) if vlm_result else []
|
| 2029 |
+
)
|
| 2030 |
+
except Exception as vlm_error:
|
| 2031 |
+
print(
|
| 2032 |
+
f" VLM OCR failed for line '{line_text[:50]}...' (conf: {line_conf}): {vlm_error}. "
|
| 2033 |
+
f"Keeping original PaddleOCR result."
|
| 2034 |
+
)
|
| 2035 |
+
# Ensure we keep original PaddleOCR result on error
|
| 2036 |
+
vlm_rec_texts = []
|
| 2037 |
+
vlm_rec_scores = []
|
| 2038 |
+
|
| 2039 |
+
if vlm_rec_texts and vlm_rec_scores:
|
| 2040 |
+
# Combine VLM words into a single text string
|
| 2041 |
+
vlm_text = " ".join(vlm_rec_texts)
|
| 2042 |
+
vlm_word_count = len(vlm_rec_texts)
|
| 2043 |
+
vlm_conf = float(
|
| 2044 |
+
np.median(vlm_rec_scores)
|
| 2045 |
+
) # Keep as 0-1 range for paddle format
|
| 2046 |
+
|
| 2047 |
+
# Only replace if word counts match
|
| 2048 |
+
if (
|
| 2049 |
+
vlm_word_count - paddle_word_count <= 2
|
| 2050 |
+
and vlm_word_count - paddle_word_count >= -2
|
| 2051 |
+
):
|
| 2052 |
+
print(
|
| 2053 |
+
f" Re-OCR'd line: '{line_text}' (conf: {line_conf:.1f}, words: {paddle_word_count}) "
|
| 2054 |
+
f"-> '{vlm_text}' (conf: {vlm_conf*100:.1f}, words: {vlm_word_count}) [VLM]"
|
| 2055 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2056 |
|
| 2057 |
+
# For exporting example image comparisons
|
| 2058 |
+
safe_filename = self._create_safe_filename_with_confidence(
|
| 2059 |
+
line_text,
|
| 2060 |
+
vlm_text,
|
| 2061 |
+
int(line_conf),
|
| 2062 |
+
int(vlm_conf * 100),
|
| 2063 |
+
"VLM",
|
| 2064 |
)
|
|
|
|
|
|
|
| 2065 |
|
| 2066 |
+
if SAVE_EXAMPLE_HYBRID_IMAGES is True:
|
| 2067 |
+
# Normalize and validate image_name to prevent path traversal attacks
|
| 2068 |
+
normalized_image_name = os.path.normpath(
|
| 2069 |
+
image_name + "_hybrid_paddle_vlm"
|
| 2070 |
+
)
|
| 2071 |
+
if (
|
| 2072 |
+
".." in normalized_image_name
|
| 2073 |
+
or "/" in normalized_image_name
|
| 2074 |
+
or "\\" in normalized_image_name
|
| 2075 |
+
):
|
| 2076 |
+
normalized_image_name = "safe_image"
|
| 2077 |
+
|
| 2078 |
+
hybrid_ocr_examples_folder = (
|
| 2079 |
+
self.output_folder
|
| 2080 |
+
+ f"/hybrid_ocr_examples/{normalized_image_name}"
|
| 2081 |
+
)
|
| 2082 |
+
# Validate the constructed path is safe
|
| 2083 |
+
if not validate_folder_containment(
|
| 2084 |
+
hybrid_ocr_examples_folder, OUTPUT_FOLDER
|
| 2085 |
+
):
|
| 2086 |
+
raise ValueError(
|
| 2087 |
+
f"Unsafe hybrid_ocr_examples folder path: {hybrid_ocr_examples_folder}"
|
| 2088 |
+
)
|
| 2089 |
+
|
| 2090 |
+
if not os.path.exists(hybrid_ocr_examples_folder):
|
| 2091 |
+
os.makedirs(hybrid_ocr_examples_folder)
|
| 2092 |
+
output_image_path = (
|
| 2093 |
+
hybrid_ocr_examples_folder + f"/{safe_filename}.png"
|
| 2094 |
+
)
|
| 2095 |
+
print(f"Saving example image to {output_image_path}")
|
| 2096 |
+
cropped_image.save(output_image_path)
|
| 2097 |
+
|
| 2098 |
+
# Replace with VLM result in paddle_results format
|
| 2099 |
+
# Update rec_texts, rec_scores, and rec_models for this line
|
| 2100 |
+
rec_texts[i] = vlm_text
|
| 2101 |
+
rec_scores[i] = vlm_conf
|
| 2102 |
+
rec_models[i] = "VLM"
|
| 2103 |
+
# Ensure page_result is updated with the modified rec_models list
|
| 2104 |
+
page_result["rec_models"] = rec_models
|
| 2105 |
+
print(
|
| 2106 |
+
f" Set rec_models[{i}] = 'VLM' for line '{vlm_text[:50]}...'"
|
| 2107 |
+
)
|
| 2108 |
+
else:
|
| 2109 |
+
print(
|
| 2110 |
+
f" Line: '{line_text}' (conf: {line_conf:.1f}, words: {paddle_word_count}) -> "
|
| 2111 |
+
f"VLM result '{vlm_text}' (conf: {vlm_conf*100:.1f}, words: {vlm_word_count}) "
|
| 2112 |
+
f"word count mismatch. Keeping PaddleOCR result."
|
| 2113 |
+
)
|
| 2114 |
else:
|
| 2115 |
+
# VLM returned empty or no results - keep original PaddleOCR result
|
| 2116 |
+
if line_conf < confidence_threshold:
|
| 2117 |
+
print(
|
| 2118 |
+
f" Line: '{line_text}' (conf: {line_conf:.1f}) -> "
|
| 2119 |
+
f"VLM returned no results. Keeping original PaddleOCR result."
|
| 2120 |
+
)
|
| 2121 |
|
| 2122 |
+
# Debug: Print summary of model labels before returning
|
| 2123 |
+
for page_idx, page_result in enumerate(modified_paddle_results):
|
| 2124 |
+
rec_models = page_result.get("rec_models", [])
|
| 2125 |
+
vlm_count = sum(1 for m in rec_models if m == "VLM")
|
| 2126 |
+
paddle_count = sum(1 for m in rec_models if m == "Paddle")
|
| 2127 |
+
print(
|
| 2128 |
+
f"Page {page_idx}: {vlm_count} VLM, {paddle_count} Paddle out of {len(rec_models)} total lines"
|
| 2129 |
+
)
|
| 2130 |
|
| 2131 |
+
return modified_paddle_results
|
| 2132 |
|
| 2133 |
def perform_ocr(
|
| 2134 |
self, image: Union[str, Image.Image, np.ndarray], ocr: Optional[Any] = None
|
|
|
|
| 2149 |
# Store original dimensions BEFORE preprocessing (needed for coordinate conversion)
|
| 2150 |
original_image_width = None
|
| 2151 |
original_image_height = None
|
| 2152 |
+
original_image_for_visualization = (
|
| 2153 |
+
None # Store original image for visualization
|
| 2154 |
+
)
|
| 2155 |
|
| 2156 |
if PREPROCESS_LOCAL_OCR_IMAGES:
|
| 2157 |
print("Pre-processing image...")
|
| 2158 |
# Get original dimensions before preprocessing
|
| 2159 |
original_image_width, original_image_height = image.size
|
| 2160 |
+
# Store original image for visualization (coordinates are in original space)
|
| 2161 |
+
original_image_for_visualization = image.copy()
|
| 2162 |
image, preprocessing_metadata = self.image_preprocessor.preprocess_image(
|
| 2163 |
image
|
| 2164 |
)
|
|
|
|
| 2176 |
else:
|
| 2177 |
preprocessing_metadata = dict()
|
| 2178 |
original_image_width, original_image_height = image.size
|
| 2179 |
+
# When preprocessing is disabled, the current image is the original
|
| 2180 |
+
original_image_for_visualization = image.copy()
|
| 2181 |
|
| 2182 |
image_width, image_height = image.size
|
| 2183 |
|
| 2184 |
+
# Store original image for line-to-word conversion when PaddleOCR processes original image
|
| 2185 |
+
original_image_for_cropping = None
|
| 2186 |
+
paddle_processed_original = False
|
| 2187 |
+
|
| 2188 |
# Note: In testing I haven't seen that this necessarily improves results
|
| 2189 |
if self.ocr_engine == "hybrid-paddle":
|
| 2190 |
# Try hybrid with original image for cropping:
|
|
|
|
| 2194 |
# Try hybrid VLM with original image for cropping:
|
| 2195 |
ocr_data = self._perform_hybrid_ocr(image, image_name=image_name)
|
| 2196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2197 |
elif self.ocr_engine == "tesseract":
|
| 2198 |
|
| 2199 |
ocr_data = pytesseract.image_to_data(
|
|
|
|
| 2203 |
lang=self.tesseract_lang, # Ensure the Tesseract language data (e.g., fra.traineddata) is installed on your system.
|
| 2204 |
)
|
| 2205 |
|
| 2206 |
+
elif self.ocr_engine == "paddle" or self.ocr_engine == "hybrid-paddle-vlm":
|
| 2207 |
|
| 2208 |
if ocr is None:
|
| 2209 |
if hasattr(self, "paddle_ocr") and self.paddle_ocr is not None:
|
|
|
|
| 2234 |
paddle_input_height = image_np.shape[0]
|
| 2235 |
|
| 2236 |
paddle_results = ocr.predict(image_np)
|
| 2237 |
+
# PaddleOCR processed the preprocessed image
|
| 2238 |
+
paddle_processed_original = False
|
| 2239 |
else:
|
| 2240 |
# When using image path, load image to get dimensions
|
| 2241 |
temp_image = Image.open(image_path)
|
|
|
|
| 2243 |
# For file path, use the original dimensions (before preprocessing)
|
| 2244 |
# original_image_width and original_image_height are already set above
|
| 2245 |
paddle_results = ocr.predict(image_path)
|
| 2246 |
+
# PaddleOCR processed the original image from file path
|
| 2247 |
+
paddle_processed_original = True
|
| 2248 |
+
# Store the original image for cropping
|
| 2249 |
+
original_image_for_cropping = temp_image.copy()
|
| 2250 |
|
| 2251 |
# Save PaddleOCR visualization with bounding boxes
|
| 2252 |
+
if paddle_results and SAVE_PAGE_OCR_VISUALISATIONS is True:
|
| 2253 |
|
| 2254 |
for res in paddle_results:
|
| 2255 |
# self.output_folder is already validated and normalized at construction time
|
|
|
|
| 2267 |
os.makedirs(paddle_viz_folder, exist_ok=True)
|
| 2268 |
res.save_to_img(paddle_viz_folder)
|
| 2269 |
|
| 2270 |
+
if self.ocr_engine == "hybrid-paddle-vlm":
|
| 2271 |
+
|
| 2272 |
+
paddle_results = self._perform_hybrid_paddle_vlm_ocr(
|
| 2273 |
+
image,
|
| 2274 |
+
ocr=ocr,
|
| 2275 |
+
paddle_results=paddle_results,
|
| 2276 |
+
image_name=image_name,
|
| 2277 |
+
input_image_width=original_image_width,
|
| 2278 |
+
input_image_height=original_image_height,
|
| 2279 |
+
)
|
| 2280 |
+
|
| 2281 |
+
# Debug: Check structure after hybrid processing
|
| 2282 |
+
if paddle_results:
|
| 2283 |
+
print(
|
| 2284 |
+
f"DEBUG: After hybrid, paddle_results length: {len(paddle_results)}"
|
| 2285 |
+
)
|
| 2286 |
+
if len(paddle_results) > 0 and isinstance(paddle_results[0], dict):
|
| 2287 |
+
rec_models = paddle_results[0].get("rec_models", [])
|
| 2288 |
+
vlm_count = sum(1 for m in rec_models if m == "VLM")
|
| 2289 |
+
print(
|
| 2290 |
+
f"DEBUG: After hybrid, first page has {vlm_count} VLM labels out of {len(rec_models)} total"
|
| 2291 |
+
)
|
| 2292 |
+
|
| 2293 |
ocr_data = self._convert_paddle_to_tesseract_format(
|
| 2294 |
paddle_results,
|
| 2295 |
input_image_width=original_image_width,
|
| 2296 |
input_image_height=original_image_height,
|
| 2297 |
)
|
| 2298 |
|
| 2299 |
+
if SAVE_PAGE_OCR_VISUALISATIONS is True:
|
| 2300 |
+
# Save output to image with identified bounding boxes
|
| 2301 |
+
# Use original image since coordinates are in original image space
|
| 2302 |
+
# Prefer original_image_for_cropping (when PaddleOCR processed from file path),
|
| 2303 |
+
# otherwise use original_image_for_visualization (stored before preprocessing)
|
| 2304 |
+
viz_image = (
|
| 2305 |
+
original_image_for_cropping
|
| 2306 |
+
if original_image_for_cropping is not None
|
| 2307 |
+
else (
|
| 2308 |
+
original_image_for_visualization
|
| 2309 |
+
if original_image_for_visualization is not None
|
| 2310 |
+
else image
|
| 2311 |
+
)
|
| 2312 |
+
)
|
| 2313 |
+
if isinstance(viz_image, Image.Image):
|
| 2314 |
+
# Convert PIL Image to numpy array in BGR format for OpenCV
|
| 2315 |
+
image_cv = cv2.cvtColor(np.array(viz_image), cv2.COLOR_RGB2BGR)
|
| 2316 |
+
else:
|
| 2317 |
+
image_cv = np.array(viz_image)
|
| 2318 |
+
if len(image_cv.shape) == 2:
|
| 2319 |
+
image_cv = cv2.cvtColor(image_cv, cv2.COLOR_GRAY2BGR)
|
| 2320 |
+
elif len(image_cv.shape) == 3 and image_cv.shape[2] == 3:
|
| 2321 |
+
# Assume RGB, convert to BGR
|
| 2322 |
+
image_cv = cv2.cvtColor(image_cv, cv2.COLOR_RGB2BGR)
|
| 2323 |
+
|
| 2324 |
+
# Draw all bounding boxes on the image
|
| 2325 |
+
for i in range(len(ocr_data["text"])):
|
| 2326 |
+
left = int(ocr_data["left"][i])
|
| 2327 |
+
top = int(ocr_data["top"][i])
|
| 2328 |
+
width = int(ocr_data["width"][i])
|
| 2329 |
+
height = int(ocr_data["height"][i])
|
| 2330 |
+
# Ensure coordinates are within image bounds
|
| 2331 |
+
left = max(0, min(left, image_cv.shape[1] - 1))
|
| 2332 |
+
top = max(0, min(top, image_cv.shape[0] - 1))
|
| 2333 |
+
right = max(left + 1, min(left + width, image_cv.shape[1]))
|
| 2334 |
+
bottom = max(top + 1, min(top + height, image_cv.shape[0]))
|
| 2335 |
+
cv2.rectangle(
|
| 2336 |
+
image_cv, (left, top), (right, bottom), (0, 255, 0), 2
|
| 2337 |
+
)
|
| 2338 |
+
|
| 2339 |
+
# Save the visualization once with all boxes drawn
|
| 2340 |
+
paddle_viz_folder = os.path.join(
|
| 2341 |
+
self.output_folder, "paddle_visualisations"
|
| 2342 |
+
)
|
| 2343 |
+
# Double-check the constructed path is safe
|
| 2344 |
+
if not validate_folder_containment(paddle_viz_folder, OUTPUT_FOLDER):
|
| 2345 |
+
raise ValueError(
|
| 2346 |
+
f"Unsafe paddle visualisations folder path: {paddle_viz_folder}"
|
| 2347 |
+
)
|
| 2348 |
+
|
| 2349 |
+
os.makedirs(paddle_viz_folder, exist_ok=True)
|
| 2350 |
+
|
| 2351 |
+
# Generate safe filename
|
| 2352 |
+
if image_name:
|
| 2353 |
+
base_name = os.path.splitext(os.path.basename(image_name))[0]
|
| 2354 |
+
# Sanitize filename to avoid issues with special characters
|
| 2355 |
+
base_name = safe_sanitize_text(base_name, max_length=50)
|
| 2356 |
+
filename = f"{base_name}_ocr_visualisation.jpg"
|
| 2357 |
+
else:
|
| 2358 |
+
timestamp = int(time.time())
|
| 2359 |
+
filename = f"ocr_visualisation_{timestamp}.jpg"
|
| 2360 |
+
|
| 2361 |
+
output_path = os.path.join(paddle_viz_folder, filename)
|
| 2362 |
+
cv2.imwrite(output_path, image_cv)
|
| 2363 |
+
print(f"OCR visualization saved to: {output_path}")
|
| 2364 |
+
|
| 2365 |
else:
|
| 2366 |
raise RuntimeError(f"Unsupported OCR engine: {self.ocr_engine}")
|
| 2367 |
|
| 2368 |
+
# Always check for scale_factor, even if preprocessing_metadata is empty
|
| 2369 |
+
# This ensures rescaling happens correctly when preprocessing was applied
|
| 2370 |
+
scale_factor = (
|
| 2371 |
+
preprocessing_metadata.get("scale_factor", 1.0)
|
| 2372 |
+
if preprocessing_metadata
|
| 2373 |
+
else 1.0
|
| 2374 |
+
)
|
| 2375 |
+
if scale_factor != 1.0:
|
| 2376 |
+
# Skip rescaling for PaddleOCR since _convert_paddle_to_tesseract_format
|
| 2377 |
+
# already scales coordinates directly to original image dimensions
|
| 2378 |
+
# hybrid-paddle-vlm also uses PaddleOCR and converts to original space
|
| 2379 |
+
if self.ocr_engine == "paddle" or self.ocr_engine == "hybrid-paddle-vlm":
|
| 2380 |
+
pass
|
| 2381 |
+
# print(f"Skipping rescale_ocr_data for PaddleOCR (already scaled to original dimensions)")
|
| 2382 |
+
else:
|
| 2383 |
+
print("rescaling ocr_data with scale_factor: ", scale_factor)
|
| 2384 |
+
ocr_data = rescale_ocr_data(ocr_data, scale_factor)
|
| 2385 |
+
|
| 2386 |
# Convert line-level results to word-level if configured and needed
|
| 2387 |
if CONVERT_LINE_TO_WORD_LEVEL and self._is_line_level_data(ocr_data):
|
| 2388 |
print("Converting line-level OCR results to word-level...")
|
| 2389 |
+
# Check if coordinates need to be scaled to match the image we're cropping from
|
| 2390 |
+
# For PaddleOCR: _convert_paddle_to_tesseract_format converts coordinates to original image space
|
| 2391 |
+
# - If PaddleOCR processed the original image (image_path provided), crop from original image (no scaling)
|
| 2392 |
+
# - If PaddleOCR processed the preprocessed image (no image_path), scale coordinates to preprocessed space and crop from preprocessed image
|
| 2393 |
# For Tesseract: OCR runs on preprocessed image, so coordinates are already in preprocessed space,
|
| 2394 |
# matching the preprocessed image we're cropping from - no scaling needed
|
| 2395 |
+
|
| 2396 |
needs_scaling = False
|
| 2397 |
+
crop_image = image # Default to preprocessed image
|
| 2398 |
+
crop_image_width = image_width
|
| 2399 |
+
crop_image_height = image_height
|
| 2400 |
+
|
| 2401 |
if (
|
| 2402 |
PREPROCESS_LOCAL_OCR_IMAGES
|
| 2403 |
and original_image_width
|
|
|
|
| 2409 |
):
|
| 2410 |
# PaddleOCR coordinates are converted to original space by _convert_paddle_to_tesseract_format
|
| 2411 |
# hybrid-paddle-vlm also uses PaddleOCR and converts to original space
|
| 2412 |
+
if paddle_processed_original:
|
| 2413 |
+
# PaddleOCR processed the original image, so crop from original image
|
| 2414 |
+
# No scaling needed - coordinates are already in original space
|
| 2415 |
+
crop_image = original_image_for_cropping
|
| 2416 |
+
crop_image_width = original_image_width
|
| 2417 |
+
crop_image_height = original_image_height
|
| 2418 |
+
needs_scaling = False
|
| 2419 |
+
print(
|
| 2420 |
+
f"PaddleOCR processed original image. Cropping from original ({original_image_width}x{original_image_height}) without scaling."
|
| 2421 |
+
)
|
| 2422 |
+
else:
|
| 2423 |
+
# PaddleOCR processed the preprocessed image, so scale coordinates to preprocessed space
|
| 2424 |
+
needs_scaling = True
|
| 2425 |
|
| 2426 |
if needs_scaling:
|
| 2427 |
# Calculate scale factors from original to preprocessed
|
|
|
|
| 2439 |
"width": [w * scale_x for w in ocr_data["width"]],
|
| 2440 |
"height": [h * scale_y for h in ocr_data["height"]],
|
| 2441 |
"conf": ocr_data["conf"],
|
| 2442 |
+
"model": ocr_data["model"],
|
| 2443 |
}
|
| 2444 |
ocr_data = self._convert_line_to_word_level(
|
| 2445 |
scaled_ocr_data,
|
| 2446 |
+
crop_image_width,
|
| 2447 |
+
crop_image_height,
|
| 2448 |
+
crop_image,
|
| 2449 |
image_name=image_name,
|
| 2450 |
)
|
| 2451 |
# Scale word-level results back to original image space
|
|
|
|
| 2457 |
ocr_data["width"][i] = ocr_data["width"][i] * scale_factor_x
|
| 2458 |
ocr_data["height"][i] = ocr_data["height"][i] * scale_factor_y
|
| 2459 |
else:
|
| 2460 |
+
# No scaling needed - coordinates match the crop image space
|
| 2461 |
ocr_data = self._convert_line_to_word_level(
|
| 2462 |
+
ocr_data,
|
| 2463 |
+
crop_image_width,
|
| 2464 |
+
crop_image_height,
|
| 2465 |
+
crop_image,
|
| 2466 |
+
image_name=image_name,
|
| 2467 |
)
|
| 2468 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2469 |
# The rest of your processing pipeline now works for both engines
|
| 2470 |
ocr_result = ocr_data
|
| 2471 |
|
|
|
|
| 2477 |
]
|
| 2478 |
|
| 2479 |
# Determine default model based on OCR engine if model field is not present
|
| 2480 |
+
if "model" in ocr_result:
|
|
|
|
|
|
|
| 2481 |
# Model field exists and has correct length - use it
|
| 2482 |
def get_model(idx):
|
| 2483 |
return ocr_result["model"][idx]
|
|
|
|
| 2491 |
"Paddle"
|
| 2492 |
if self.ocr_engine == "paddle"
|
| 2493 |
else (
|
| 2494 |
+
"Tesseract"
|
| 2495 |
if self.ocr_engine == "hybrid-paddle"
|
| 2496 |
else (
|
| 2497 |
+
"Tesseract"
|
| 2498 |
if self.ocr_engine == "hybrid-vlm"
|
| 2499 |
else (
|
| 2500 |
+
"Paddle"
|
| 2501 |
if self.ocr_engine == "hybrid-paddle-vlm"
|
| 2502 |
else None
|
| 2503 |
)
|
tools/file_redaction.py
CHANGED
|
@@ -61,8 +61,7 @@ from tools.config import (
|
|
| 61 |
RETURN_PDF_FOR_REVIEW,
|
| 62 |
RETURN_REDACTED_PDF,
|
| 63 |
RUN_AWS_FUNCTIONS,
|
| 64 |
-
|
| 65 |
-
SAVE_TEXTRACT_VISUALISATIONS,
|
| 66 |
SELECTABLE_TEXT_EXTRACT_OPTION,
|
| 67 |
TESSERACT_TEXT_EXTRACT_OPTION,
|
| 68 |
TEXTRACT_TEXT_EXTRACT_OPTION,
|
|
@@ -3493,7 +3492,7 @@ def redact_image_pdf(
|
|
| 3493 |
|
| 3494 |
if not textract_data:
|
| 3495 |
try:
|
| 3496 |
-
print(f"Image object: {image}")
|
| 3497 |
# Convert the image_path to bytes using an in-memory buffer
|
| 3498 |
image_buffer = io.BytesIO()
|
| 3499 |
image.save(
|
|
@@ -3658,10 +3657,10 @@ def redact_image_pdf(
|
|
| 3658 |
# Save OCR visualization with bounding boxes (works for all OCR methods)
|
| 3659 |
if (
|
| 3660 |
text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION
|
| 3661 |
-
and
|
| 3662 |
) or (
|
| 3663 |
text_extraction_method == TESSERACT_TEXT_EXTRACT_OPTION
|
| 3664 |
-
and
|
| 3665 |
):
|
| 3666 |
if (
|
| 3667 |
page_line_level_ocr_results_with_words
|
|
@@ -5189,7 +5188,11 @@ def visualise_ocr_words_bounding_boxes(
|
|
| 5189 |
|
| 5190 |
words = line_data.get("words", [])
|
| 5191 |
|
| 5192 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5193 |
for word_data in words:
|
| 5194 |
if not isinstance(word_data, dict):
|
| 5195 |
continue
|
|
@@ -5219,73 +5222,223 @@ def visualise_ocr_words_bounding_boxes(
|
|
| 5219 |
if x2 <= x1 or y2 <= y1:
|
| 5220 |
continue
|
| 5221 |
|
| 5222 |
-
#
|
| 5223 |
-
|
| 5224 |
-
|
|
|
|
|
|
|
| 5225 |
|
| 5226 |
-
|
| 5227 |
-
text_color = (0, 0, 180) # Default to dark red
|
| 5228 |
-
for min_conf, max_conf, conf_color, _ in text_confidence_ranges:
|
| 5229 |
-
if min_conf <= conf <= max_conf:
|
| 5230 |
-
text_color = conf_color
|
| 5231 |
-
break
|
| 5232 |
|
| 5233 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5234 |
box_width = x2 - x1
|
| 5235 |
box_height = y2 - y1
|
| 5236 |
|
| 5237 |
-
#
|
| 5238 |
-
|
| 5239 |
-
|
| 5240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5241 |
|
| 5242 |
-
|
| 5243 |
-
|
| 5244 |
-
|
| 5245 |
-
|
| 5246 |
|
| 5247 |
-
|
| 5248 |
-
|
| 5249 |
-
|
| 5250 |
-
|
| 5251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5252 |
|
| 5253 |
-
# Scale font to fit height (with some padding)
|
| 5254 |
-
if text_height > 0:
|
| 5255 |
-
height_scale = (box_height * 0.8) / text_height
|
| 5256 |
else:
|
| 5257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5258 |
|
| 5259 |
-
|
| 5260 |
-
|
| 5261 |
-
|
| 5262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5263 |
|
| 5264 |
-
|
| 5265 |
-
|
| 5266 |
-
|
| 5267 |
-
|
|
|
|
|
|
|
| 5268 |
|
| 5269 |
-
|
| 5270 |
-
|
| 5271 |
-
|
| 5272 |
-
|
| 5273 |
-
|
| 5274 |
-
|
| 5275 |
-
|
| 5276 |
-
|
| 5277 |
-
|
| 5278 |
-
|
| 5279 |
-
|
| 5280 |
-
|
| 5281 |
-
|
| 5282 |
-
|
| 5283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5284 |
|
| 5285 |
-
|
| 5286 |
-
|
| 5287 |
-
|
| 5288 |
-
|
| 5289 |
|
| 5290 |
# Add legend to second page
|
| 5291 |
if add_legend:
|
|
|
|
| 61 |
RETURN_PDF_FOR_REVIEW,
|
| 62 |
RETURN_REDACTED_PDF,
|
| 63 |
RUN_AWS_FUNCTIONS,
|
| 64 |
+
SAVE_PAGE_OCR_VISUALISATIONS,
|
|
|
|
| 65 |
SELECTABLE_TEXT_EXTRACT_OPTION,
|
| 66 |
TESSERACT_TEXT_EXTRACT_OPTION,
|
| 67 |
TEXTRACT_TEXT_EXTRACT_OPTION,
|
|
|
|
| 3492 |
|
| 3493 |
if not textract_data:
|
| 3494 |
try:
|
| 3495 |
+
# print(f"Image object: {image}")
|
| 3496 |
# Convert the image_path to bytes using an in-memory buffer
|
| 3497 |
image_buffer = io.BytesIO()
|
| 3498 |
image.save(
|
|
|
|
| 3657 |
# Save OCR visualization with bounding boxes (works for all OCR methods)
|
| 3658 |
if (
|
| 3659 |
text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION
|
| 3660 |
+
and SAVE_PAGE_OCR_VISUALISATIONS is True
|
| 3661 |
) or (
|
| 3662 |
text_extraction_method == TESSERACT_TEXT_EXTRACT_OPTION
|
| 3663 |
+
and SAVE_PAGE_OCR_VISUALISATIONS is True
|
| 3664 |
):
|
| 3665 |
if (
|
| 3666 |
page_line_level_ocr_results_with_words
|
|
|
|
| 5188 |
|
| 5189 |
words = line_data.get("words", [])
|
| 5190 |
|
| 5191 |
+
# Group words by bounding box (to handle cases where multiple words share the same box)
|
| 5192 |
+
# Use a small tolerance to consider boxes as "the same" if they're very close
|
| 5193 |
+
bbox_tolerance = 5 # pixels
|
| 5194 |
+
bbox_groups = {} # Maps (x1, y1, x2, y2) to list of word_data
|
| 5195 |
+
|
| 5196 |
for word_data in words:
|
| 5197 |
if not isinstance(word_data, dict):
|
| 5198 |
continue
|
|
|
|
| 5222 |
if x2 <= x1 or y2 <= y1:
|
| 5223 |
continue
|
| 5224 |
|
| 5225 |
+
# Round coordinates to nearest tolerance to group similar boxes
|
| 5226 |
+
x1_rounded = (x1 // bbox_tolerance) * bbox_tolerance
|
| 5227 |
+
y1_rounded = (y1 // bbox_tolerance) * bbox_tolerance
|
| 5228 |
+
x2_rounded = (x2 // bbox_tolerance) * bbox_tolerance
|
| 5229 |
+
y2_rounded = (y2 // bbox_tolerance) * bbox_tolerance
|
| 5230 |
|
| 5231 |
+
bbox_key = (x1_rounded, y1_rounded, x2_rounded, y2_rounded)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5232 |
|
| 5233 |
+
if bbox_key not in bbox_groups:
|
| 5234 |
+
bbox_groups[bbox_key] = []
|
| 5235 |
+
bbox_groups[bbox_key].append(
|
| 5236 |
+
{"word_data": word_data, "original_bbox": (x1, y1, x2, y2)}
|
| 5237 |
+
)
|
| 5238 |
+
|
| 5239 |
+
# Process each group of words
|
| 5240 |
+
for bbox_key, word_group in bbox_groups.items():
|
| 5241 |
+
if not word_group:
|
| 5242 |
+
continue
|
| 5243 |
+
|
| 5244 |
+
# Use the first word's bounding box as the reference (they should all be similar)
|
| 5245 |
+
x1, y1, x2, y2 = word_group[0]["original_bbox"]
|
| 5246 |
box_width = x2 - x1
|
| 5247 |
box_height = y2 - y1
|
| 5248 |
|
| 5249 |
+
# If only one word in the box, process it normally
|
| 5250 |
+
if len(word_group) == 1:
|
| 5251 |
+
word_data = word_group[0]["word_data"]
|
| 5252 |
+
text = word_data.get("text", "")
|
| 5253 |
+
conf = int(word_data.get("conf", word_data.get("confidence", 0)))
|
| 5254 |
+
|
| 5255 |
+
# Check if word was replaced by a different model
|
| 5256 |
+
model = word_data.get("model", None)
|
| 5257 |
+
is_replaced = model and model.lower() != base_model_name.lower()
|
| 5258 |
+
|
| 5259 |
+
# Text color always based on confidence
|
| 5260 |
+
text_color = (0, 0, 180) # Default to dark red
|
| 5261 |
+
for min_conf, max_conf, conf_color, _ in text_confidence_ranges:
|
| 5262 |
+
if min_conf <= conf <= max_conf:
|
| 5263 |
+
text_color = conf_color
|
| 5264 |
+
break
|
| 5265 |
+
|
| 5266 |
+
# Calculate font size to fit text within bounding box
|
| 5267 |
+
font_scale = 0.5
|
| 5268 |
+
font_thickness = 1
|
| 5269 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
| 5270 |
|
| 5271 |
+
# Get text size and adjust to fit
|
| 5272 |
+
(text_width, text_height), baseline = cv2.getTextSize(
|
| 5273 |
+
text, font, font_scale, font_thickness
|
| 5274 |
+
)
|
| 5275 |
|
| 5276 |
+
# Scale font to fit width (with some padding)
|
| 5277 |
+
if text_width > 0:
|
| 5278 |
+
width_scale = (box_width * 0.9) / text_width
|
| 5279 |
+
else:
|
| 5280 |
+
width_scale = 1.0
|
| 5281 |
+
|
| 5282 |
+
# Scale font to fit height (with some padding)
|
| 5283 |
+
if text_height > 0:
|
| 5284 |
+
height_scale = (box_height * 0.8) / text_height
|
| 5285 |
+
else:
|
| 5286 |
+
height_scale = 1.0
|
| 5287 |
+
|
| 5288 |
+
# Use the smaller scale to ensure text fits both dimensions
|
| 5289 |
+
font_scale = min(
|
| 5290 |
+
font_scale * min(width_scale, height_scale), 2.0
|
| 5291 |
+
) # Cap at 2.0
|
| 5292 |
+
|
| 5293 |
+
# Recalculate text size with adjusted font scale
|
| 5294 |
+
(text_width, text_height), baseline = cv2.getTextSize(
|
| 5295 |
+
text, font, font_scale, font_thickness
|
| 5296 |
+
)
|
| 5297 |
+
|
| 5298 |
+
# Center text within bounding box
|
| 5299 |
+
text_x = x1 + (box_width - text_width) // 2
|
| 5300 |
+
text_y = y1 + (box_height + text_height) // 2 # Baseline adjustment
|
| 5301 |
+
|
| 5302 |
+
# Draw text
|
| 5303 |
+
cv2.putText(
|
| 5304 |
+
text_page,
|
| 5305 |
+
text,
|
| 5306 |
+
(text_x, text_y),
|
| 5307 |
+
font,
|
| 5308 |
+
font_scale,
|
| 5309 |
+
text_color,
|
| 5310 |
+
font_thickness,
|
| 5311 |
+
cv2.LINE_AA,
|
| 5312 |
+
)
|
| 5313 |
+
|
| 5314 |
+
# Draw grey bounding box for replaced words on text page
|
| 5315 |
+
if is_replaced:
|
| 5316 |
+
box_color = (128, 128, 128) # Grey for model replacements
|
| 5317 |
+
cv2.rectangle(text_page, (x1, y1), (x2, y2), box_color, 1)
|
| 5318 |
|
|
|
|
|
|
|
|
|
|
| 5319 |
else:
|
| 5320 |
+
# Multiple words in the same box - arrange them side by side
|
| 5321 |
+
# Extract texts and determine colors for each word
|
| 5322 |
+
word_texts = []
|
| 5323 |
+
word_colors = []
|
| 5324 |
+
word_is_replaced = []
|
| 5325 |
+
|
| 5326 |
+
for item in word_group:
|
| 5327 |
+
word_data = item["word_data"]
|
| 5328 |
+
text = word_data.get("text", "")
|
| 5329 |
+
conf = int(word_data.get("conf", word_data.get("confidence", 0)))
|
| 5330 |
+
model = word_data.get("model", None)
|
| 5331 |
+
is_replaced = model and model.lower() != base_model_name.lower()
|
| 5332 |
+
|
| 5333 |
+
# Text color based on confidence
|
| 5334 |
+
text_color = (0, 0, 180) # Default to dark red
|
| 5335 |
+
for min_conf, max_conf, conf_color, _ in text_confidence_ranges:
|
| 5336 |
+
if min_conf <= conf <= max_conf:
|
| 5337 |
+
text_color = conf_color
|
| 5338 |
+
break
|
| 5339 |
|
| 5340 |
+
word_texts.append(text)
|
| 5341 |
+
word_colors.append(text_color)
|
| 5342 |
+
word_is_replaced.append(is_replaced)
|
| 5343 |
+
|
| 5344 |
+
# Calculate font size to fit all words side by side
|
| 5345 |
+
font_scale = 0.5
|
| 5346 |
+
font_thickness = 1
|
| 5347 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
| 5348 |
+
|
| 5349 |
+
# Start with a reasonable font scale and reduce if needed
|
| 5350 |
+
max_font_scale = 2.0
|
| 5351 |
+
min_font_scale = 0.1
|
| 5352 |
+
font_scale = max_font_scale
|
| 5353 |
+
|
| 5354 |
+
# Binary search or iterative approach to find the right font size
|
| 5355 |
+
for _ in range(20): # Max iterations
|
| 5356 |
+
# Calculate total width needed for all words with spaces
|
| 5357 |
+
total_width = 0
|
| 5358 |
+
max_text_height = 0
|
| 5359 |
+
|
| 5360 |
+
for i, text in enumerate(word_texts):
|
| 5361 |
+
(text_width, text_height), baseline = cv2.getTextSize(
|
| 5362 |
+
text, font, font_scale, font_thickness
|
| 5363 |
+
)
|
| 5364 |
+
total_width += text_width
|
| 5365 |
+
max_text_height = max(max_text_height, text_height)
|
| 5366 |
|
| 5367 |
+
# Add space width between words (except last word)
|
| 5368 |
+
if i < len(word_texts) - 1:
|
| 5369 |
+
(space_width, _), _ = cv2.getTextSize(
|
| 5370 |
+
" ", font, font_scale, font_thickness
|
| 5371 |
+
)
|
| 5372 |
+
total_width += space_width
|
| 5373 |
|
| 5374 |
+
# Check if it fits
|
| 5375 |
+
width_fits = total_width <= box_width * 0.9
|
| 5376 |
+
height_fits = max_text_height <= box_height * 0.8
|
| 5377 |
+
|
| 5378 |
+
if width_fits and height_fits:
|
| 5379 |
+
break
|
| 5380 |
+
|
| 5381 |
+
# Reduce font scale
|
| 5382 |
+
font_scale *= 0.9
|
| 5383 |
+
if font_scale < min_font_scale:
|
| 5384 |
+
font_scale = min_font_scale
|
| 5385 |
+
break
|
| 5386 |
+
|
| 5387 |
+
# Recalculate total width and max height with final font scale
|
| 5388 |
+
total_width = 0
|
| 5389 |
+
max_text_height = 0
|
| 5390 |
+
for i, text in enumerate(word_texts):
|
| 5391 |
+
(text_width, text_height), baseline = cv2.getTextSize(
|
| 5392 |
+
text, font, font_scale, font_thickness
|
| 5393 |
+
)
|
| 5394 |
+
total_width += text_width
|
| 5395 |
+
max_text_height = max(max_text_height, text_height)
|
| 5396 |
+
|
| 5397 |
+
# Add space width between words (except last word)
|
| 5398 |
+
if i < len(word_texts) - 1:
|
| 5399 |
+
(space_width, _), _ = cv2.getTextSize(
|
| 5400 |
+
" ", font, font_scale, font_thickness
|
| 5401 |
+
)
|
| 5402 |
+
total_width += space_width
|
| 5403 |
+
|
| 5404 |
+
# Now draw each word side by side
|
| 5405 |
+
current_x = (
|
| 5406 |
+
x1 + (box_width - total_width) // 2
|
| 5407 |
+
) # Center the combined text
|
| 5408 |
+
text_y = y1 + (box_height + max_text_height) // 2 # Baseline adjustment
|
| 5409 |
+
|
| 5410 |
+
for i, (text, text_color) in enumerate(zip(word_texts, word_colors)):
|
| 5411 |
+
# Get text size with final font scale
|
| 5412 |
+
(text_width, text_height), baseline = cv2.getTextSize(
|
| 5413 |
+
text, font, font_scale, font_thickness
|
| 5414 |
+
)
|
| 5415 |
+
|
| 5416 |
+
# Draw text
|
| 5417 |
+
cv2.putText(
|
| 5418 |
+
text_page,
|
| 5419 |
+
text,
|
| 5420 |
+
(int(current_x), text_y),
|
| 5421 |
+
font,
|
| 5422 |
+
font_scale,
|
| 5423 |
+
text_color,
|
| 5424 |
+
font_thickness,
|
| 5425 |
+
cv2.LINE_AA,
|
| 5426 |
+
)
|
| 5427 |
+
|
| 5428 |
+
# Move to next position
|
| 5429 |
+
current_x += text_width
|
| 5430 |
+
|
| 5431 |
+
# Add space between words (except last word)
|
| 5432 |
+
if i < len(word_texts) - 1:
|
| 5433 |
+
(space_width, _), _ = cv2.getTextSize(
|
| 5434 |
+
" ", font, font_scale, font_thickness
|
| 5435 |
+
)
|
| 5436 |
+
current_x += space_width
|
| 5437 |
|
| 5438 |
+
# Draw grey bounding box if any word was replaced
|
| 5439 |
+
if any(word_is_replaced):
|
| 5440 |
+
box_color = (128, 128, 128) # Grey for model replacements
|
| 5441 |
+
cv2.rectangle(text_page, (x1, y1), (x2, y2), box_color, 1)
|
| 5442 |
|
| 5443 |
# Add legend to second page
|
| 5444 |
if add_legend:
|
tools/run_vlm.py
CHANGED
|
@@ -221,7 +221,7 @@ if SHOW_VLM_MODEL_OPTIONS is True:
|
|
| 221 |
|
| 222 |
|
| 223 |
@spaces.GPU(duration=MAX_SPACES_GPU_RUN_TIME)
|
| 224 |
-
def
|
| 225 |
text: str,
|
| 226 |
image: Image.Image,
|
| 227 |
max_new_tokens: int = None,
|
|
|
|
| 221 |
|
| 222 |
|
| 223 |
@spaces.GPU(duration=MAX_SPACES_GPU_RUN_TIME)
|
| 224 |
+
def extract_text_from_image_vlm(
|
| 225 |
text: str,
|
| 226 |
image: Image.Image,
|
| 227 |
max_new_tokens: int = None,
|
tools/secure_regex_utils.py
CHANGED
|
@@ -267,14 +267,14 @@ def safe_extract_latest_number_from_filename(filename: str) -> Optional[int]:
|
|
| 267 |
return None
|
| 268 |
|
| 269 |
|
| 270 |
-
def safe_sanitize_text(text: str, replacement: str = "_") -> str:
|
| 271 |
"""
|
| 272 |
Safely sanitize text by removing dangerous characters without ReDoS vulnerability.
|
| 273 |
|
| 274 |
Args:
|
| 275 |
text: The text to sanitize
|
| 276 |
replacement: Character to replace dangerous characters with
|
| 277 |
-
|
| 278 |
Returns:
|
| 279 |
Sanitized text
|
| 280 |
"""
|
|
@@ -291,4 +291,7 @@ def safe_sanitize_text(text: str, replacement: str = "_") -> str:
|
|
| 291 |
# Remove leading/trailing replacements
|
| 292 |
sanitized = sanitized.strip(replacement)
|
| 293 |
|
|
|
|
|
|
|
|
|
|
| 294 |
return sanitized
|
|
|
|
| 267 |
return None
|
| 268 |
|
| 269 |
|
| 270 |
+
def safe_sanitize_text(text: str, replacement: str = "_", max_length: int = 255) -> str:
|
| 271 |
"""
|
| 272 |
Safely sanitize text by removing dangerous characters without ReDoS vulnerability.
|
| 273 |
|
| 274 |
Args:
|
| 275 |
text: The text to sanitize
|
| 276 |
replacement: Character to replace dangerous characters with
|
| 277 |
+
max_length: Maximum length of the text
|
| 278 |
Returns:
|
| 279 |
Sanitized text
|
| 280 |
"""
|
|
|
|
| 291 |
# Remove leading/trailing replacements
|
| 292 |
sanitized = sanitized.strip(replacement)
|
| 293 |
|
| 294 |
+
# Truncate to maximum length
|
| 295 |
+
sanitized = sanitized[:max_length]
|
| 296 |
+
|
| 297 |
return sanitized
|
tools/word_segmenter.py
CHANGED
|
@@ -82,14 +82,14 @@ class AdaptiveSegmenter:
|
|
| 82 |
|
| 83 |
orientation_angle = 0.0
|
| 84 |
if box_height > box_width:
|
| 85 |
-
print(
|
| 86 |
-
|
| 87 |
-
)
|
| 88 |
orientation_angle = 90.0
|
| 89 |
else:
|
| 90 |
-
print(
|
| 91 |
-
|
| 92 |
-
)
|
| 93 |
M_orient = cv2.getRotationMatrix2D(center, 0, 1.0)
|
| 94 |
return gray_image, M_orient
|
| 95 |
|
|
@@ -251,29 +251,29 @@ class AdaptiveSegmenter:
|
|
| 251 |
) -> Tuple[Dict[str, List], bool]:
|
| 252 |
|
| 253 |
if line_image is None:
|
| 254 |
-
print(
|
| 255 |
-
|
| 256 |
-
)
|
| 257 |
return ({}, False)
|
| 258 |
|
| 259 |
# Validate line_image is a valid numpy array
|
| 260 |
if not isinstance(line_image, np.ndarray):
|
| 261 |
-
print(
|
| 262 |
-
|
| 263 |
-
)
|
| 264 |
return ({}, False)
|
| 265 |
|
| 266 |
# Validate line_image has valid shape and size
|
| 267 |
if line_image.size == 0:
|
| 268 |
-
print(
|
| 269 |
-
|
| 270 |
-
)
|
| 271 |
return ({}, False)
|
| 272 |
|
| 273 |
if len(line_image.shape) < 2:
|
| 274 |
-
print(
|
| 275 |
-
|
| 276 |
-
)
|
| 277 |
return ({}, False)
|
| 278 |
|
| 279 |
# Early return if 1 or fewer words
|
|
@@ -283,20 +283,20 @@ class AdaptiveSegmenter:
|
|
| 283 |
if len(words) <= 1:
|
| 284 |
return ({}, False)
|
| 285 |
else:
|
| 286 |
-
print(
|
| 287 |
-
|
| 288 |
-
)
|
| 289 |
return ({}, False)
|
| 290 |
|
| 291 |
-
print(f"line_text: {line_text}")
|
| 292 |
shortened_line_text = line_text.replace(" ", "_")[:10]
|
| 293 |
|
| 294 |
if SHOW_OUTPUT_IMAGES:
|
| 295 |
os.makedirs(self.output_folder, exist_ok=True)
|
| 296 |
-
output_path = f"{self.output_folder}/
|
| 297 |
-
os.makedirs(f"{self.output_folder}/
|
| 298 |
cv2.imwrite(output_path, line_image)
|
| 299 |
-
print(f"\nSaved original image to '{output_path}'")
|
| 300 |
|
| 301 |
gray = cv2.cvtColor(line_image, cv2.COLOR_BGR2GRAY)
|
| 302 |
|
|
@@ -334,11 +334,22 @@ class AdaptiveSegmenter:
|
|
| 334 |
borderMode=cv2.BORDER_REPLICATE,
|
| 335 |
)
|
| 336 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
# Save deskewed image (optional, only if image_name is provided)
|
| 338 |
if SHOW_OUTPUT_IMAGES:
|
| 339 |
os.makedirs(self.output_folder, exist_ok=True)
|
| 340 |
-
output_path = f"{self.output_folder}/
|
| 341 |
-
os.makedirs(f"{self.output_folder}/
|
| 342 |
cv2.imwrite(output_path, deskewed_line_image)
|
| 343 |
# print(f"\nSaved deskewed image to '{output_path}'")
|
| 344 |
|
|
@@ -351,6 +362,29 @@ class AdaptiveSegmenter:
|
|
| 351 |
block_size = int(avg_char_width_approx * BLOCK_SIZE_FACTOR)
|
| 352 |
if block_size % 2 == 0:
|
| 353 |
block_size += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
binary = cv2.adaptiveThreshold(
|
| 355 |
deskewed_gray,
|
| 356 |
255,
|
|
@@ -360,11 +394,18 @@ class AdaptiveSegmenter:
|
|
| 360 |
C_VALUE,
|
| 361 |
)
|
| 362 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
# Save cropped image (optional, only if image_name is provided)
|
| 364 |
if SHOW_OUTPUT_IMAGES:
|
| 365 |
os.makedirs(self.output_folder, exist_ok=True)
|
| 366 |
-
output_path = f"{self.output_folder}/
|
| 367 |
-
os.makedirs(f"{self.output_folder}/
|
| 368 |
cv2.imwrite(output_path, binary)
|
| 369 |
# print(f"\nSaved cropped image to '{output_path}'")
|
| 370 |
|
|
@@ -380,14 +421,25 @@ class AdaptiveSegmenter:
|
|
| 380 |
# It's a dilation followed by an erosion
|
| 381 |
closed_binary = cv2.morphologyEx(binary, cv2.MORPH_CLOSE, kernel, iterations=1)
|
| 382 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 383 |
# (Optional) You could also use a DILATE to make letters thicker
|
| 384 |
# dilated_binary = cv2.dilate(closed_binary, kernel, iterations=1)
|
| 385 |
# Use 'closed_binary' (or 'dilated_binary') from now on.
|
| 386 |
|
| 387 |
if SHOW_OUTPUT_IMAGES:
|
| 388 |
os.makedirs(self.output_folder, exist_ok=True)
|
| 389 |
-
output_path = f"{self.output_folder}/
|
| 390 |
-
os.makedirs(f"{self.output_folder}/
|
| 391 |
cv2.imwrite(output_path, closed_binary)
|
| 392 |
# print(f"\nSaved dilated binary image to '{output_path}'")
|
| 393 |
|
|
@@ -405,7 +457,7 @@ class AdaptiveSegmenter:
|
|
| 405 |
# Handle edge case of empty 'areas' array
|
| 406 |
if len(areas) == 0:
|
| 407 |
clean_binary = binary
|
| 408 |
-
print("Warning: No components found after binarization.")
|
| 409 |
areas = np.array([0]) # Add a dummy value to prevent crashes
|
| 410 |
|
| 411 |
# --- 1. Calculate the DEFAULT CONSERVATIVE threshold ---
|
|
@@ -449,18 +501,18 @@ class AdaptiveSegmenter:
|
|
| 449 |
|
| 450 |
# --- 3. ADAPTIVE DECISION: Override if conservative threshold is clearly noise ---
|
| 451 |
if has_clear_gap:
|
| 452 |
-
print(
|
| 453 |
-
|
| 454 |
-
)
|
| 455 |
|
| 456 |
# Only use a more aggressive threshold IF our "safe" threshold is clearly
|
| 457 |
# stuck *inside* the noise cluster.
|
| 458 |
# e.g., Safe threshold = 1, but noise goes up to 10.
|
| 459 |
# (We use 0.8 as a buffer, so if thresh=7 and gap=8, we don't switch)
|
| 460 |
if area_threshold < (area_before_gap * 0.8):
|
| 461 |
-
print(
|
| 462 |
-
|
| 463 |
-
)
|
| 464 |
|
| 465 |
# Instead of using large percentage increases, use a very small absolute increment
|
| 466 |
# This preserves legitimate small letters/words that might be just above the noise
|
|
@@ -498,18 +550,18 @@ class AdaptiveSegmenter:
|
|
| 498 |
# Cap at 15 pixels as absolute upper bound
|
| 499 |
final_threshold = min(final_threshold, 15)
|
| 500 |
|
| 501 |
-
print(
|
| 502 |
-
|
| 503 |
-
)
|
| 504 |
area_threshold = final_threshold
|
| 505 |
else:
|
| 506 |
-
print(
|
| 507 |
-
|
| 508 |
-
)
|
| 509 |
pass
|
| 510 |
|
| 511 |
# --- 4. Apply the final, determined threshold ---
|
| 512 |
-
print(f"Noise Removal: Final area threshold: {area_threshold:.1f}")
|
| 513 |
for i in range(1, num_labels):
|
| 514 |
# Use >= to be inclusive of the threshold itself
|
| 515 |
if stats[i, cv2.CC_STAT_AREA] >= area_threshold:
|
|
@@ -518,6 +570,17 @@ class AdaptiveSegmenter:
|
|
| 518 |
# No components found, or only background
|
| 519 |
clean_binary = binary
|
| 520 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 521 |
# Calculate the horizontal projection profile on the cleaned image
|
| 522 |
horizontal_projection = np.sum(clean_binary, axis=1)
|
| 523 |
|
|
@@ -539,9 +602,9 @@ class AdaptiveSegmenter:
|
|
| 539 |
|
| 540 |
# Ensure the crop is valid
|
| 541 |
if y_start < y_end:
|
| 542 |
-
print(
|
| 543 |
-
|
| 544 |
-
)
|
| 545 |
# Slice the image to get the vertically cropped ROI
|
| 546 |
analysis_image = clean_binary[y_start:y_end, :]
|
| 547 |
else:
|
|
@@ -551,18 +614,29 @@ class AdaptiveSegmenter:
|
|
| 551 |
# If no text is found, use the original cleaned image
|
| 552 |
analysis_image = clean_binary
|
| 553 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 554 |
# --- Step 3: Hierarchical Adaptive Search (using the new clean_binary) ---
|
| 555 |
# The rest of the pipeline is identical but now operates on a superior image.
|
| 556 |
words = line_data["text"][0].split()
|
| 557 |
target_word_count = len(words)
|
| 558 |
|
| 559 |
-
print(f"Target word count: {target_word_count}")
|
| 560 |
|
| 561 |
# Save cropped image (optional, only if image_name is provided)
|
| 562 |
if SHOW_OUTPUT_IMAGES:
|
| 563 |
os.makedirs(self.output_folder, exist_ok=True)
|
| 564 |
-
output_path = f"{self.output_folder}/
|
| 565 |
-
os.makedirs(f"{self.output_folder}/
|
| 566 |
cv2.imwrite(output_path, analysis_image)
|
| 567 |
# print(f"\nSaved cropped image to '{output_path}'")
|
| 568 |
|
|
@@ -574,7 +648,7 @@ class AdaptiveSegmenter:
|
|
| 574 |
target_word_count = len(words)
|
| 575 |
stage1_succeeded = False
|
| 576 |
|
| 577 |
-
print("--- Stage 1: Searching with adaptive valley threshold ---")
|
| 578 |
valley_factors_to_try = np.arange(INITIAL_VALLEY_THRESHOLD_FACTOR, 0.45, 0.05)
|
| 579 |
for v_factor in valley_factors_to_try:
|
| 580 |
# Pass the cropped image to the helper
|
|
@@ -589,9 +663,9 @@ class AdaptiveSegmenter:
|
|
| 589 |
break
|
| 590 |
|
| 591 |
if not stage1_succeeded:
|
| 592 |
-
print(
|
| 593 |
-
|
| 594 |
-
)
|
| 595 |
kernel_factors_to_try = np.arange(INITIAL_KERNEL_WIDTH_FACTOR, 0.5, 0.05)
|
| 596 |
fixed_valley_factor = MAIN_VALLEY_THRESHOLD_FACTOR
|
| 597 |
for k_factor in kernel_factors_to_try:
|
|
@@ -601,12 +675,34 @@ class AdaptiveSegmenter:
|
|
| 601 |
closed_binary = cv2.morphologyEx(
|
| 602 |
clean_binary, cv2.MORPH_CLOSE, closing_kernel
|
| 603 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 604 |
# We need to re-apply the same vertical crop to this new image
|
| 605 |
if len(non_zero_rows) > 0 and y_start < y_end:
|
| 606 |
analysis_image = closed_binary[y_start:y_end, :]
|
| 607 |
else:
|
| 608 |
analysis_image = closed_binary
|
| 609 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 610 |
unlabeled_boxes = self._get_boxes_from_profile(
|
| 611 |
analysis_image,
|
| 612 |
avg_char_width_approx,
|
|
@@ -614,11 +710,11 @@ class AdaptiveSegmenter:
|
|
| 614 |
fixed_valley_factor,
|
| 615 |
)
|
| 616 |
|
| 617 |
-
print(
|
| 618 |
-
|
| 619 |
-
)
|
| 620 |
if abs(target_word_count - len(unlabeled_boxes)) <= match_tolerance:
|
| 621 |
-
print("SUCCESS (Stage 2): Found a match.")
|
| 622 |
best_boxes = unlabeled_boxes
|
| 623 |
successful_binary_image = (
|
| 624 |
closed_binary # For Stage 2, the source is the closed_binary
|
|
@@ -629,7 +725,7 @@ class AdaptiveSegmenter:
|
|
| 629 |
used_fallback = False
|
| 630 |
|
| 631 |
if best_boxes is None:
|
| 632 |
-
print("\nWarning: All adaptive searches failed. Falling back.")
|
| 633 |
fallback_segmenter = HybridWordSegmenter()
|
| 634 |
used_fallback = True
|
| 635 |
final_output = fallback_segmenter.refine_words_bidirectional(
|
|
@@ -803,22 +899,35 @@ class AdaptiveSegmenter:
|
|
| 803 |
|
| 804 |
# Visualisation
|
| 805 |
if SHOW_OUTPUT_IMAGES:
|
| 806 |
-
output_path = f"{self.output_folder}/
|
| 807 |
-
os.makedirs(f"{self.output_folder}/
|
| 808 |
output_image_vis = line_image.copy()
|
| 809 |
-
|
| 810 |
-
|
| 811 |
-
|
| 812 |
-
|
| 813 |
-
|
| 814 |
-
|
| 815 |
-
|
| 816 |
-
|
| 817 |
-
)
|
| 818 |
-
|
| 819 |
-
|
| 820 |
-
|
| 821 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 822 |
|
| 823 |
return remapped_output, used_fallback
|
| 824 |
|
|
@@ -1076,9 +1185,9 @@ if __name__ == "__main__":
|
|
| 1076 |
# image_path = 'input/london_borough_of_lambeth.png'
|
| 1077 |
image_basename = os.path.basename(image_path)
|
| 1078 |
image_name = os.path.splitext(image_basename)[0]
|
| 1079 |
-
output_path = f"
|
| 1080 |
-
if not os.path.exists("
|
| 1081 |
-
os.makedirs("
|
| 1082 |
line_image_cv = cv2.imread(image_path)
|
| 1083 |
h, w, _ = line_image_cv.shape
|
| 1084 |
|
|
@@ -1100,20 +1209,28 @@ if __name__ == "__main__":
|
|
| 1100 |
|
| 1101 |
# Visualisation
|
| 1102 |
output_image_vis = line_image_cv.copy()
|
| 1103 |
-
|
| 1104 |
-
|
| 1105 |
-
|
| 1106 |
-
|
| 1107 |
-
|
| 1108 |
-
|
| 1109 |
-
|
| 1110 |
-
|
| 1111 |
-
)
|
| 1112 |
-
|
| 1113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1114 |
|
| 1115 |
-
|
| 1116 |
-
|
| 1117 |
|
| 1118 |
# You can also use matplotlib to display it in a notebook
|
| 1119 |
import matplotlib.pyplot as plt
|
|
|
|
| 82 |
|
| 83 |
orientation_angle = 0.0
|
| 84 |
if box_height > box_width:
|
| 85 |
+
# print(
|
| 86 |
+
# f"Detected vertical orientation (W:{box_width} < H:{box_height}). Applying 90-degree correction."
|
| 87 |
+
# )
|
| 88 |
orientation_angle = 90.0
|
| 89 |
else:
|
| 90 |
+
# print(
|
| 91 |
+
# f"Detected horizontal orientation (W:{box_width} >= H:{box_height}). No orientation correction."
|
| 92 |
+
# )
|
| 93 |
M_orient = cv2.getRotationMatrix2D(center, 0, 1.0)
|
| 94 |
return gray_image, M_orient
|
| 95 |
|
|
|
|
| 251 |
) -> Tuple[Dict[str, List], bool]:
|
| 252 |
|
| 253 |
if line_image is None:
|
| 254 |
+
# print(
|
| 255 |
+
# f"Error: line_image is None in segment function (image_name: {image_name})"
|
| 256 |
+
# )
|
| 257 |
return ({}, False)
|
| 258 |
|
| 259 |
# Validate line_image is a valid numpy array
|
| 260 |
if not isinstance(line_image, np.ndarray):
|
| 261 |
+
# print(
|
| 262 |
+
# f"Error: line_image is not a numpy array (type: {type(line_image)}, image_name: {image_name})"
|
| 263 |
+
# )
|
| 264 |
return ({}, False)
|
| 265 |
|
| 266 |
# Validate line_image has valid shape and size
|
| 267 |
if line_image.size == 0:
|
| 268 |
+
# print(
|
| 269 |
+
# f"Error: line_image is empty (shape: {line_image.shape}, image_name: {image_name})"
|
| 270 |
+
# )
|
| 271 |
return ({}, False)
|
| 272 |
|
| 273 |
if len(line_image.shape) < 2:
|
| 274 |
+
# print(
|
| 275 |
+
# f"Error: line_image has invalid shape {line_image.shape} (image_name: {image_name})"
|
| 276 |
+
# )
|
| 277 |
return ({}, False)
|
| 278 |
|
| 279 |
# Early return if 1 or fewer words
|
|
|
|
| 283 |
if len(words) <= 1:
|
| 284 |
return ({}, False)
|
| 285 |
else:
|
| 286 |
+
# print(
|
| 287 |
+
# f"Error: line_data is empty or does not contain text (image_name: {image_name})"
|
| 288 |
+
# )
|
| 289 |
return ({}, False)
|
| 290 |
|
| 291 |
+
# print(f"line_text: {line_text}")
|
| 292 |
shortened_line_text = line_text.replace(" ", "_")[:10]
|
| 293 |
|
| 294 |
if SHOW_OUTPUT_IMAGES:
|
| 295 |
os.makedirs(self.output_folder, exist_ok=True)
|
| 296 |
+
output_path = f"{self.output_folder}/word_segmentation/{image_name}_{shortened_line_text}_original.png"
|
| 297 |
+
os.makedirs(f"{self.output_folder}/word_segmentation", exist_ok=True)
|
| 298 |
cv2.imwrite(output_path, line_image)
|
| 299 |
+
# print(f"\nSaved original image to '{output_path}'")
|
| 300 |
|
| 301 |
gray = cv2.cvtColor(line_image, cv2.COLOR_BGR2GRAY)
|
| 302 |
|
|
|
|
| 334 |
borderMode=cv2.BORDER_REPLICATE,
|
| 335 |
)
|
| 336 |
|
| 337 |
+
# Validate deskewed_line_image before saving
|
| 338 |
+
if (
|
| 339 |
+
deskewed_line_image is None
|
| 340 |
+
or not isinstance(deskewed_line_image, np.ndarray)
|
| 341 |
+
or deskewed_line_image.size == 0
|
| 342 |
+
):
|
| 343 |
+
# print(
|
| 344 |
+
# f"Error: deskewed_line_image is None or empty (image_name: {image_name})"
|
| 345 |
+
# )
|
| 346 |
+
return ({}, False)
|
| 347 |
+
|
| 348 |
# Save deskewed image (optional, only if image_name is provided)
|
| 349 |
if SHOW_OUTPUT_IMAGES:
|
| 350 |
os.makedirs(self.output_folder, exist_ok=True)
|
| 351 |
+
output_path = f"{self.output_folder}/word_segmentation/{image_name}_{shortened_line_text}_deskewed.png"
|
| 352 |
+
os.makedirs(f"{self.output_folder}/word_segmentation", exist_ok=True)
|
| 353 |
cv2.imwrite(output_path, deskewed_line_image)
|
| 354 |
# print(f"\nSaved deskewed image to '{output_path}'")
|
| 355 |
|
|
|
|
| 362 |
block_size = int(avg_char_width_approx * BLOCK_SIZE_FACTOR)
|
| 363 |
if block_size % 2 == 0:
|
| 364 |
block_size += 1
|
| 365 |
+
|
| 366 |
+
# Validate deskewed_gray and ensure block_size is valid
|
| 367 |
+
if deskewed_gray is None or not isinstance(deskewed_gray, np.ndarray):
|
| 368 |
+
# print(
|
| 369 |
+
# f"Error: deskewed_gray is None or not a numpy array (image_name: {image_name})"
|
| 370 |
+
# )
|
| 371 |
+
return ({}, False)
|
| 372 |
+
|
| 373 |
+
if len(deskewed_gray.shape) != 2:
|
| 374 |
+
# print(
|
| 375 |
+
# f"Error: deskewed_gray must be a 2D grayscale image (shape: {deskewed_gray.shape}, image_name: {image_name})"
|
| 376 |
+
# )
|
| 377 |
+
return ({}, False)
|
| 378 |
+
|
| 379 |
+
if block_size < 3:
|
| 380 |
+
# print(
|
| 381 |
+
# f"Warning: block_size ({block_size}) is too small for adaptiveThreshold. "
|
| 382 |
+
# f"Using minimum value of 3. (image_name: {image_name}, "
|
| 383 |
+
# f"img_w: {img_w}, approx_char_count: {approx_char_count}, "
|
| 384 |
+
# f"avg_char_width_approx: {avg_char_width_approx:.2f})"
|
| 385 |
+
# )
|
| 386 |
+
block_size = 3
|
| 387 |
+
|
| 388 |
binary = cv2.adaptiveThreshold(
|
| 389 |
deskewed_gray,
|
| 390 |
255,
|
|
|
|
| 394 |
C_VALUE,
|
| 395 |
)
|
| 396 |
|
| 397 |
+
# Validate binary image before saving
|
| 398 |
+
if binary is None or not isinstance(binary, np.ndarray) or binary.size == 0:
|
| 399 |
+
# print(
|
| 400 |
+
# f"Error: binary image is None or empty (image_name: {image_name})"
|
| 401 |
+
# )
|
| 402 |
+
return ({}, False)
|
| 403 |
+
|
| 404 |
# Save cropped image (optional, only if image_name is provided)
|
| 405 |
if SHOW_OUTPUT_IMAGES:
|
| 406 |
os.makedirs(self.output_folder, exist_ok=True)
|
| 407 |
+
output_path = f"{self.output_folder}/word_segmentation/{image_name}_{shortened_line_text}_binary.png"
|
| 408 |
+
os.makedirs(f"{self.output_folder}/word_segmentation", exist_ok=True)
|
| 409 |
cv2.imwrite(output_path, binary)
|
| 410 |
# print(f"\nSaved cropped image to '{output_path}'")
|
| 411 |
|
|
|
|
| 421 |
# It's a dilation followed by an erosion
|
| 422 |
closed_binary = cv2.morphologyEx(binary, cv2.MORPH_CLOSE, kernel, iterations=1)
|
| 423 |
|
| 424 |
+
# Validate closed_binary image before saving
|
| 425 |
+
if (
|
| 426 |
+
closed_binary is None
|
| 427 |
+
or not isinstance(closed_binary, np.ndarray)
|
| 428 |
+
or closed_binary.size == 0
|
| 429 |
+
):
|
| 430 |
+
# print(
|
| 431 |
+
# f"Error: closed_binary image is None or empty (image_name: {image_name})"
|
| 432 |
+
# )
|
| 433 |
+
return ({}, False)
|
| 434 |
+
|
| 435 |
# (Optional) You could also use a DILATE to make letters thicker
|
| 436 |
# dilated_binary = cv2.dilate(closed_binary, kernel, iterations=1)
|
| 437 |
# Use 'closed_binary' (or 'dilated_binary') from now on.
|
| 438 |
|
| 439 |
if SHOW_OUTPUT_IMAGES:
|
| 440 |
os.makedirs(self.output_folder, exist_ok=True)
|
| 441 |
+
output_path = f"{self.output_folder}/word_segmentation/{image_name}_{shortened_line_text}_closed_binary.png"
|
| 442 |
+
os.makedirs(f"{self.output_folder}/word_segmentation", exist_ok=True)
|
| 443 |
cv2.imwrite(output_path, closed_binary)
|
| 444 |
# print(f"\nSaved dilated binary image to '{output_path}'")
|
| 445 |
|
|
|
|
| 457 |
# Handle edge case of empty 'areas' array
|
| 458 |
if len(areas) == 0:
|
| 459 |
clean_binary = binary
|
| 460 |
+
# print("Warning: No components found after binarization.")
|
| 461 |
areas = np.array([0]) # Add a dummy value to prevent crashes
|
| 462 |
|
| 463 |
# --- 1. Calculate the DEFAULT CONSERVATIVE threshold ---
|
|
|
|
| 501 |
|
| 502 |
# --- 3. ADAPTIVE DECISION: Override if conservative threshold is clearly noise ---
|
| 503 |
if has_clear_gap:
|
| 504 |
+
# print(
|
| 505 |
+
# f"Noise Removal: Gap detected. Noise cluster ends at {area_before_gap}px. Aggressive threshold = {aggressive_threshold:.1f}"
|
| 506 |
+
# )
|
| 507 |
|
| 508 |
# Only use a more aggressive threshold IF our "safe" threshold is clearly
|
| 509 |
# stuck *inside* the noise cluster.
|
| 510 |
# e.g., Safe threshold = 1, but noise goes up to 10.
|
| 511 |
# (We use 0.8 as a buffer, so if thresh=7 and gap=8, we don't switch)
|
| 512 |
if area_threshold < (area_before_gap * 0.8):
|
| 513 |
+
# print(
|
| 514 |
+
# f"Noise Removal: Conservative threshold ({area_threshold:.1f}) is deep in noise cluster (ends at {area_before_gap}px)."
|
| 515 |
+
# )
|
| 516 |
|
| 517 |
# Instead of using large percentage increases, use a very small absolute increment
|
| 518 |
# This preserves legitimate small letters/words that might be just above the noise
|
|
|
|
| 550 |
# Cap at 15 pixels as absolute upper bound
|
| 551 |
final_threshold = min(final_threshold, 15)
|
| 552 |
|
| 553 |
+
# print(
|
| 554 |
+
# f"Noise Removal: Using MODERATE threshold: {final_threshold:.1f} (noise ends at {area_before_gap}px, increment: {small_increment}px)"
|
| 555 |
+
# )
|
| 556 |
area_threshold = final_threshold
|
| 557 |
else:
|
| 558 |
+
# print(
|
| 559 |
+
# f"Noise Removal: Gap found, but conservative threshold ({area_threshold:.1f}) is sufficient. Sticking with conservative."
|
| 560 |
+
# )
|
| 561 |
pass
|
| 562 |
|
| 563 |
# --- 4. Apply the final, determined threshold ---
|
| 564 |
+
# print(f"Noise Removal: Final area threshold: {area_threshold:.1f}")
|
| 565 |
for i in range(1, num_labels):
|
| 566 |
# Use >= to be inclusive of the threshold itself
|
| 567 |
if stats[i, cv2.CC_STAT_AREA] >= area_threshold:
|
|
|
|
| 570 |
# No components found, or only background
|
| 571 |
clean_binary = binary
|
| 572 |
|
| 573 |
+
# Validate clean_binary before proceeding
|
| 574 |
+
if (
|
| 575 |
+
clean_binary is None
|
| 576 |
+
or not isinstance(clean_binary, np.ndarray)
|
| 577 |
+
or clean_binary.size == 0
|
| 578 |
+
):
|
| 579 |
+
# print(
|
| 580 |
+
# f"Error: clean_binary image is None or empty (image_name: {image_name})"
|
| 581 |
+
# )
|
| 582 |
+
return ({}, False)
|
| 583 |
+
|
| 584 |
# Calculate the horizontal projection profile on the cleaned image
|
| 585 |
horizontal_projection = np.sum(clean_binary, axis=1)
|
| 586 |
|
|
|
|
| 602 |
|
| 603 |
# Ensure the crop is valid
|
| 604 |
if y_start < y_end:
|
| 605 |
+
# print(
|
| 606 |
+
# f"Original text height: {text_height}px. Cropping to middle {100 - (2*trim_percentage*100):.0f}% region."
|
| 607 |
+
# )
|
| 608 |
# Slice the image to get the vertically cropped ROI
|
| 609 |
analysis_image = clean_binary[y_start:y_end, :]
|
| 610 |
else:
|
|
|
|
| 614 |
# If no text is found, use the original cleaned image
|
| 615 |
analysis_image = clean_binary
|
| 616 |
|
| 617 |
+
# Validate analysis_image before proceeding
|
| 618 |
+
if (
|
| 619 |
+
analysis_image is None
|
| 620 |
+
or not isinstance(analysis_image, np.ndarray)
|
| 621 |
+
or analysis_image.size == 0
|
| 622 |
+
):
|
| 623 |
+
# print(
|
| 624 |
+
# f"Error: analysis_image is None or empty (image_name: {image_name})"
|
| 625 |
+
# )
|
| 626 |
+
return ({}, False)
|
| 627 |
+
|
| 628 |
# --- Step 3: Hierarchical Adaptive Search (using the new clean_binary) ---
|
| 629 |
# The rest of the pipeline is identical but now operates on a superior image.
|
| 630 |
words = line_data["text"][0].split()
|
| 631 |
target_word_count = len(words)
|
| 632 |
|
| 633 |
+
# print(f"Target word count: {target_word_count}")
|
| 634 |
|
| 635 |
# Save cropped image (optional, only if image_name is provided)
|
| 636 |
if SHOW_OUTPUT_IMAGES:
|
| 637 |
os.makedirs(self.output_folder, exist_ok=True)
|
| 638 |
+
output_path = f"{self.output_folder}/word_segmentation/{image_name}_{shortened_line_text}_clean_binary.png"
|
| 639 |
+
os.makedirs(f"{self.output_folder}/word_segmentation", exist_ok=True)
|
| 640 |
cv2.imwrite(output_path, analysis_image)
|
| 641 |
# print(f"\nSaved cropped image to '{output_path}'")
|
| 642 |
|
|
|
|
| 648 |
target_word_count = len(words)
|
| 649 |
stage1_succeeded = False
|
| 650 |
|
| 651 |
+
# print("--- Stage 1: Searching with adaptive valley threshold ---")
|
| 652 |
valley_factors_to_try = np.arange(INITIAL_VALLEY_THRESHOLD_FACTOR, 0.45, 0.05)
|
| 653 |
for v_factor in valley_factors_to_try:
|
| 654 |
# Pass the cropped image to the helper
|
|
|
|
| 663 |
break
|
| 664 |
|
| 665 |
if not stage1_succeeded:
|
| 666 |
+
# print(
|
| 667 |
+
# "\n--- Stage 1 failed. Starting Stage 2: Searching with adaptive kernel ---"
|
| 668 |
+
# )
|
| 669 |
kernel_factors_to_try = np.arange(INITIAL_KERNEL_WIDTH_FACTOR, 0.5, 0.05)
|
| 670 |
fixed_valley_factor = MAIN_VALLEY_THRESHOLD_FACTOR
|
| 671 |
for k_factor in kernel_factors_to_try:
|
|
|
|
| 675 |
closed_binary = cv2.morphologyEx(
|
| 676 |
clean_binary, cv2.MORPH_CLOSE, closing_kernel
|
| 677 |
)
|
| 678 |
+
# Validate closed_binary before proceeding
|
| 679 |
+
if (
|
| 680 |
+
closed_binary is None
|
| 681 |
+
or not isinstance(closed_binary, np.ndarray)
|
| 682 |
+
or closed_binary.size == 0
|
| 683 |
+
):
|
| 684 |
+
# print(
|
| 685 |
+
# f"Error: closed_binary in Stage 2 is None or empty (image_name: {image_name}, k_factor: {k_factor:.2f})"
|
| 686 |
+
# )
|
| 687 |
+
continue # Skip this iteration and try next kernel factor
|
| 688 |
+
|
| 689 |
# We need to re-apply the same vertical crop to this new image
|
| 690 |
if len(non_zero_rows) > 0 and y_start < y_end:
|
| 691 |
analysis_image = closed_binary[y_start:y_end, :]
|
| 692 |
else:
|
| 693 |
analysis_image = closed_binary
|
| 694 |
|
| 695 |
+
# Validate analysis_image before using it
|
| 696 |
+
if (
|
| 697 |
+
analysis_image is None
|
| 698 |
+
or not isinstance(analysis_image, np.ndarray)
|
| 699 |
+
or analysis_image.size == 0
|
| 700 |
+
):
|
| 701 |
+
# print(
|
| 702 |
+
# f"Error: analysis_image in Stage 2 is None or empty (image_name: {image_name}, k_factor: {k_factor:.2f})"
|
| 703 |
+
# )
|
| 704 |
+
continue # Skip this iteration and try next kernel factor
|
| 705 |
+
|
| 706 |
unlabeled_boxes = self._get_boxes_from_profile(
|
| 707 |
analysis_image,
|
| 708 |
avg_char_width_approx,
|
|
|
|
| 710 |
fixed_valley_factor,
|
| 711 |
)
|
| 712 |
|
| 713 |
+
# print(
|
| 714 |
+
# f"Testing kernel factor {k_factor:.2f} ({kernel_width}px): Found {len(unlabeled_boxes)} boxes."
|
| 715 |
+
# )
|
| 716 |
if abs(target_word_count - len(unlabeled_boxes)) <= match_tolerance:
|
| 717 |
+
# print("SUCCESS (Stage 2): Found a match.")
|
| 718 |
best_boxes = unlabeled_boxes
|
| 719 |
successful_binary_image = (
|
| 720 |
closed_binary # For Stage 2, the source is the closed_binary
|
|
|
|
| 725 |
used_fallback = False
|
| 726 |
|
| 727 |
if best_boxes is None:
|
| 728 |
+
# print("\nWarning: All adaptive searches failed. Falling back.")
|
| 729 |
fallback_segmenter = HybridWordSegmenter()
|
| 730 |
used_fallback = True
|
| 731 |
final_output = fallback_segmenter.refine_words_bidirectional(
|
|
|
|
| 899 |
|
| 900 |
# Visualisation
|
| 901 |
if SHOW_OUTPUT_IMAGES:
|
| 902 |
+
output_path = f"{self.output_folder}/word_segmentation/{image_name}_{shortened_line_text}_final_boxes.png"
|
| 903 |
+
os.makedirs(f"{self.output_folder}/word_segmentation", exist_ok=True)
|
| 904 |
output_image_vis = line_image.copy()
|
| 905 |
+
# Validate output_image_vis before saving
|
| 906 |
+
if (
|
| 907 |
+
output_image_vis is None
|
| 908 |
+
or not isinstance(output_image_vis, np.ndarray)
|
| 909 |
+
or output_image_vis.size == 0
|
| 910 |
+
):
|
| 911 |
+
pass
|
| 912 |
+
# print(
|
| 913 |
+
# f"Error: output_image_vis is None or empty (image_name: {image_name})"
|
| 914 |
+
# )
|
| 915 |
+
else:
|
| 916 |
+
# print(f"\nFinal refined {len(remapped_output['text'])} words:")
|
| 917 |
+
for i in range(len(remapped_output["text"])):
|
| 918 |
+
word = remapped_output["text"][i]
|
| 919 |
+
x, y, w, h = (
|
| 920 |
+
int(remapped_output["left"][i]),
|
| 921 |
+
int(remapped_output["top"][i]),
|
| 922 |
+
int(remapped_output["width"][i]),
|
| 923 |
+
int(remapped_output["height"][i]),
|
| 924 |
+
)
|
| 925 |
+
# print(f"- '{word}' at ({x}, {y}, {w}, {h})")
|
| 926 |
+
cv2.rectangle(
|
| 927 |
+
output_image_vis, (x, y), (x + w, y + h), (0, 255, 0), 2
|
| 928 |
+
)
|
| 929 |
+
cv2.imwrite(output_path, output_image_vis)
|
| 930 |
+
# print(f"\nSaved visualisation to '{output_path}'")
|
| 931 |
|
| 932 |
return remapped_output, used_fallback
|
| 933 |
|
|
|
|
| 1185 |
# image_path = 'input/london_borough_of_lambeth.png'
|
| 1186 |
image_basename = os.path.basename(image_path)
|
| 1187 |
image_name = os.path.splitext(image_basename)[0]
|
| 1188 |
+
output_path = f"output/{image_name}_refined_morph.png"
|
| 1189 |
+
if not os.path.exists("output"):
|
| 1190 |
+
os.makedirs("output")
|
| 1191 |
line_image_cv = cv2.imread(image_path)
|
| 1192 |
h, w, _ = line_image_cv.shape
|
| 1193 |
|
|
|
|
| 1209 |
|
| 1210 |
# Visualisation
|
| 1211 |
output_image_vis = line_image_cv.copy()
|
| 1212 |
+
# Validate output_image_vis before saving
|
| 1213 |
+
if (
|
| 1214 |
+
output_image_vis is None
|
| 1215 |
+
or not isinstance(output_image_vis, np.ndarray)
|
| 1216 |
+
or output_image_vis.size == 0
|
| 1217 |
+
):
|
| 1218 |
+
print(f"Error: output_image_vis is None or empty (image_name: {image_name})")
|
| 1219 |
+
else:
|
| 1220 |
+
print(f"\nFinal refined {len(final_word_data['text'])} words:")
|
| 1221 |
+
for i in range(len(final_word_data["text"])):
|
| 1222 |
+
word = final_word_data["text"][i]
|
| 1223 |
+
x, y, w, h = (
|
| 1224 |
+
int(final_word_data["left"][i]),
|
| 1225 |
+
int(final_word_data["top"][i]),
|
| 1226 |
+
int(final_word_data["width"][i]),
|
| 1227 |
+
int(final_word_data["height"][i]),
|
| 1228 |
+
)
|
| 1229 |
+
print(f"- '{word}' at ({x}, {y}, {w}, {h})")
|
| 1230 |
+
cv2.rectangle(output_image_vis, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
| 1231 |
|
| 1232 |
+
cv2.imwrite(output_path, output_image_vis)
|
| 1233 |
+
print(f"\nSaved visualisation to '{output_path}'")
|
| 1234 |
|
| 1235 |
# You can also use matplotlib to display it in a notebook
|
| 1236 |
import matplotlib.pyplot as plt
|