Spaces:
Sleeping
Sleeping
Allowed for Textract and Comprehend API calls through AWS keys. File preparation function incorporated into main redaction function to avoid needing user to 'check in' during redaction process
391712c
import time | |
import re | |
import json | |
import io | |
import os | |
import boto3 | |
import copy | |
from tqdm import tqdm | |
from PIL import Image, ImageChops, ImageFile, ImageDraw | |
ImageFile.LOAD_TRUNCATED_IMAGES = True | |
from typing import List, Dict, Tuple | |
import pandas as pd | |
#from presidio_image_redactor.entities import ImageRecognizerResult | |
from pdfminer.high_level import extract_pages | |
from pdfminer.layout import LTTextContainer, LTChar, LTTextLine, LTTextLineHorizontal, LTAnno | |
from pikepdf import Pdf, Dictionary, Name | |
import pymupdf | |
from pymupdf import Rect | |
from fitz import Page | |
import gradio as gr | |
from gradio import Progress | |
from collections import defaultdict # For efficient grouping | |
from presidio_analyzer import RecognizerResult | |
from tools.aws_functions import RUN_AWS_FUNCTIONS, AWS_ACCESS_KEY, AWS_SECRET_KEY | |
from tools.custom_image_analyser_engine import CustomImageAnalyzerEngine, OCRResult, combine_ocr_results, CustomImageRecognizerResult, run_page_text_redaction, merge_text_bounding_boxes | |
from tools.file_conversion import process_file, image_dpi, convert_review_json_to_pandas_df, redact_whole_pymupdf_page, redact_single_box, convert_pymupdf_to_image_coords | |
from tools.load_spacy_model_custom_recognisers import nlp_analyser, score_threshold, custom_entities, custom_recogniser, custom_word_list_recogniser, CustomWordFuzzyRecognizer | |
from tools.helper_functions import get_file_name_without_type, output_folder, clean_unicode_text, get_or_create_env_var, tesseract_ocr_option, text_ocr_option, textract_option, local_pii_detector, aws_pii_detector | |
from tools.file_conversion import process_file, is_pdf, is_pdf_or_image, prepare_image_or_pdf | |
from tools.aws_textract import analyse_page_with_textract, json_to_ocrresult | |
from tools.presidio_analyzer_custom import recognizer_result_from_dict | |
# Number of pages to loop through before breaking. Currently set very high, as functions are breaking on time metrics (e.g. every 105 seconds), rather than on number of pages redacted. | |
page_break_value = get_or_create_env_var('page_break_value', '50000') | |
print(f'The value of page_break_value is {page_break_value}') | |
max_time_value = get_or_create_env_var('max_time_value', '999999') | |
print(f'The value of max_time_value is {max_time_value}') | |
def bounding_boxes_overlap(box1, box2): | |
"""Check if two bounding boxes overlap.""" | |
return (box1[0] < box2[2] and box2[0] < box1[2] and | |
box1[1] < box2[3] and box2[1] < box1[3]) | |
def sum_numbers_before_seconds(string:str): | |
"""Extracts numbers that precede the word 'seconds' from a string and adds them up. | |
Args: | |
string: The input string. | |
Returns: | |
The sum of all numbers before 'seconds' in the string. | |
""" | |
# Extract numbers before 'seconds' using regular expression | |
numbers = re.findall(r'(\d+\.\d+)?\s*seconds', string) | |
# Extract the numbers from the matches | |
numbers = [float(num.split()[0]) for num in numbers] | |
# Sum up the extracted numbers | |
sum_of_numbers = round(sum(numbers),1) | |
return sum_of_numbers | |
def choose_and_run_redactor(file_paths:List[str], | |
prepared_pdf_file_paths:List[str], | |
prepared_pdf_image_paths:List[str], | |
language:str, | |
chosen_redact_entities:List[str], | |
chosen_redact_comprehend_entities:List[str], | |
in_redact_method:str, | |
in_allow_list:List[List[str]]=None, | |
custom_recogniser_word_list:List[str]=None, | |
redact_whole_page_list:List[str]=None, | |
latest_file_completed:int=0, | |
out_message:List=[], | |
out_file_paths:List=[], | |
log_files_output_paths:List=[], | |
first_loop_state:bool=False, | |
page_min:int=0, | |
page_max:int=999, | |
estimated_time_taken_state:float=0.0, | |
handwrite_signature_checkbox:List[str]=["Redact all identified handwriting", "Redact all identified signatures"], | |
all_request_metadata_str:str = "", | |
annotations_all_pages:dict={}, | |
all_line_level_ocr_results_df=[], | |
all_decision_process_table=[], | |
pymupdf_doc=[], | |
current_loop_page:int=0, | |
page_break_return:bool=False, | |
pii_identification_method:str="Local", | |
comprehend_query_number:int=0, | |
max_fuzzy_spelling_mistakes_num:int=1, | |
match_fuzzy_whole_phrase_bool:bool=True, | |
aws_access_key_textbox:str='', | |
aws_secret_key_textbox:str='', | |
annotate_max_pages:int=1, | |
review_file_state=[], | |
output_folder:str=output_folder, | |
progress=gr.Progress(track_tqdm=True)): | |
''' | |
This function orchestrates the redaction process based on the specified method and parameters. It takes the following inputs: | |
- file_paths (List[str]): A list of paths to the files to be redacted. | |
- prepared_pdf_file_paths (List[str]): A list of paths to the PDF files prepared for redaction. | |
- prepared_pdf_image_paths (List[str]): A list of paths to the PDF files converted to images for redaction. | |
- language (str): The language of the text in the files. | |
- chosen_redact_entities (List[str]): A list of entity types to redact from the files using the local model (spacy) with Microsoft Presidio. | |
- chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from files, chosen from the official list from AWS Comprehend service | |
- in_redact_method (str): The method to use for redaction. | |
- in_allow_list (List[List[str]], optional): A list of allowed terms for redaction. Defaults to None. | |
- custom_recogniser_word_list (List[List[str]], optional): A list of allowed terms for redaction. Defaults to None. | |
- redact_whole_page_list (List[List[str]], optional): A list of allowed terms for redaction. Defaults to None. | |
- latest_file_completed (int, optional): The index of the last completed file. Defaults to 0. | |
- out_message (list, optional): A list to store output messages. Defaults to an empty list. | |
- out_file_paths (list, optional): A list to store paths to the output files. Defaults to an empty list. | |
- log_files_output_paths (list, optional): A list to store paths to the log files. Defaults to an empty list. | |
- first_loop_state (bool, optional): A flag indicating if this is the first iteration. Defaults to False. | |
- page_min (int, optional): The minimum page number to start redaction from. Defaults to 0. | |
- page_max (int, optional): The maximum page number to end redaction at. Defaults to 999. | |
- estimated_time_taken_state (float, optional): The estimated time taken for the redaction process. Defaults to 0.0. | |
- handwrite_signature_checkbox (List[str], optional): A list of options for redacting handwriting and signatures. Defaults to ["Redact all identified handwriting", "Redact all identified signatures"]. | |
- all_request_metadata_str (str, optional): A string containing all request metadata. Defaults to an empty string. | |
- annotations_all_pages (dict, optional): A dictionary containing all image annotations. Defaults to an empty dictionary. | |
- all_line_level_ocr_results_df (optional): A DataFrame containing all line-level OCR results. Defaults to an empty DataFrame. | |
- all_decision_process_table (optional): A DataFrame containing all decision process tables. Defaults to an empty DataFrame. | |
- pymupdf_doc (optional): A list containing the PDF document object. Defaults to an empty list. | |
- current_loop_page (int, optional): The current page being processed in the loop. Defaults to 0. | |
- page_break_return (bool, optional): A flag indicating if the function should return after a page break. Defaults to False. | |
- pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API). | |
- comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend. | |
- max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9. | |
- match_fuzzy_whole_phrase_bool (bool, optional): A boolean where 'True' means that the whole phrase is fuzzy matched, and 'False' means that each word is fuzzy matched separately (excluding stop words). | |
- aws_access_key_textbox (str, optional): AWS access key for account with Textract and Comprehend permissions. | |
- aws_secret_key_textbox (str, optional): AWS secret key for account with Textract and Comprehend permissions. | |
- annotate_max_pages (int, optional): Maximum page value for the annotation object | |
- output_folder (str, optional): Output folder for results. | |
- progress (gr.Progress, optional): A progress tracker for the redaction process. Defaults to a Progress object with track_tqdm set to True. | |
The function returns a redacted document along with processing logs. | |
''' | |
combined_out_message = "" | |
tic = time.perf_counter() | |
all_request_metadata = all_request_metadata_str.split('\n') if all_request_metadata_str else [] | |
# If there are no prepared PDF file paths, it is most likely that the prepare_image_or_pdf function has not been run. So do it here to get the outputs you need | |
if not pymupdf_doc: | |
print("Prepared PDF file not found, running prepare_image_or_pdf function") | |
out_message, prepared_pdf_file_paths, prepared_pdf_image_paths, annotate_max_pages, annotate_max_pages, pymupdf_doc, annotations_all_pages, review_file_state = prepare_image_or_pdf(file_paths, in_redact_method, latest_file_completed, out_message, first_loop_state, annotate_max_pages, annotations_all_pages) | |
annotate_max_pages, annotate_max_pages, prepared_pdf_file_paths, prepared_pdf_image_paths, review_file_state | |
#print("prepared_pdf_file_paths:", prepared_pdf_file_paths[0]) | |
review_out_file_paths = [prepared_pdf_file_paths[0]] | |
if isinstance(custom_recogniser_word_list, pd.DataFrame): | |
if not custom_recogniser_word_list.empty: | |
custom_recogniser_word_list = custom_recogniser_word_list.iloc[:, 0].tolist() | |
else: | |
# Handle the case where the DataFrame is empty | |
custom_recogniser_word_list = [] # or some default value | |
# Sort the strings in order from the longest string to the shortest | |
custom_recogniser_word_list = sorted(custom_recogniser_word_list, key=len, reverse=True) | |
if isinstance(redact_whole_page_list, pd.DataFrame): | |
if not redact_whole_page_list.empty: | |
redact_whole_page_list = redact_whole_page_list.iloc[:,0].tolist() | |
else: | |
# Handle the case where the DataFrame is empty | |
redact_whole_page_list = [] # or some default value | |
# If this is the first time around, set variables to 0/blank | |
if first_loop_state==True: | |
#print("First_loop_state is True") | |
latest_file_completed = 0 | |
current_loop_page = 0 | |
out_file_paths = [] | |
estimate_total_processing_time = 0 | |
estimated_time_taken_state = 0 | |
# If not the first time around, and the current page loop has been set to a huge number (been through all pages), reset current page to 0 | |
elif (first_loop_state == False) & (current_loop_page == 999): | |
current_loop_page = 0 | |
if not out_file_paths: | |
out_file_paths = [] | |
latest_file_completed = int(latest_file_completed) | |
number_of_pages = len(prepared_pdf_image_paths) | |
if isinstance(file_paths,str): | |
number_of_files = 1 | |
else: | |
number_of_files = len(file_paths) | |
# If we have already redacted the last file, return the input out_message and file list to the relevant components | |
if latest_file_completed >= number_of_files: | |
print("Completed last file") | |
# Set to a very high number so as not to mix up with subsequent file processing by the user | |
# latest_file_completed = 99 | |
current_loop_page = 0 | |
if isinstance(out_message, list): | |
combined_out_message = '\n'.join(out_message) | |
else: | |
combined_out_message = out_message | |
if len(review_out_file_paths) == 1: | |
out_review_file_path = [x for x in out_file_paths if "review_file" in x] | |
review_out_file_paths.extend(out_review_file_path) | |
estimate_total_processing_time = sum_numbers_before_seconds(combined_out_message) | |
print("Estimated total processing time:", str(estimate_total_processing_time)) | |
return combined_out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page,precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number, review_out_file_paths, annotate_max_pages, annotate_max_pages, prepared_pdf_file_paths, prepared_pdf_image_paths, review_file_state | |
# If we have reached the last page, return message | |
if current_loop_page >= number_of_pages: | |
print("Reached last page of document:", current_loop_page) | |
# Set to a very high number so as not to mix up with subsequent file processing by the user | |
current_loop_page = 999 | |
combined_out_message = out_message | |
if len(review_out_file_paths) == 1: | |
out_review_file_path = [x for x in out_file_paths if "review_file" in x] | |
review_out_file_paths.extend(out_review_file_path) | |
return combined_out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page,precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = False, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number, review_out_file_paths, annotate_max_pages, annotate_max_pages, prepared_pdf_file_paths, prepared_pdf_image_paths, review_file_state | |
# Create allow list | |
# If string, assume file path | |
if isinstance(in_allow_list, str): | |
in_allow_list = pd.read_csv(in_allow_list) | |
if not in_allow_list.empty: | |
in_allow_list_flat = in_allow_list.iloc[:,0].tolist() | |
#print("In allow list:", in_allow_list_flat) | |
else: | |
in_allow_list_flat = [] | |
# Try to connect to AWS services directly only if RUN_AWS_FUNCTIONS environmental variable is 1, otherwise an environment variable or direct textbox input is needed. | |
if pii_identification_method == "AWS Comprehend": | |
print("Trying to connect to AWS Comprehend service") | |
if aws_access_key_textbox and aws_secret_key_textbox: | |
print("Connecting to Comprehend using AWS access key and secret keys from textboxes.") | |
print("aws_access_key_textbox:", aws_access_key_textbox) | |
print("aws_secret_access_key:", aws_secret_key_textbox) | |
comprehend_client = boto3.client('comprehend', | |
aws_access_key_id=aws_access_key_textbox, | |
aws_secret_access_key=aws_secret_key_textbox) | |
elif RUN_AWS_FUNCTIONS == "1": | |
print("Connecting to Comprehend via existing SSO connection") | |
comprehend_client = boto3.client('comprehend') | |
elif AWS_ACCESS_KEY and AWS_SECRET_KEY: | |
print("Getting Comprehend credentials from environment variables") | |
comprehend_client = boto3.client('comprehend', | |
aws_access_key_id=AWS_ACCESS_KEY, | |
aws_secret_access_key=AWS_SECRET_KEY) | |
else: | |
comprehend_client = "" | |
out_message = "Cannot connect to AWS Comprehend service. Please provide access keys under Textract settings on the Redaction settings tab, or choose another PII identification method." | |
print(out_message) | |
return out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page, precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number, review_out_file_paths, annotate_max_pages, annotate_max_pages, prepared_pdf_file_paths, prepared_pdf_image_paths, review_file_state | |
else: | |
comprehend_client = "" | |
if in_redact_method == textract_option: | |
print("Trying to connect to AWS Textract service") | |
if aws_access_key_textbox and aws_secret_key_textbox: | |
print("Connecting to Textract using AWS access key and secret keys from textboxes.") | |
textract_client = boto3.client('textract', | |
aws_access_key_id=aws_access_key_textbox, | |
aws_secret_access_key=aws_secret_key_textbox) | |
elif RUN_AWS_FUNCTIONS == "1": | |
print("Connecting to Textract via existing SSO connection") | |
textract_client = boto3.client('textract') | |
elif AWS_ACCESS_KEY and AWS_SECRET_KEY: | |
print("Getting Textract credentials from environment variables.") | |
textract_client = boto3.client('textract', | |
aws_access_key_id=AWS_ACCESS_KEY, | |
aws_secret_access_key=AWS_SECRET_KEY) | |
else: | |
textract_client = "" | |
out_message = "Cannot connect to AWS Textract. Please provide access keys under Textract settings on the Redaction settings tab,choose another text extraction method." | |
print(out_message) | |
return out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page, precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number, review_out_file_paths, annotate_max_pages, annotate_max_pages, prepared_pdf_file_paths, prepared_pdf_image_paths, review_file_state | |
else: | |
textract_client = "" | |
# Check if output_folder exists, create it if it doesn't | |
if not os.path.exists(output_folder): | |
os.makedirs(output_folder) | |
progress(0.5, desc="Redacting file") | |
if isinstance(file_paths, str): | |
file_paths_list = [os.path.abspath(file_paths)] | |
file_paths_loop = file_paths_list | |
elif isinstance(file_paths, dict): | |
file_paths = file_paths["name"] | |
file_paths_list = [os.path.abspath(file_paths)] | |
file_paths_loop = file_paths_list | |
else: | |
file_paths_list = file_paths | |
file_paths_loop = [file_paths_list[int(latest_file_completed)]] | |
for file in file_paths_loop: | |
if isinstance(file, str): | |
file_path = file | |
else: | |
file_path = file.name | |
if file_path: | |
pdf_file_name_without_ext = get_file_name_without_type(file_path) | |
pdf_file_name_with_ext = os.path.basename(file_path) | |
is_a_pdf = is_pdf(file_path) == True | |
if is_a_pdf == False and in_redact_method == text_ocr_option: | |
# If user has not submitted a pdf, assume it's an image | |
print("File is not a pdf, assuming that image analysis needs to be used.") | |
in_redact_method = tesseract_ocr_option | |
else: | |
out_message = "No file selected" | |
print(out_message) | |
return combined_out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page,precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number, review_out_file_paths, annotate_max_pages, annotate_max_pages, prepared_pdf_file_paths, prepared_pdf_image_paths, review_file_state, annotate_max_pages, annotate_max_pages, prepared_pdf_file_paths, prepared_pdf_image_paths, review_file_state | |
if in_redact_method == tesseract_ocr_option or in_redact_method == textract_option: | |
#Analyse and redact image-based pdf or image | |
if is_pdf_or_image(file_path) == False: | |
out_message = "Please upload a PDF file or image file (JPG, PNG) for image analysis." | |
return out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page, precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number, review_out_file_paths, annotate_max_pages, annotate_max_pages, prepared_pdf_file_paths, prepared_pdf_image_paths, review_file_state | |
print("Redacting file " + pdf_file_name_with_ext + " as an image-based file") | |
pymupdf_doc, all_decision_process_table, log_files_output_paths, new_request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number = redact_image_pdf(file_path, | |
prepared_pdf_image_paths, | |
language, | |
chosen_redact_entities, | |
chosen_redact_comprehend_entities, | |
in_allow_list_flat, | |
is_a_pdf, | |
page_min, | |
page_max, | |
in_redact_method, | |
handwrite_signature_checkbox, | |
"", | |
current_loop_page, | |
page_break_return, | |
prepared_pdf_image_paths, | |
annotations_all_pages, | |
all_line_level_ocr_results_df, | |
all_decision_process_table, | |
pymupdf_doc, | |
pii_identification_method, | |
comprehend_query_number, | |
comprehend_client, | |
textract_client, | |
custom_recogniser_word_list, | |
redact_whole_page_list, | |
max_fuzzy_spelling_mistakes_num, | |
match_fuzzy_whole_phrase_bool, | |
log_files_output_paths=log_files_output_paths) | |
# Save Textract request metadata (if exists) | |
if new_request_metadata: | |
all_request_metadata.append(new_request_metadata) | |
elif in_redact_method == text_ocr_option: | |
#log_files_output_paths = [] | |
if is_pdf(file_path) == False: | |
out_message = "Please upload a PDF file for text analysis. If you have an image, select 'Image analysis'." | |
return out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page,precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number, review_out_file_paths, annotate_max_pages, annotate_max_pages, prepared_pdf_file_paths, prepared_pdf_image_paths, review_file_state | |
# Analyse text-based pdf | |
print('Redacting file as text-based PDF') | |
pymupdf_doc, all_decision_process_table, all_line_level_ocr_results_df, annotations_all_pages, current_loop_page, page_break_return, comprehend_query_number = redact_text_pdf(file_path, | |
prepared_pdf_image_paths,language, | |
chosen_redact_entities, | |
chosen_redact_comprehend_entities, | |
in_allow_list_flat, | |
page_min, | |
page_max, | |
text_ocr_option, | |
current_loop_page, | |
page_break_return, | |
annotations_all_pages, | |
all_line_level_ocr_results_df, | |
all_decision_process_table, | |
pymupdf_doc, | |
pii_identification_method, | |
comprehend_query_number, | |
comprehend_client, | |
custom_recogniser_word_list, | |
redact_whole_page_list, | |
max_fuzzy_spelling_mistakes_num, | |
match_fuzzy_whole_phrase_bool) | |
else: | |
out_message = "No redaction method selected" | |
print(out_message) | |
return out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page,precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number, review_out_file_paths, annotate_max_pages, annotate_max_pages, prepared_pdf_file_paths, prepared_pdf_image_paths, review_file_state | |
# If at last page, save to file | |
if current_loop_page >= number_of_pages: | |
print("Current page loop:", current_loop_page, "is the last page.") | |
latest_file_completed += 1 | |
current_loop_page = 999 | |
if latest_file_completed != len(file_paths_list): | |
print("Completed file number:", str(latest_file_completed), "there are more files to do") | |
# Save file | |
if is_pdf(file_path) == False: | |
out_redacted_pdf_file_path = output_folder + pdf_file_name_without_ext + "_redacted_as_pdf.pdf" | |
pymupdf_doc[-1].save(out_redacted_pdf_file_path, "PDF" ,resolution=image_dpi, save_all=False)#, append_images=pymupdf_doc[:1]) | |
out_review_file_path = output_folder + pdf_file_name_without_ext + '_review_file.csv' | |
else: | |
out_redacted_pdf_file_path = output_folder + pdf_file_name_without_ext + "_redacted.pdf" | |
pymupdf_doc.save(out_redacted_pdf_file_path) | |
out_file_paths.append(out_redacted_pdf_file_path) | |
out_orig_pdf_file_path = output_folder + pdf_file_name_with_ext | |
logs_output_file_name = out_orig_pdf_file_path + "_decision_process_output.csv" | |
all_decision_process_table.to_csv(logs_output_file_name, index = None, encoding="utf-8") | |
log_files_output_paths.append(logs_output_file_name) | |
all_text_output_file_name = out_orig_pdf_file_path + "_ocr_output.csv" | |
all_line_level_ocr_results_df.to_csv(all_text_output_file_name, index = None, encoding="utf-8") | |
out_file_paths.append(all_text_output_file_name) | |
# Save the gradio_annotation_boxes to a JSON file | |
try: | |
review_df = convert_review_json_to_pandas_df(annotations_all_pages, all_decision_process_table) | |
out_review_file_path = out_orig_pdf_file_path + '_review_file.csv' | |
review_df.to_csv(out_review_file_path, index=None) | |
out_file_paths.append(out_review_file_path) | |
#print("Saved review file to csv") | |
out_annotation_file_path = out_orig_pdf_file_path + '_review_file.json' | |
with open(out_annotation_file_path, 'w') as f: | |
json.dump(annotations_all_pages, f) | |
log_files_output_paths.append(out_annotation_file_path) | |
#print("Saving annotations to JSON") | |
except Exception as e: | |
print("Could not save annotations to json or csv file:", e) | |
# Make a combined message for the file | |
if isinstance(out_message, list): | |
combined_out_message = '\n'.join(out_message) # Ensure out_message is a list of strings | |
else: combined_out_message = out_message | |
toc = time.perf_counter() | |
time_taken = toc - tic | |
estimated_time_taken_state = estimated_time_taken_state + time_taken | |
out_time_message = f" Redacted in {estimated_time_taken_state:0.1f} seconds." | |
combined_out_message = combined_out_message + " " + out_time_message # Ensure this is a single string | |
estimate_total_processing_time = sum_numbers_before_seconds(combined_out_message) | |
else: | |
toc = time.perf_counter() | |
time_taken = toc - tic | |
estimated_time_taken_state = estimated_time_taken_state + time_taken | |
# If textract requests made, write to logging file | |
if all_request_metadata: | |
all_request_metadata_str = '\n'.join(all_request_metadata).strip() | |
all_request_metadata_file_path = output_folder + pdf_file_name_without_ext + "_textract_request_metadata.txt" | |
with open(all_request_metadata_file_path, "w") as f: | |
f.write(all_request_metadata_str) | |
# Add the request metadata to the log outputs if not there already | |
if all_request_metadata_file_path not in log_files_output_paths: | |
log_files_output_paths.append(all_request_metadata_file_path) | |
if combined_out_message: out_message = combined_out_message | |
# Ensure no duplicated output files | |
log_files_output_paths = list(set(log_files_output_paths)) | |
out_file_paths = list(set(out_file_paths)) | |
review_out_file_paths = [prepared_pdf_file_paths[0], out_review_file_path] | |
return out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page, precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number, review_out_file_paths, annotate_max_pages, annotate_max_pages, prepared_pdf_file_paths, prepared_pdf_image_paths, review_file_state | |
def convert_pikepdf_coords_to_pymupdf(pymupdf_page, pikepdf_bbox, type="pikepdf_annot"): | |
''' | |
Convert annotations from pikepdf to pymupdf format, handling the mediabox larger than rect. | |
''' | |
# Use cropbox if available, otherwise use mediabox | |
reference_box = pymupdf_page.rect | |
mediabox = pymupdf_page.mediabox | |
reference_box_height = reference_box.height | |
reference_box_width = reference_box.width | |
# Convert PyMuPDF coordinates back to PDF coordinates (bottom-left origin) | |
media_height = mediabox.height | |
media_width = mediabox.width | |
media_reference_y_diff = media_height - reference_box_height | |
media_reference_x_diff = media_width - reference_box_width | |
y_diff_ratio = media_reference_y_diff / reference_box_height | |
x_diff_ratio = media_reference_x_diff / reference_box_width | |
# Extract the annotation rectangle field | |
if type=="pikepdf_annot": | |
rect_field = pikepdf_bbox["/Rect"] | |
else: | |
rect_field = pikepdf_bbox | |
rect_coordinates = [float(coord) for coord in rect_field] # Convert to floats | |
# Unpack coordinates | |
x1, y1, x2, y2 = rect_coordinates | |
new_x1 = x1 - (media_reference_x_diff * x_diff_ratio) | |
new_y1 = media_height - y2 - (media_reference_y_diff * y_diff_ratio) | |
new_x2 = x2 - (media_reference_x_diff * x_diff_ratio) | |
new_y2 = media_height - y1 - (media_reference_y_diff * y_diff_ratio) | |
return new_x1, new_y1, new_x2, new_y2 | |
def convert_pikepdf_to_image_coords(pymupdf_page, annot, image:Image, type="pikepdf_annot"): | |
''' | |
Convert annotations from pikepdf coordinates to image coordinates. | |
''' | |
# Get the dimensions of the page in points with pymupdf | |
rect_height = pymupdf_page.rect.height | |
rect_width = pymupdf_page.rect.width | |
# Get the dimensions of the image | |
image_page_width, image_page_height = image.size | |
# Calculate scaling factors between pymupdf and PIL image | |
scale_width = image_page_width / rect_width | |
scale_height = image_page_height / rect_height | |
# Extract the /Rect field | |
if type=="pikepdf_annot": | |
rect_field = annot["/Rect"] | |
else: | |
rect_field = annot | |
# Convert the extracted /Rect field to a list of floats | |
rect_coordinates = [float(coord) for coord in rect_field] | |
# Convert the Y-coordinates (flip using the image height) | |
x1, y1, x2, y2 = rect_coordinates | |
x1_image = x1 * scale_width | |
new_y1_image = image_page_height - (y2 * scale_height) # Flip Y0 (since it starts from bottom) | |
x2_image = x2 * scale_width | |
new_y2_image = image_page_height - (y1 * scale_height) # Flip Y1 | |
return x1_image, new_y1_image, x2_image, new_y2_image | |
def convert_pikepdf_decision_output_to_image_coords(pymupdf_page, pikepdf_decision_ouput_data:List, image): | |
if isinstance(image, str): | |
image_path = image | |
image = Image.open(image_path) | |
# Loop through each item in the data | |
for item in pikepdf_decision_ouput_data: | |
# Extract the bounding box | |
bounding_box = item['boundingBox'] | |
# Create a pikepdf_bbox dictionary to match the expected input | |
pikepdf_bbox = {"/Rect": bounding_box} | |
# Call the conversion function | |
new_x1, new_y1, new_x2, new_y2 = convert_pikepdf_to_image_coords(pymupdf_page, pikepdf_bbox, image, type="pikepdf_annot") | |
# Update the original object with the new bounding box values | |
item['boundingBox'] = [new_x1, new_y1, new_x2, new_y2] | |
return pikepdf_decision_ouput_data | |
def convert_image_coords_to_pymupdf(pymupdf_page, annot, image:Image, type="image_recognizer"): | |
''' | |
Converts an image with redaction coordinates from a CustomImageRecognizerResult or pikepdf object with image coordinates to pymupdf coordinates. | |
''' | |
rect_height = pymupdf_page.rect.height | |
rect_width = pymupdf_page.rect.width | |
image_page_width, image_page_height = image.size | |
# Calculate scaling factors between PIL image and pymupdf | |
scale_width = rect_width / image_page_width | |
scale_height = rect_height / image_page_height | |
# Calculate scaled coordinates | |
if type == "image_recognizer": | |
x1 = (annot.left * scale_width)# + page_x_adjust | |
new_y1 = (annot.top * scale_height)# - page_y_adjust # Flip Y0 (since it starts from bottom) | |
x2 = ((annot.left + annot.width) * scale_width)# + page_x_adjust # Calculate x1 | |
new_y2 = ((annot.top + annot.height) * scale_height)# - page_y_adjust # Calculate y1 correctly | |
# Else assume it is a pikepdf derived object | |
else: | |
rect_field = annot["/Rect"] | |
rect_coordinates = [float(coord) for coord in rect_field] # Convert to floats | |
# Unpack coordinates | |
x1, y1, x2, y2 = rect_coordinates | |
x1 = (x1* scale_width)# + page_x_adjust | |
new_y1 = ((y2 + (y1 - y2))* scale_height)# - page_y_adjust # Calculate y1 correctly | |
x2 = ((x1 + (x2 - x1)) * scale_width)# + page_x_adjust # Calculate x1 | |
new_y2 = (y2 * scale_height)# - page_y_adjust # Flip Y0 (since it starts from bottom) | |
return x1, new_y1, x2, new_y2 | |
def convert_gradio_annotation_coords_to_pymupdf(pymupdf_page:Page, annot:dict, image:Image): | |
''' | |
Converts an image with redaction coordinates from a gradio annotation component to pymupdf coordinates. | |
''' | |
rect_height = pymupdf_page.rect.height | |
rect_width = pymupdf_page.rect.width | |
image_page_width, image_page_height = image.size | |
# Calculate scaling factors between PIL image and pymupdf | |
scale_width = rect_width / image_page_width | |
scale_height = rect_height / image_page_height | |
# Calculate scaled coordinates | |
x1 = (annot["xmin"] * scale_width)# + page_x_adjust | |
new_y1 = (annot["ymin"] * scale_height)# - page_y_adjust # Flip Y0 (since it starts from bottom) | |
x2 = ((annot["xmax"]) * scale_width)# + page_x_adjust # Calculate x1 | |
new_y2 = ((annot["ymax"]) * scale_height)# - page_y_adjust # Calculate y1 correctly | |
return x1, new_y1, x2, new_y2 | |
def move_page_info(file_path: str) -> str: | |
# Split the string at '.png' | |
base, extension = file_path.rsplit('.pdf', 1) | |
# Extract the page info | |
page_info = base.split('page ')[1].split(' of')[0] # Get the page number | |
new_base = base.replace(f'page {page_info} of ', '') # Remove the page info from the original position | |
# Construct the new file path | |
new_file_path = f"{new_base}_page_{page_info}.png" | |
return new_file_path | |
def redact_page_with_pymupdf(page:Page, page_annotations:dict, image=None, custom_colours:bool=False, redact_whole_page:bool=False, convert_coords:bool=True): | |
mediabox_height = page.mediabox[3] - page.mediabox[1] | |
mediabox_width = page.mediabox[2] - page.mediabox[0] | |
rect_height = page.rect.height | |
rect_width = page.rect.width | |
pymupdf_x1 = None | |
pymupdf_x2 = None | |
out_annotation_boxes = {} | |
all_image_annotation_boxes = [] | |
image_path = "" | |
if isinstance(image, Image.Image): | |
image_path = move_page_info(str(page)) | |
image.save(image_path) | |
elif isinstance(image, str): | |
image_path = image | |
image = Image.open(image_path) | |
# Check if this is an object used in the Gradio Annotation component | |
if isinstance (page_annotations, dict): | |
page_annotations = page_annotations["boxes"] | |
for annot in page_annotations: | |
# Check if an Image recogniser result, or a Gradio annotation object | |
if (isinstance(annot, CustomImageRecognizerResult)) | isinstance(annot, dict): | |
img_annotation_box = {} | |
# Should already be in correct format if img_annotator_box is an input | |
if isinstance(annot, dict): | |
img_annotation_box = annot | |
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = convert_gradio_annotation_coords_to_pymupdf(page, annot, image) | |
x1 = pymupdf_x1 | |
x2 = pymupdf_x2 | |
if hasattr(annot, 'text') and annot.text: | |
img_annotation_box["text"] = annot.text | |
else: | |
img_annotation_box["text"] = "" | |
# Else should be CustomImageRecognizerResult | |
else: | |
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = convert_image_coords_to_pymupdf(page, annot, image) | |
x1 = pymupdf_x1 | |
x2 = pymupdf_x2 | |
img_annotation_box["xmin"] = annot.left | |
img_annotation_box["ymin"] = annot.top | |
img_annotation_box["xmax"] = annot.left + annot.width | |
img_annotation_box["ymax"] = annot.top + annot.height | |
img_annotation_box["color"] = (0,0,0) | |
try: | |
img_annotation_box["label"] = annot.entity_type | |
except: | |
img_annotation_box["label"] = "Redaction" | |
if hasattr(annot, 'text') and annot.text: | |
img_annotation_box["text"] = annot.text | |
else: | |
img_annotation_box["text"] = "" | |
rect = Rect(x1, pymupdf_y1, x2, pymupdf_y2) # Create the PyMuPDF Rect | |
# Else it should be a pikepdf annotation object | |
else: | |
if convert_coords == True: | |
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = convert_pikepdf_coords_to_pymupdf(page, annot) | |
else: | |
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = convert_image_coords_to_pymupdf(page, annot, image, type="pikepdf_image_coords") | |
x1 = pymupdf_x1 | |
x2 = pymupdf_x2 | |
rect = Rect(x1, pymupdf_y1, x2, pymupdf_y2) | |
img_annotation_box = {} | |
if image: | |
img_width, img_height = image.size | |
x1, image_y1, x2, image_y2 = convert_pymupdf_to_image_coords(page, x1, pymupdf_y1, x2, pymupdf_y2, image) | |
img_annotation_box["xmin"] = x1 #* (img_width / rect_width) # Use adjusted x1 | |
img_annotation_box["ymin"] = image_y1 #* (img_width / rect_width) # Use adjusted y1 | |
img_annotation_box["xmax"] = x2# * (img_height / rect_height) # Use adjusted x2 | |
img_annotation_box["ymax"] = image_y2 #* (img_height / rect_height) # Use adjusted y2 | |
img_annotation_box["color"] = (0, 0, 0) | |
if isinstance(annot, Dictionary): | |
img_annotation_box["label"] = str(annot["/T"]) | |
if hasattr(annot, 'Contents'): | |
img_annotation_box["text"] = annot.Contents | |
else: | |
img_annotation_box["text"] = "" | |
else: | |
img_annotation_box["label"] = "REDACTION" | |
img_annotation_box["text"] = "" | |
# Convert to a PyMuPDF Rect object | |
#rect = Rect(rect_coordinates) | |
all_image_annotation_boxes.append(img_annotation_box) | |
redact_single_box(page, rect, img_annotation_box, custom_colours) | |
# If whole page is to be redacted, do that here | |
if redact_whole_page == True: | |
whole_page_img_annotation_box = redact_whole_pymupdf_page(rect_height, rect_width, image, page, custom_colours, border = 5) | |
all_image_annotation_boxes.append(whole_page_img_annotation_box) | |
out_annotation_boxes = { | |
"image": image_path, #Image.open(image_path), #image_path, | |
"boxes": all_image_annotation_boxes | |
} | |
page.apply_redactions(images=0, graphics=0) | |
page.clean_contents() | |
return page, out_annotation_boxes | |
### | |
# IMAGE-BASED OCR PDF TEXT DETECTION/REDACTION WITH TESSERACT OR AWS TEXTRACT | |
### | |
def merge_img_bboxes(bboxes, combined_results: Dict, signature_recogniser_results=[], handwriting_recogniser_results=[], handwrite_signature_checkbox: List[str]=["Redact all identified handwriting", "Redact all identified signatures"], horizontal_threshold:int=50, vertical_threshold:int=12): | |
all_bboxes = [] | |
merged_bboxes = [] | |
grouped_bboxes = defaultdict(list) | |
# Deep copy original bounding boxes to retain them | |
original_bboxes = copy.deepcopy(bboxes) | |
# Process signature and handwriting results | |
if signature_recogniser_results or handwriting_recogniser_results: | |
if "Redact all identified handwriting" in handwrite_signature_checkbox: | |
merged_bboxes.extend(copy.deepcopy(handwriting_recogniser_results)) | |
if "Redact all identified signatures" in handwrite_signature_checkbox: | |
merged_bboxes.extend(copy.deepcopy(signature_recogniser_results)) | |
# Reconstruct bounding boxes for substrings of interest | |
reconstructed_bboxes = [] | |
for bbox in bboxes: | |
bbox_box = (bbox.left, bbox.top, bbox.left + bbox.width, bbox.top + bbox.height) | |
for line_text, line_info in combined_results.items(): | |
line_box = line_info['bounding_box'] | |
if bounding_boxes_overlap(bbox_box, line_box): | |
if bbox.text in line_text: | |
start_char = line_text.index(bbox.text) | |
end_char = start_char + len(bbox.text) | |
relevant_words = [] | |
current_char = 0 | |
for word in line_info['words']: | |
word_end = current_char + len(word['text']) | |
if current_char <= start_char < word_end or current_char < end_char <= word_end or (start_char <= current_char and word_end <= end_char): | |
relevant_words.append(word) | |
if word_end >= end_char: | |
break | |
current_char = word_end | |
if not word['text'].endswith(' '): | |
current_char += 1 # +1 for space if the word doesn't already end with a space | |
if relevant_words: | |
left = min(word['bounding_box'][0] for word in relevant_words) | |
top = min(word['bounding_box'][1] for word in relevant_words) | |
right = max(word['bounding_box'][2] for word in relevant_words) | |
bottom = max(word['bounding_box'][3] for word in relevant_words) | |
combined_text = " ".join(word['text'] for word in relevant_words) | |
reconstructed_bbox = CustomImageRecognizerResult( | |
bbox.entity_type, | |
bbox.start, | |
bbox.end, | |
bbox.score, | |
left, | |
top, | |
right - left, # width | |
bottom - top, # height, | |
combined_text | |
) | |
#reconstructed_bboxes.append(bbox) # Add original bbox | |
reconstructed_bboxes.append(reconstructed_bbox) # Add merged bbox | |
break | |
else: | |
reconstructed_bboxes.append(bbox) | |
# Group reconstructed bboxes by approximate vertical proximity | |
for box in reconstructed_bboxes: | |
grouped_bboxes[round(box.top / vertical_threshold)].append(box) | |
# Merge within each group | |
for _, group in grouped_bboxes.items(): | |
group.sort(key=lambda box: box.left) | |
merged_box = group[0] | |
for next_box in group[1:]: | |
if next_box.left - (merged_box.left + merged_box.width) <= horizontal_threshold: | |
new_text = merged_box.text + " " + next_box.text | |
if merged_box.entity_type != next_box.entity_type: | |
new_entity_type = merged_box.entity_type + " - " + next_box.entity_type | |
else: | |
new_entity_type = merged_box.entity_type | |
new_left = min(merged_box.left, next_box.left) | |
new_top = min(merged_box.top, next_box.top) | |
new_width = max(merged_box.left + merged_box.width, next_box.left + next_box.width) - new_left | |
new_height = max(merged_box.top + merged_box.height, next_box.top + next_box.height) - new_top | |
merged_box = CustomImageRecognizerResult( | |
new_entity_type, merged_box.start, merged_box.end, merged_box.score, new_left, new_top, new_width, new_height, new_text | |
) | |
else: | |
merged_bboxes.append(merged_box) | |
merged_box = next_box | |
merged_bboxes.append(merged_box) | |
all_bboxes.extend(original_bboxes) | |
#all_bboxes.extend(reconstructed_bboxes) | |
all_bboxes.extend(merged_bboxes) | |
# Return the unique original and merged bounding boxes | |
unique_bboxes = list({(bbox.left, bbox.top, bbox.width, bbox.height): bbox for bbox in all_bboxes}.values()) | |
return unique_bboxes | |
def redact_image_pdf(file_path:str, | |
prepared_pdf_file_paths:List[str], | |
language:str, | |
chosen_redact_entities:List[str], | |
chosen_redact_comprehend_entities:List[str], | |
allow_list:List[str]=None, | |
is_a_pdf:bool=True, | |
page_min:int=0, | |
page_max:int=999, | |
analysis_type:str=tesseract_ocr_option, | |
handwrite_signature_checkbox:List[str]=["Redact all identified handwriting", "Redact all identified signatures"], | |
request_metadata:str="", current_loop_page:int=0, | |
page_break_return:bool=False, | |
images=[], | |
annotations_all_pages:List=[], | |
all_line_level_ocr_results_df = pd.DataFrame(), | |
all_decision_process_table = pd.DataFrame(), | |
pymupdf_doc = [], | |
pii_identification_method:str="Local", | |
comprehend_query_number:int=0, | |
comprehend_client:str="", | |
textract_client:str="", | |
custom_recogniser_word_list:List[str]=[], | |
redact_whole_page_list:List[str]=[], | |
max_fuzzy_spelling_mistakes_num:int=1, | |
match_fuzzy_whole_phrase_bool:bool=True, | |
page_break_val:int=int(page_break_value), | |
log_files_output_paths:List=[], | |
max_time:int=int(max_time_value), | |
progress=Progress(track_tqdm=True)): | |
''' | |
This function redacts sensitive information from a PDF document. It takes the following parameters: | |
- file_path (str): The path to the PDF file to be redacted. | |
- prepared_pdf_file_paths (List[str]): A list of paths to the PDF file pages converted to images. | |
- language (str): The language of the text in the PDF. | |
- chosen_redact_entities (List[str]): A list of entity types to redact from the PDF. | |
- chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from the list allowed by the AWS Comprehend service. | |
- allow_list (List[str], optional): A list of entity types to allow in the PDF. Defaults to None. | |
- is_a_pdf (bool, optional): Indicates if the input file is a PDF. Defaults to True. | |
- page_min (int, optional): The minimum page number to start redaction from. Defaults to 0. | |
- page_max (int, optional): The maximum page number to end redaction at. Defaults to 999. | |
- analysis_type (str, optional): The type of analysis to perform on the PDF. Defaults to tesseract_ocr_option. | |
- handwrite_signature_checkbox (List[str], optional): A list of options for redacting handwriting and signatures. Defaults to ["Redact all identified handwriting", "Redact all identified signatures"]. | |
- request_metadata (str, optional): Metadata related to the redaction request. Defaults to an empty string. | |
- page_break_return (bool, optional): Indicates if the function should return after a page break. Defaults to False. | |
- images (list, optional): List of image objects for each PDF page. | |
- annotations_all_pages (List, optional): List of annotations on all pages that is used by the gradio_image_annotation object. | |
- all_line_level_ocr_results_df (pd.DataFrame(), optional): All line level OCR results for the document as a Pandas dataframe, | |
- all_decision_process_table (pd.DataFrame(), optional): All redaction decisions for document as a Pandas dataframe. | |
- pymupdf_doc (List, optional): The document as a PyMupdf object. | |
- pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API). | |
- comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend. | |
- comprehend_client (optional): A connection to the AWS Comprehend service via the boto3 package. | |
- textract_client (optional): A connection to the AWS Textract service via the boto3 package. | |
- custom_recogniser_word_list (optional): A list of custom words that the user has chosen specifically to redact. | |
- redact_whole_page_list (optional, List[str]): A list of pages to fully redact. | |
- max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9. | |
- match_fuzzy_whole_phrase_bool (bool, optional): A boolean where 'True' means that the whole phrase is fuzzy matched, and 'False' means that each word is fuzzy matched separately (excluding stop words). | |
- page_break_val (int, optional): The value at which to trigger a page break. Defaults to 3. | |
- log_files_output_paths (List, optional): List of file paths used for saving redaction process logging results. | |
- max_time (int, optional): The maximum amount of time (s) that the function should be running before it breaks. To avoid timeout errors with some APIs. | |
- progress (Progress, optional): A progress tracker for the redaction process. Defaults to a Progress object with track_tqdm set to True. | |
The function returns a redacted PDF document along with processing output objects. | |
''' | |
file_name = get_file_name_without_type(file_path) | |
fill = (0, 0, 0) # Fill colour for redactions | |
comprehend_query_number_new = 0 | |
# Update custom word list analyser object with any new words that have been added to the custom deny list | |
#print("custom_recogniser_word_list:", custom_recogniser_word_list) | |
if custom_recogniser_word_list: | |
nlp_analyser.registry.remove_recognizer("CUSTOM") | |
new_custom_recogniser = custom_word_list_recogniser(custom_recogniser_word_list) | |
nlp_analyser.registry.add_recognizer(new_custom_recogniser) | |
nlp_analyser.registry.remove_recognizer("CustomWordFuzzyRecognizer") | |
new_custom_fuzzy_recogniser = CustomWordFuzzyRecognizer(supported_entities=["CUSTOM_FUZZY"], custom_list=custom_recogniser_word_list, spelling_mistakes_max=max_fuzzy_spelling_mistakes_num, search_whole_phrase=match_fuzzy_whole_phrase_bool) | |
nlp_analyser.registry.add_recognizer(new_custom_fuzzy_recogniser) | |
image_analyser = CustomImageAnalyzerEngine(nlp_analyser) | |
if pii_identification_method == "AWS Comprehend" and comprehend_client == "": | |
print("Connection to AWS Comprehend service unsuccessful.") | |
return pymupdf_doc, all_decision_process_table, log_files_output_paths, request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number | |
if analysis_type == textract_option and textract_client == "": | |
print("Connection to AWS Textract service unsuccessful.") | |
return pymupdf_doc, all_decision_process_table, log_files_output_paths, request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number | |
tic = time.perf_counter() | |
if not prepared_pdf_file_paths: | |
out_message = "PDF does not exist as images. Converting pages to image" | |
print(out_message) | |
prepared_pdf_file_paths = process_file(file_path) | |
number_of_pages = len(prepared_pdf_file_paths) | |
print("Number of pages:", str(number_of_pages)) | |
# Check that page_min and page_max are within expected ranges | |
if page_max > number_of_pages or page_max == 0: | |
page_max = number_of_pages | |
if page_min <= 0: page_min = 0 | |
else: page_min = page_min - 1 | |
print("Page range:", str(page_min + 1), "to", str(page_max)) | |
# If running Textract, check if file already exists. If it does, load in existing data | |
if analysis_type == textract_option: | |
json_file_path = output_folder + file_name + "_textract.json" | |
if not os.path.exists(json_file_path): | |
print("No existing Textract results file found.") | |
textract_data = {} | |
else: | |
# Open the file and load the JSON data | |
no_textract_file = False | |
print("Found existing Textract json results file.") | |
if json_file_path not in log_files_output_paths: | |
log_files_output_paths.append(json_file_path) | |
with open(json_file_path, 'r') as json_file: | |
textract_data = json.load(json_file) | |
### | |
if current_loop_page == 0: page_loop_start = 0 | |
else: page_loop_start = current_loop_page | |
progress_bar = tqdm(range(page_loop_start, number_of_pages), unit="pages remaining", desc="Redacting pages") | |
for page_no in progress_bar: | |
handwriting_or_signature_boxes = [] | |
signature_recogniser_results = [] | |
handwriting_recogniser_results = [] | |
page_break_return = False | |
reported_page_number = str(page_no + 1) | |
# Assuming prepared_pdf_file_paths[page_no] is a PIL image object | |
try: | |
image = prepared_pdf_file_paths[page_no]#.copy() | |
#print("image:", image) | |
except Exception as e: | |
print("Could not redact page:", reported_page_number, "due to:", e) | |
continue | |
image_annotations = {"image": image, "boxes": []} | |
pymupdf_page = pymupdf_doc.load_page(page_no) | |
if page_no >= page_min and page_no < page_max: | |
#print("Image is in range of pages to redact") | |
if isinstance(image, str): | |
image = Image.open(image) | |
# Need image size to convert textract OCR outputs to the correct sizes | |
page_width, page_height = image.size | |
# Possibility to use different languages | |
if language == 'en': ocr_lang = 'eng' | |
else: ocr_lang = language | |
# Step 1: Perform OCR. Either with Tesseract, or with AWS Textract | |
if analysis_type == tesseract_ocr_option: | |
word_level_ocr_results = image_analyser.perform_ocr(image) | |
line_level_ocr_results, line_level_ocr_results_with_children = combine_ocr_results(word_level_ocr_results) | |
# Import results from json and convert | |
if analysis_type == textract_option: | |
# Convert the image to bytes using an in-memory buffer | |
image_buffer = io.BytesIO() | |
image.save(image_buffer, format='PNG') # Save as PNG, or adjust format if needed | |
pdf_page_as_bytes = image_buffer.getvalue() | |
if not textract_data: | |
try: | |
text_blocks, new_request_metadata = analyse_page_with_textract(pdf_page_as_bytes, reported_page_number, textract_client, handwrite_signature_checkbox) # Analyse page with Textract | |
if json_file_path not in log_files_output_paths: | |
log_files_output_paths.append(json_file_path) | |
textract_data = {"pages":[text_blocks]} | |
except Exception as e: | |
print("Textract extraction for page", reported_page_number, "failed due to:", e) | |
textract_data = {"pages":[]} | |
new_request_metadata = "Failed Textract API call" | |
request_metadata = request_metadata + "\n" + new_request_metadata | |
else: | |
# Check if the current reported_page_number exists in the loaded JSON | |
page_exists = any(page['page_no'] == reported_page_number for page in textract_data.get("pages", [])) | |
if not page_exists: # If the page does not exist, analyze again | |
print(f"Page number {reported_page_number} not found in existing Textract data. Analysing.") | |
try: | |
text_blocks, new_request_metadata = analyse_page_with_textract(pdf_page_as_bytes, reported_page_number, textract_client, handwrite_signature_checkbox) # Analyse page with Textract | |
except Exception as e: | |
print("Textract extraction for page", reported_page_number, "failed due to:", e) | |
text_blocks = [] | |
new_request_metadata = "Failed Textract API call" | |
# Check if "pages" key exists, if not, initialize it as an empty list | |
if "pages" not in textract_data: | |
textract_data["pages"] = [] | |
# Append the new page data | |
textract_data["pages"].append(text_blocks) | |
request_metadata = request_metadata + "\n" + new_request_metadata | |
else: | |
# If the page exists, retrieve the data | |
text_blocks = next(page['data'] for page in textract_data["pages"] if page['page_no'] == reported_page_number) | |
line_level_ocr_results, handwriting_or_signature_boxes, signature_recogniser_results, handwriting_recogniser_results, line_level_ocr_results_with_children = json_to_ocrresult(text_blocks, page_width, page_height, reported_page_number) | |
# Step 2: Analyze text and identify PII | |
if chosen_redact_entities or chosen_redact_comprehend_entities: | |
redaction_bboxes, comprehend_query_number_new = image_analyser.analyze_text( | |
line_level_ocr_results, | |
line_level_ocr_results_with_children, | |
chosen_redact_comprehend_entities = chosen_redact_comprehend_entities, | |
pii_identification_method = pii_identification_method, | |
comprehend_client=comprehend_client, | |
language=language, | |
entities=chosen_redact_entities, | |
allow_list=allow_list, | |
score_threshold=score_threshold | |
) | |
comprehend_query_number = comprehend_query_number + comprehend_query_number_new | |
else: | |
redaction_bboxes = [] | |
# if analysis_type == tesseract_ocr_option: interim_results_file_path = output_folder + "interim_analyser_bboxes_" + file_name + "_pages_" + str(page_min + 1) + "_" + str(page_max) + ".txt" | |
# elif analysis_type == textract_option: interim_results_file_path = output_folder + "interim_analyser_bboxes_" + file_name + "_pages_" + str(page_min + 1) + "_" + str(page_max) + "_textract.txt" | |
# # Save decision making process | |
# bboxes_str = str(redaction_bboxes) | |
# with open(interim_results_file_path, "w") as f: | |
# f.write(bboxes_str) | |
# Merge close bounding boxes | |
merged_redaction_bboxes = merge_img_bboxes(redaction_bboxes, line_level_ocr_results_with_children, signature_recogniser_results, handwriting_recogniser_results, handwrite_signature_checkbox) | |
# 3. Draw the merged boxes | |
if is_pdf(file_path) == False: | |
draw = ImageDraw.Draw(image) | |
all_image_annotations_boxes = [] | |
for box in merged_redaction_bboxes: | |
x0 = box.left | |
y0 = box.top | |
x1 = x0 + box.width | |
y1 = y0 + box.height | |
try: | |
label = box.entity_type | |
except: | |
label = "Redaction" | |
# Directly append the dictionary with the required keys | |
all_image_annotations_boxes.append({ | |
"xmin": x0, | |
"ymin": y0, | |
"xmax": x1, | |
"ymax": y1, | |
"label": label, | |
"color": (0, 0, 0) | |
}) | |
draw.rectangle([x0, y0, x1, y1], fill=fill) # Adjusted to use a list for rectangle | |
image_annotations = {"image": file_path, "boxes": all_image_annotations_boxes} | |
## Apply annotations with pymupdf | |
else: | |
if redact_whole_page_list: | |
int_reported_page_number = int(reported_page_number) | |
if int_reported_page_number in redact_whole_page_list: redact_whole_page = True | |
else: redact_whole_page = False | |
else: redact_whole_page = False | |
pymupdf_page, image_annotations = redact_page_with_pymupdf(pymupdf_page, merged_redaction_bboxes, image, redact_whole_page=redact_whole_page) | |
# Convert decision process to table | |
decision_process_table = pd.DataFrame([{ | |
'text': result.text, | |
'xmin': result.left, | |
'ymin': result.top, | |
'xmax': result.left + result.width, | |
'ymax': result.top + result.height, | |
'label': result.entity_type, | |
'start': result.start, | |
'end': result.end, | |
'score': result.score, | |
'page': reported_page_number | |
} for result in merged_redaction_bboxes]) #'left': result.left, | |
#'top': result.top, | |
#'width': result.width, | |
#'height': result.height, | |
all_decision_process_table = pd.concat([all_decision_process_table, decision_process_table]) | |
# Convert to DataFrame and add to ongoing logging table | |
line_level_ocr_results_df = pd.DataFrame([{ | |
'page': reported_page_number, | |
'text': result.text, | |
'left': result.left, | |
'top': result.top, | |
'width': result.width, | |
'height': result.height | |
} for result in line_level_ocr_results]) | |
all_line_level_ocr_results_df = pd.concat([all_line_level_ocr_results_df, line_level_ocr_results_df]) | |
toc = time.perf_counter() | |
time_taken = toc - tic | |
# Break if time taken is greater than max_time seconds | |
if time_taken > max_time: | |
print("Processing for", max_time, "seconds, breaking loop.") | |
page_break_return = True | |
progress.close(_tqdm=progress_bar) | |
tqdm._instances.clear() | |
if is_pdf(file_path) == False: | |
images.append(image) | |
pymupdf_doc = images | |
# Check if the image already exists in annotations_all_pages | |
existing_index = next((index for index, ann in enumerate(annotations_all_pages) if ann["image"] == image_annotations["image"]), None) | |
if existing_index is not None: | |
# Replace the existing annotation | |
annotations_all_pages[existing_index] = image_annotations | |
else: | |
# Append new annotation if it doesn't exist | |
annotations_all_pages.append(image_annotations) | |
if analysis_type == textract_option: | |
# Write the updated existing textract data back to the JSON file | |
with open(json_file_path, 'w') as json_file: | |
json.dump(textract_data, json_file, indent=4) # indent=4 makes the JSON file pretty-printed | |
if json_file_path not in log_files_output_paths: | |
log_files_output_paths.append(json_file_path) | |
print("At end of redact_image_pdf function where time over max.", json_file_path, "not found in log_files_output_paths, appended to list:", log_files_output_paths) | |
current_loop_page += 1 | |
return pymupdf_doc, all_decision_process_table, log_files_output_paths, request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number | |
if is_pdf(file_path) == False: | |
images.append(image) | |
pymupdf_doc = images | |
# Check if the image already exists in annotations_all_pages | |
existing_index = next((index for index, ann in enumerate(annotations_all_pages) if ann["image"] == image_annotations["image"]), None) | |
if existing_index is not None: | |
# Replace the existing annotation | |
annotations_all_pages[existing_index] = image_annotations | |
else: | |
# Append new annotation if it doesn't exist | |
annotations_all_pages.append(image_annotations) | |
current_loop_page += 1 | |
# Break if new page is a multiple of chosen page_break_val | |
if current_loop_page % page_break_val == 0: | |
page_break_return = True | |
progress.close(_tqdm=progress_bar) | |
tqdm._instances.clear() | |
if analysis_type == textract_option: | |
# Write the updated existing textract data back to the JSON file | |
with open(json_file_path, 'w') as json_file: | |
json.dump(textract_data, json_file, indent=4) # indent=4 makes the JSON file pretty-printed | |
if json_file_path not in log_files_output_paths: | |
log_files_output_paths.append(json_file_path) | |
return pymupdf_doc, all_decision_process_table, log_files_output_paths, request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number | |
if analysis_type == textract_option: | |
# Write the updated existing textract data back to the JSON file | |
with open(json_file_path, 'w') as json_file: | |
json.dump(textract_data, json_file, indent=4) # indent=4 makes the JSON file pretty-printed | |
if json_file_path not in log_files_output_paths: | |
log_files_output_paths.append(json_file_path) | |
return pymupdf_doc, all_decision_process_table, log_files_output_paths, request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number | |
### | |
# PIKEPDF TEXT DETECTION/REDACTION | |
### | |
def get_text_container_characters(text_container:LTTextContainer): | |
if isinstance(text_container, LTTextContainer): | |
characters = [char | |
for line in text_container | |
if isinstance(line, LTTextLine) or isinstance(line, LTTextLineHorizontal) | |
for char in line] | |
#print("Initial characters:", characters) | |
return characters | |
return [] | |
def create_text_bounding_boxes_from_characters(char_objects:List[LTChar]) -> Tuple[List[OCRResult], List[LTChar]]: | |
''' | |
Create an OCRResult object based on a list of pdfminer LTChar objects. | |
''' | |
line_level_results_out = [] | |
line_level_characters_out = [] | |
#all_line_level_characters_out = [] | |
character_objects_out = [] # New list to store character objects | |
# character_text_objects_out = [] | |
# Initialize variables | |
full_text = "" | |
added_text = "" | |
overall_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')] # [x0, y0, x1, y1] | |
word_bboxes = [] | |
# Iterate through the character objects | |
current_word = "" | |
current_word_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')] # [x0, y0, x1, y1] | |
for char in char_objects: | |
character_objects_out.append(char) # Collect character objects | |
if not isinstance(char, LTAnno): | |
character_text = char.get_text() | |
# character_text_objects_out.append(character_text) | |
if isinstance(char, LTAnno): | |
added_text = char.get_text() | |
# Handle double quotes | |
#added_text = added_text.replace('"', '\\"') # Escape double quotes | |
# Handle space separately by finalizing the word | |
full_text += added_text # Adds space or newline | |
if current_word: # Only finalize if there is a current word | |
word_bboxes.append((current_word, current_word_bbox)) | |
current_word = "" | |
current_word_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')] # Reset for next word | |
# Check for line break (assuming a new line is indicated by a specific character) | |
if '\n' in added_text: | |
# Finalize the current line | |
if current_word: | |
word_bboxes.append((current_word, current_word_bbox)) | |
# Create an OCRResult for the current line | |
line_level_results_out.append(OCRResult(full_text.strip(), round(overall_bbox[0], 2), round(overall_bbox[1], 2), round(overall_bbox[2] - overall_bbox[0], 2), round(overall_bbox[3] - overall_bbox[1], 2))) | |
line_level_characters_out.append(character_objects_out) | |
# Reset for the next line | |
character_objects_out = [] | |
full_text = "" | |
overall_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')] | |
current_word = "" | |
current_word_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')] | |
continue | |
# Concatenate text for LTChar | |
#full_text += char.get_text() | |
#added_text = re.sub(r'[^\x00-\x7F]+', ' ', char.get_text()) | |
added_text = char.get_text() | |
if re.search(r'[^\x00-\x7F]', added_text): # Matches any non-ASCII character | |
#added_text.encode('latin1', errors='replace').decode('utf-8') | |
added_text = clean_unicode_text(added_text) | |
full_text += added_text # Adds space or newline, removing | |
# Update overall bounding box | |
x0, y0, x1, y1 = char.bbox | |
overall_bbox[0] = min(overall_bbox[0], x0) # x0 | |
overall_bbox[1] = min(overall_bbox[1], y0) # y0 | |
overall_bbox[2] = max(overall_bbox[2], x1) # x1 | |
overall_bbox[3] = max(overall_bbox[3], y1) # y1 | |
# Update current word | |
#current_word += char.get_text() | |
current_word += added_text | |
# Update current word bounding box | |
current_word_bbox[0] = min(current_word_bbox[0], x0) # x0 | |
current_word_bbox[1] = min(current_word_bbox[1], y0) # y0 | |
current_word_bbox[2] = max(current_word_bbox[2], x1) # x1 | |
current_word_bbox[3] = max(current_word_bbox[3], y1) # y1 | |
# Finalize the last word if any | |
if current_word: | |
word_bboxes.append((current_word, current_word_bbox)) | |
if full_text: | |
if re.search(r'[^\x00-\x7F]', full_text): # Matches any non-ASCII character | |
# Convert special characters to a human-readable format | |
full_text = clean_unicode_text(full_text) | |
full_text = full_text.strip() | |
line_level_results_out.append(OCRResult(full_text.strip(), round(overall_bbox[0],2), round(overall_bbox[1], 2), round(overall_bbox[2]-overall_bbox[0],2), round(overall_bbox[3]-overall_bbox[1],2))) | |
#line_level_characters_out = character_objects_out | |
return line_level_results_out, line_level_characters_out # Return both results and character objects | |
def create_text_redaction_process_results(analyser_results, analysed_bounding_boxes, page_num): | |
decision_process_table = pd.DataFrame() | |
if len(analyser_results) > 0: | |
# Create summary df of annotations to be made | |
analysed_bounding_boxes_df_new = pd.DataFrame(analysed_bounding_boxes) | |
# Remove brackets and split the string into four separate columns | |
# Split the boundingBox list into four separate columns | |
analysed_bounding_boxes_df_new[['xmin', 'ymin', 'xmax', 'ymax']] = analysed_bounding_boxes_df_new['boundingBox'].apply(pd.Series) | |
# Convert the new columns to integers (if needed) | |
analysed_bounding_boxes_df_new.loc[:, ['xmin', 'ymin', 'xmax', 'ymax']] = (analysed_bounding_boxes_df_new[['xmin', 'ymin', 'xmax', 'ymax']].astype(float) / 5).round() * 5 | |
analysed_bounding_boxes_df_text = analysed_bounding_boxes_df_new['result'].astype(str).str.split(",",expand=True).replace(".*: ", "", regex=True) | |
analysed_bounding_boxes_df_text.columns = ["label", "start", "end", "score"] | |
analysed_bounding_boxes_df_new = pd.concat([analysed_bounding_boxes_df_new, analysed_bounding_boxes_df_text], axis = 1) | |
analysed_bounding_boxes_df_new['page'] = page_num + 1 | |
decision_process_table = pd.concat([decision_process_table, analysed_bounding_boxes_df_new], axis = 0).drop('result', axis=1) | |
return decision_process_table | |
def create_pikepdf_annotations_for_bounding_boxes(analysed_bounding_boxes): | |
pikepdf_annotations_on_page = [] | |
for analysed_bounding_box in analysed_bounding_boxes: | |
#print("analysed_bounding_box:", analysed_bounding_boxes) | |
bounding_box = analysed_bounding_box["boundingBox"] | |
annotation = Dictionary( | |
Type=Name.Annot, | |
Subtype=Name.Square, #Name.Highlight, | |
QuadPoints=[bounding_box[0], bounding_box[3], bounding_box[2], bounding_box[3], | |
bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[1]], | |
Rect=[bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[3]], | |
C=[0, 0, 0], | |
IC=[0, 0, 0], | |
CA=1, # Transparency | |
T=analysed_bounding_box["result"].entity_type, | |
Contents=analysed_bounding_box["text"], | |
BS=Dictionary( | |
W=0, # Border width: 1 point | |
S=Name.S # Border style: solid | |
) | |
) | |
pikepdf_annotations_on_page.append(annotation) | |
return pikepdf_annotations_on_page | |
def redact_text_pdf( | |
filename: str, # Path to the PDF file to be redacted | |
prepared_pdf_image_path: str, # Path to the prepared PDF image for redaction | |
language: str, # Language of the PDF content | |
chosen_redact_entities: List[str], # List of entities to be redacted | |
chosen_redact_comprehend_entities: List[str], | |
allow_list: List[str] = None, # Optional list of allowed entities | |
page_min: int = 0, # Minimum page number to start redaction | |
page_max: int = 999, # Maximum page number to end redaction | |
analysis_type: str = text_ocr_option, # Type of analysis to perform | |
current_loop_page: int = 0, # Current page being processed in the loop | |
page_break_return: bool = False, # Flag to indicate if a page break should be returned | |
annotations_all_pages: List = [], # List of annotations across all pages | |
all_line_level_ocr_results_df: pd.DataFrame = pd.DataFrame(), # DataFrame for OCR results | |
all_decision_process_table: pd.DataFrame = pd.DataFrame(), # DataFrame for decision process table | |
pymupdf_doc: List = [], # List of PyMuPDF documents | |
pii_identification_method: str = "Local", | |
comprehend_query_number:int = 0, | |
comprehend_client="", | |
custom_recogniser_word_list:List[str]=[], | |
redact_whole_page_list:List[str]=[], | |
max_fuzzy_spelling_mistakes_num:int=1, | |
match_fuzzy_whole_phrase_bool:bool=True, | |
page_break_val: int = int(page_break_value), # Value for page break | |
max_time: int = int(max_time_value), | |
progress: Progress = Progress(track_tqdm=True) # Progress tracking object | |
): | |
''' | |
Redact chosen entities from a PDF that is made up of multiple pages that are not images. | |
Input Variables: | |
- filename: Path to the PDF file to be redacted | |
- prepared_pdf_image_path: Path to the prepared PDF image for redaction | |
- language: Language of the PDF content | |
- chosen_redact_entities: List of entities to be redacted | |
- chosen_redact_comprehend_entities: List of entities to be redacted for AWS Comprehend | |
- allow_list: Optional list of allowed entities | |
- page_min: Minimum page number to start redaction | |
- page_max: Maximum page number to end redaction | |
- analysis_type: Type of analysis to perform | |
- current_loop_page: Current page being processed in the loop | |
- page_break_return: Flag to indicate if a page break should be returned | |
- annotations_all_pages: List of annotations across all pages | |
- all_line_level_ocr_results_df: DataFrame for OCR results | |
- all_decision_process_table: DataFrame for decision process table | |
- pymupdf_doc: List of PyMuPDF documents | |
- pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API). | |
- comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend. | |
- comprehend_client (optional): A connection to the AWS Comprehend service via the boto3 package. | |
- custom_recogniser_word_list (optional, List[str]): A list of custom words that the user has chosen specifically to redact. | |
- redact_whole_page_list (optional, List[str]): A list of pages to fully redact. | |
- max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9. | |
- match_fuzzy_whole_phrase_bool (bool, optional): A boolean where 'True' means that the whole phrase is fuzzy matched, and 'False' means that each word is fuzzy matched separately (excluding stop words). | |
- page_break_val: Value for page break | |
- max_time (int, optional): The maximum amount of time (s) that the function should be running before it breaks. To avoid timeout errors with some APIs. | |
- progress: Progress tracking object | |
''' | |
if pii_identification_method == "AWS Comprehend" and comprehend_client == "": | |
print("Connection to AWS Comprehend service not found.") | |
return pymupdf_doc, all_decision_process_table, all_line_level_ocr_results_df, annotations_all_pages, current_loop_page, page_break_return, comprehend_query_number | |
# Update custom word list analyser object with any new words that have been added to the custom deny list | |
if custom_recogniser_word_list: | |
nlp_analyser.registry.remove_recognizer("CUSTOM") | |
new_custom_recogniser = custom_word_list_recogniser(custom_recogniser_word_list) | |
nlp_analyser.registry.add_recognizer(new_custom_recogniser) | |
nlp_analyser.registry.remove_recognizer("CustomWordFuzzyRecognizer") | |
new_custom_fuzzy_recogniser = CustomWordFuzzyRecognizer(supported_entities=["CUSTOM_FUZZY"], custom_list=custom_recogniser_word_list, spelling_mistakes_max=max_fuzzy_spelling_mistakes_num, search_whole_phrase=match_fuzzy_whole_phrase_bool) | |
nlp_analyser.registry.add_recognizer(new_custom_fuzzy_recogniser) | |
tic = time.perf_counter() | |
# Open with Pikepdf to get text lines | |
pikepdf_pdf = Pdf.open(filename) | |
number_of_pages = len(pikepdf_pdf.pages) | |
# Check that page_min and page_max are within expected ranges | |
if page_max > number_of_pages or page_max == 0: | |
page_max = number_of_pages | |
if page_min <= 0: page_min = 0 | |
else: page_min = page_min - 1 | |
print("Page range is",str(page_min + 1), "to", str(page_max)) | |
if current_loop_page == 0: page_loop_start = 0 | |
else: page_loop_start = current_loop_page | |
progress_bar = tqdm(range(current_loop_page, number_of_pages), unit="pages remaining", desc="Redacting pages") | |
#for page_no in range(0, number_of_pages): | |
for page_no in progress_bar: | |
reported_page_number = str(page_no + 1) | |
#print("Redacting page:", reported_page_number) | |
# Assuming prepared_pdf_file_paths[page_no] is a PIL image object | |
try: | |
image = prepared_pdf_image_path[page_no]#.copy() | |
#print("image:", image) | |
except Exception as e: | |
print("Could not redact page:", reported_page_number, "due to:", e) | |
continue | |
image_annotations = {"image": image, "boxes": []} | |
pymupdf_page = pymupdf_doc.load_page(page_no) | |
if page_min <= page_no < page_max: | |
if isinstance(image, str): | |
image_path = image | |
image = Image.open(image_path) | |
for page_layout in extract_pages(filename, page_numbers = [page_no], maxpages=1): | |
all_line_characters = [] | |
all_line_level_text_results_list = [] | |
page_analyser_results = [] | |
page_analysed_bounding_boxes = [] | |
characters = [] | |
pikepdf_annotations_on_page = [] | |
decision_process_table_on_page = pd.DataFrame() | |
page_text_ocr_outputs = pd.DataFrame() | |
if analysis_type == text_ocr_option: | |
for n, text_container in enumerate(page_layout): | |
characters = [] | |
#print("text container:", text_container) | |
if isinstance(text_container, LTTextContainer) or isinstance(text_container, LTAnno): | |
characters = get_text_container_characters(text_container) | |
# Create dataframe for all the text on the page | |
line_level_text_results_list, line_characters = create_text_bounding_boxes_from_characters(characters) | |
### Create page_text_ocr_outputs (OCR format outputs) | |
if line_level_text_results_list: | |
# Convert to DataFrame and add to ongoing logging table | |
line_level_text_results_df = pd.DataFrame([{ | |
'page': page_no + 1, | |
'text': (result.text).strip(), | |
'left': result.left, | |
'top': result.top, | |
'width': result.width, | |
'height': result.height | |
} for result in line_level_text_results_list]) | |
page_text_ocr_outputs = pd.concat([page_text_ocr_outputs, line_level_text_results_df]) | |
all_line_level_text_results_list.extend(line_level_text_results_list) | |
all_line_characters.extend(line_characters) | |
### REDACTION | |
if chosen_redact_entities or chosen_redact_comprehend_entities: | |
page_analysed_bounding_boxes = run_page_text_redaction( | |
language, | |
chosen_redact_entities, | |
chosen_redact_comprehend_entities, | |
all_line_level_text_results_list, | |
all_line_characters, | |
page_analyser_results, | |
page_analysed_bounding_boxes, | |
comprehend_client, | |
allow_list, | |
pii_identification_method, | |
nlp_analyser, | |
score_threshold, | |
custom_entities, | |
comprehend_query_number | |
) | |
else: | |
page_analysed_bounding_boxes = [] | |
page_analysed_bounding_boxes = convert_pikepdf_decision_output_to_image_coords(pymupdf_page, page_analysed_bounding_boxes, image) | |
# Annotate redactions on page | |
pikepdf_annotations_on_page = create_pikepdf_annotations_for_bounding_boxes(page_analysed_bounding_boxes) | |
# Make pymupdf page redactions | |
if redact_whole_page_list: | |
int_reported_page_number = int(reported_page_number) | |
if int_reported_page_number in redact_whole_page_list: redact_whole_page = True | |
else: redact_whole_page = False | |
else: redact_whole_page = False | |
pymupdf_page, image_annotations = redact_page_with_pymupdf(pymupdf_page, pikepdf_annotations_on_page, image, redact_whole_page=redact_whole_page, convert_coords=False) | |
reported_page_no = page_no + 1 | |
print("For page number:", reported_page_no, "there are", len(image_annotations["boxes"]), "annotations") | |
# Join extracted text outputs for all lines together | |
if not page_text_ocr_outputs.empty: | |
page_text_ocr_outputs = page_text_ocr_outputs.sort_values(["top", "left"], ascending=[False, False]).reset_index(drop=True) | |
all_line_level_ocr_results_df = pd.concat([all_line_level_ocr_results_df, page_text_ocr_outputs]) | |
# Write logs | |
# Create decision process table | |
decision_process_table_on_page = create_text_redaction_process_results(page_analyser_results, page_analysed_bounding_boxes, current_loop_page) | |
if not decision_process_table_on_page.empty: | |
all_decision_process_table = pd.concat([all_decision_process_table, decision_process_table_on_page]) | |
toc = time.perf_counter() | |
time_taken = toc - tic | |
# Break if time taken is greater than max_time seconds | |
if time_taken > max_time: | |
print("Processing for", max_time, "seconds, breaking.") | |
page_break_return = True | |
progress.close(_tqdm=progress_bar) | |
tqdm._instances.clear() | |
# Check if the image already exists in annotations_all_pages | |
existing_index = next((index for index, ann in enumerate(annotations_all_pages) if ann["image"] == image_annotations["image"]), None) | |
if existing_index is not None: | |
# Replace the existing annotation | |
annotations_all_pages[existing_index] = image_annotations | |
else: | |
# Append new annotation if it doesn't exist | |
annotations_all_pages.append(image_annotations) | |
current_loop_page += 1 | |
return pymupdf_doc, all_decision_process_table, all_line_level_ocr_results_df, annotations_all_pages, current_loop_page, page_break_return, comprehend_query_number | |
# Check if the image already exists in annotations_all_pages | |
existing_index = next((index for index, ann in enumerate(annotations_all_pages) if ann["image"] == image_annotations["image"]), None) | |
if existing_index is not None: | |
# Replace the existing annotation | |
annotations_all_pages[existing_index] = image_annotations | |
else: | |
# Append new annotation if it doesn't exist | |
annotations_all_pages.append(image_annotations) | |
current_loop_page += 1 | |
# Break if new page is a multiple of 10 | |
if current_loop_page % page_break_val == 0: | |
page_break_return = True | |
progress.close(_tqdm=progress_bar) | |
return pymupdf_doc, all_decision_process_table, all_line_level_ocr_results_df, annotations_all_pages, current_loop_page, page_break_return, comprehend_query_number | |
return pymupdf_doc, all_decision_process_table, all_line_level_ocr_results_df, annotations_all_pages, current_loop_page, page_break_return, comprehend_query_number |