document_redaction / tools /load_spacy_model_custom_recognisers.py
seanpedrickcase's picture
Fixed issues with gradio version 5.16. Fixed fuzzy search error with pages with no data.
3cecbfa
# %%
from typing import List
from presidio_analyzer import AnalyzerEngine, PatternRecognizer, EntityRecognizer, Pattern, RecognizerResult
from presidio_analyzer.nlp_engine import SpacyNlpEngine, NlpArtifacts
import spacy
from spacy.matcher import Matcher, PhraseMatcher
from spaczz.matcher import FuzzyMatcher
spacy.prefer_gpu()
from spacy.cli.download import download
import Levenshtein
import re
import gradio as gr
model_name = "en_core_web_sm" #"en_core_web_trf"
score_threshold = 0.001
custom_entities = ["TITLES", "UKPOSTCODE", "STREETNAME", "CUSTOM"]
#Load spacy model
try:
import en_core_web_sm
nlp = en_core_web_sm.load()
print("Successfully imported spaCy model")
except:
download(model_name)
nlp = spacy.load(model_name)
print("Successfully downloaded and imported spaCy model", model_name)
# #### Custom recognisers
def custom_word_list_recogniser(custom_list:List[str]=[]):
# Create regex pattern, handling quotes carefully
quote_str = '"'
replace_str = '(?:"|"|")'
custom_regex = '|'.join(
rf'(?<!\w){re.escape(term.strip()).replace(quote_str, replace_str)}(?!\w)'
for term in custom_list
)
#print(custom_regex)
custom_pattern = Pattern(name="custom_pattern", regex=custom_regex, score = 1)
custom_recogniser = PatternRecognizer(supported_entity="CUSTOM", name="CUSTOM", patterns = [custom_pattern],
global_regex_flags=re.DOTALL | re.MULTILINE | re.IGNORECASE)
return custom_recogniser
# Initialise custom recogniser that will be overwritten later
custom_recogniser = custom_word_list_recogniser()
# Custom title recogniser
titles_list = ["Sir", "Ma'am", "Madam", "Mr", "Mr.", "Mrs", "Mrs.", "Ms", "Ms.", "Miss", "Dr", "Dr.", "Professor"]
titles_regex = '\\b' + '\\b|\\b'.join(rf"{re.escape(title)}" for title in titles_list) + '\\b'
titles_pattern = Pattern(name="titles_pattern",regex=titles_regex, score = 1)
titles_recogniser = PatternRecognizer(supported_entity="TITLES", name="TITLES", patterns = [titles_pattern],
global_regex_flags=re.DOTALL | re.MULTILINE)
# %%
# Custom postcode recogniser
# Define the regex pattern in a Presidio `Pattern` object:
ukpostcode_pattern = Pattern(
name="ukpostcode_pattern",
regex=r"\b([A-Z]{1,2}\d[A-Z\d]? ?\d[A-Z]{2}|GIR ?0AA)\b",
score=1
)
# Define the recognizer with one or more patterns
ukpostcode_recogniser = PatternRecognizer(supported_entity="UKPOSTCODE", name = "UKPOSTCODE", patterns = [ukpostcode_pattern])
### Street name
def extract_street_name(text:str) -> str:
"""
Extracts the street name and preceding word (that should contain at least one number) from the given text.
"""
street_types = [
'Street', 'St', 'Boulevard', 'Blvd', 'Highway', 'Hwy', 'Broadway', 'Freeway',
'Causeway', 'Cswy', 'Expressway', 'Way', 'Walk', 'Lane', 'Ln', 'Road', 'Rd',
'Avenue', 'Ave', 'Circle', 'Cir', 'Cove', 'Cv', 'Drive', 'Dr', 'Parkway', 'Pkwy',
'Park', 'Court', 'Ct', 'Square', 'Sq', 'Loop', 'Place', 'Pl', 'Parade', 'Estate',
'Alley', 'Arcade', 'Avenue', 'Ave', 'Bay', 'Bend', 'Brae', 'Byway', 'Close', 'Corner', 'Cove',
'Crescent', 'Cres', 'Cul-de-sac', 'Dell', 'Drive', 'Dr', 'Esplanade', 'Glen', 'Green', 'Grove', 'Heights', 'Hts',
'Mews', 'Parade', 'Path', 'Piazza', 'Promenade', 'Quay', 'Ridge', 'Row', 'Terrace', 'Ter', 'Track', 'Trail', 'View', 'Villas',
'Marsh', 'Embankment', 'Cut', 'Hill', 'Passage', 'Rise', 'Vale', 'Side'
]
# Dynamically construct the regex pattern with all possible street types
street_types_pattern = '|'.join(rf"{re.escape(street_type)}" for street_type in street_types)
# The overall regex pattern to capture the street name and preceding word(s)
pattern = rf'(?P<preceding_word>\w*\d\w*)\s*'
pattern += rf'(?P<street_name>\w+\s*\b(?:{street_types_pattern})\b)'
# Find all matches in text
matches = re.finditer(pattern, text, re.DOTALL | re.MULTILINE | re.IGNORECASE)
start_positions = []
end_positions = []
for match in matches:
preceding_word = match.group('preceding_word').strip()
street_name = match.group('street_name').strip()
start_pos = match.start()
end_pos = match.end()
#print(f"Start: {start_pos}, End: {end_pos}")
#print(f"Preceding words: {preceding_word}")
#print(f"Street name: {street_name}")
start_positions.append(start_pos)
end_positions.append(end_pos)
return start_positions, end_positions
class StreetNameRecognizer(EntityRecognizer):
def load(self) -> None:
"""No loading is required."""
pass
def analyze(self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts) -> List[RecognizerResult]:
"""
Logic for detecting a specific PII
"""
start_pos, end_pos = extract_street_name(text)
results = []
for i in range(0, len(start_pos)):
result = RecognizerResult(
entity_type="STREETNAME",
start = start_pos[i],
end = end_pos[i],
score= 1
)
results.append(result)
return results
street_recogniser = StreetNameRecognizer(supported_entities=["STREETNAME"])
## Custom fuzzy match recogniser for list of strings
def custom_fuzzy_word_list_regex(text:str, custom_list:List[str]=[]):
# Create regex pattern, handling quotes carefully
quote_str = '"'
replace_str = '(?:"|"|")'
custom_regex_pattern = '|'.join(
rf'(?<!\w){re.escape(term.strip()).replace(quote_str, replace_str)}(?!\w)'
for term in custom_list
)
# Find all matches in text
matches = re.finditer(custom_regex_pattern, text, re.DOTALL | re.MULTILINE | re.IGNORECASE)
start_positions = []
end_positions = []
for match in matches:
start_pos = match.start()
end_pos = match.end()
start_positions.append(start_pos)
end_positions.append(end_pos)
return start_positions, end_positions
def spacy_fuzzy_search(text: str, custom_query_list:List[str]=[], spelling_mistakes_max:int = 1, search_whole_phrase:bool=True, nlp=nlp, progress=gr.Progress(track_tqdm=True)):
''' Conduct fuzzy match on a list of text data.'''
all_matches = []
all_start_positions = []
all_end_positions = []
all_ratios = []
#print("custom_query_list:", custom_query_list)
if not text:
out_message = "No text data found. Skipping page."
print(out_message)
return all_start_positions, all_end_positions
for string_query in custom_query_list:
#print("text:", text)
#print("string_query:", string_query)
query = nlp(string_query)
if search_whole_phrase == False:
# Keep only words that are not stop words
token_query = [token.text for token in query if not token.is_space and not token.is_stop and not token.is_punct]
spelling_mistakes_fuzzy_pattern = "FUZZY" + str(spelling_mistakes_max)
#print("token_query:", token_query)
if len(token_query) > 1:
#pattern_lemma = [{"LEMMA": {"IN": query}}]
pattern_fuzz = [{"TEXT": {spelling_mistakes_fuzzy_pattern: {"IN": token_query}}}]
else:
#pattern_lemma = [{"LEMMA": query[0]}]
pattern_fuzz = [{"TEXT": {spelling_mistakes_fuzzy_pattern: token_query[0]}}]
matcher = Matcher(nlp.vocab)
matcher.add(string_query, [pattern_fuzz])
#matcher.add(string_query, [pattern_lemma])
else:
# If matching a whole phrase, use Spacy PhraseMatcher, then consider similarity after using Levenshtein distance.
#tokenised_query = [string_query.lower()]
# If you want to match the whole phrase, use phrase matcher
matcher = FuzzyMatcher(nlp.vocab)
patterns = [nlp.make_doc(string_query)] # Convert query into a Doc object
matcher.add("PHRASE", patterns, [{"ignore_case": True}])
batch_size = 256
docs = nlp.pipe([text], batch_size=batch_size)
# Get number of matches per doc
for doc in docs: #progress.tqdm(docs, desc = "Searching text", unit = "rows"):
matches = matcher(doc)
match_count = len(matches)
# If considering each sub term individually, append match. If considering together, consider weight of the relevance to that of the whole phrase.
if search_whole_phrase==False:
all_matches.append(match_count)
for match_id, start, end in matches:
span = str(doc[start:end]).strip()
query_search = str(query).strip()
#print("doc:", doc)
#print("span:", span)
#print("query_search:", query_search)
# Convert word positions to character positions
start_char = doc[start].idx # Start character position
end_char = doc[end - 1].idx + len(doc[end - 1]) # End character position
# The positions here are word position, not character position
all_matches.append(match_count)
all_start_positions.append(start_char)
all_end_positions.append(end_char)
else:
for match_id, start, end, ratio, pattern in matches:
span = str(doc[start:end]).strip()
query_search = str(query).strip()
#print("doc:", doc)
#print("span:", span)
#print("query_search:", query_search)
# Calculate Levenshtein distance. Only keep matches with less than specified number of spelling mistakes
distance = Levenshtein.distance(query_search.lower(), span.lower())
#print("Levenshtein distance:", distance)
if distance > spelling_mistakes_max:
match_count = match_count - 1
else:
# Convert word positions to character positions
start_char = doc[start].idx # Start character position
end_char = doc[end - 1].idx + len(doc[end - 1]) # End character position
#print("start_char:", start_char)
#print("end_char:", end_char)
all_matches.append(match_count)
all_start_positions.append(start_char)
all_end_positions.append(end_char)
all_ratios.append(ratio)
return all_start_positions, all_end_positions
class CustomWordFuzzyRecognizer(EntityRecognizer):
def __init__(self, supported_entities: List[str], custom_list: List[str] = [], spelling_mistakes_max: int = 1, search_whole_phrase: bool = True):
super().__init__(supported_entities=supported_entities)
self.custom_list = custom_list # Store the custom_list as an instance attribute
self.spelling_mistakes_max = spelling_mistakes_max # Store the max spelling mistakes
self.search_whole_phrase = search_whole_phrase # Store the search whole phrase flag
def load(self) -> None:
"""No loading is required."""
pass
def analyze(self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts) -> List[RecognizerResult]:
"""
Logic for detecting a specific PII
"""
start_pos, end_pos = spacy_fuzzy_search(text, self.custom_list, self.spelling_mistakes_max, self.search_whole_phrase) # Pass new parameters
results = []
for i in range(0, len(start_pos)):
result = RecognizerResult(
entity_type="CUSTOM_FUZZY",
start=start_pos[i],
end=end_pos[i],
score=1
)
results.append(result)
return results
custom_list_default = []
custom_word_fuzzy_recognizer = CustomWordFuzzyRecognizer(supported_entities=["CUSTOM_FUZZY"], custom_list=custom_list_default)
# Create a class inheriting from SpacyNlpEngine
class LoadedSpacyNlpEngine(SpacyNlpEngine):
def __init__(self, loaded_spacy_model):
super().__init__()
self.nlp = {"en": loaded_spacy_model}
# Pass the loaded model to the new LoadedSpacyNlpEngine
loaded_nlp_engine = LoadedSpacyNlpEngine(loaded_spacy_model = nlp)
nlp_analyser = AnalyzerEngine(nlp_engine=loaded_nlp_engine,
default_score_threshold=score_threshold,
supported_languages=["en"],
log_decision_process=False,
)
# Add custom recognisers to nlp_analyser
nlp_analyser.registry.add_recognizer(street_recogniser)
nlp_analyser.registry.add_recognizer(ukpostcode_recogniser)
nlp_analyser.registry.add_recognizer(titles_recogniser)
nlp_analyser.registry.add_recognizer(custom_recogniser)
nlp_analyser.registry.add_recognizer(custom_word_fuzzy_recognizer)