Removed some extraneous test steps. Improved Example loading and feedback, and redaction feedback. Minor security updates. Fixed Adobe xfdf file parsing.
1cb1897
import copy | |
import io | |
import json | |
import os | |
import time | |
from collections import defaultdict # For efficient grouping | |
from typing import Any, Dict, List, Optional, Tuple | |
import boto3 | |
import gradio as gr | |
import pandas as pd | |
from gradio import Progress | |
from pdfminer.high_level import extract_pages | |
from pdfminer.layout import ( | |
LTAnno, | |
LTTextContainer, | |
LTTextLine, | |
LTTextLineHorizontal, | |
) | |
from pikepdf import Dictionary, Name, Pdf | |
from PIL import Image, ImageDraw, ImageFile | |
from presidio_analyzer import AnalyzerEngine | |
from pymupdf import Document, Page, Rect | |
from tqdm import tqdm | |
from tools.aws_textract import ( | |
analyse_page_with_textract, | |
json_to_ocrresult, | |
load_and_convert_textract_json, | |
) | |
from tools.config import ( | |
AWS_ACCESS_KEY, | |
AWS_PII_OPTION, | |
AWS_REGION, | |
AWS_SECRET_KEY, | |
CUSTOM_ENTITIES, | |
DEFAULT_LANGUAGE, | |
IMAGES_DPI, | |
INPUT_FOLDER, | |
LOAD_TRUNCATED_IMAGES, | |
MAX_DOC_PAGES, | |
MAX_IMAGE_PIXELS, | |
MAX_SIMULTANEOUS_FILES, | |
MAX_TIME_VALUE, | |
NO_REDACTION_PII_OPTION, | |
OUTPUT_FOLDER, | |
PAGE_BREAK_VALUE, | |
PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS, | |
RETURN_PDF_END_OF_REDACTION, | |
RUN_AWS_FUNCTIONS, | |
SELECTABLE_TEXT_EXTRACT_OPTION, | |
TESSERACT_TEXT_EXTRACT_OPTION, | |
TEXTRACT_TEXT_EXTRACT_OPTION, | |
aws_comprehend_language_choices, | |
textract_language_choices, | |
) | |
from tools.custom_image_analyser_engine import ( | |
CustomImageAnalyzerEngine, | |
CustomImageRecognizerResult, | |
OCRResult, | |
combine_ocr_results, | |
recreate_page_line_level_ocr_results_with_page, | |
run_page_text_redaction, | |
) | |
from tools.file_conversion import ( | |
convert_annotation_data_to_dataframe, | |
convert_annotation_json_to_review_df, | |
create_annotation_dicts_from_annotation_df, | |
divide_coordinates_by_page_sizes, | |
fill_missing_box_ids, | |
fill_missing_ids, | |
is_pdf, | |
is_pdf_or_image, | |
load_and_convert_ocr_results_with_words_json, | |
prepare_image_or_pdf, | |
redact_single_box, | |
redact_whole_pymupdf_page, | |
remove_duplicate_images_with_blank_boxes, | |
save_pdf_with_or_without_compression, | |
word_level_ocr_output_to_dataframe, | |
) | |
from tools.helper_functions import ( | |
_get_env_list, | |
clean_unicode_text, | |
get_file_name_without_type, | |
) | |
from tools.load_spacy_model_custom_recognisers import ( | |
CustomWordFuzzyRecognizer, | |
create_nlp_analyser, | |
custom_word_list_recogniser, | |
download_tesseract_lang_pack, | |
load_spacy_model, | |
nlp_analyser, | |
score_threshold, | |
) | |
from tools.secure_path_utils import secure_file_write | |
ImageFile.LOAD_TRUNCATED_IMAGES = LOAD_TRUNCATED_IMAGES.lower() == "true" | |
if not MAX_IMAGE_PIXELS: | |
Image.MAX_IMAGE_PIXELS = None | |
else: | |
Image.MAX_IMAGE_PIXELS = MAX_IMAGE_PIXELS | |
image_dpi = float(IMAGES_DPI) | |
RETURN_PDF_END_OF_REDACTION = RETURN_PDF_END_OF_REDACTION.lower() == "true" | |
if CUSTOM_ENTITIES: | |
CUSTOM_ENTITIES = _get_env_list(CUSTOM_ENTITIES) | |
custom_entities = CUSTOM_ENTITIES | |
def bounding_boxes_overlap(box1, box2): | |
"""Check if two bounding boxes overlap.""" | |
return ( | |
box1[0] < box2[2] | |
and box2[0] < box1[2] | |
and box1[1] < box2[3] | |
and box2[1] < box1[3] | |
) | |
def sum_numbers_before_seconds(string: str): | |
"""Extracts numbers that precede the word 'seconds' from a string and adds them up. | |
Args: | |
string: The input string. | |
Returns: | |
The sum of all numbers before 'seconds' in the string. | |
""" | |
# Extract numbers before 'seconds' using secure regex | |
from tools.secure_regex_utils import safe_extract_numbers_with_seconds | |
numbers = safe_extract_numbers_with_seconds(string) | |
# Sum up the extracted numbers | |
sum_of_numbers = round(sum(numbers), 1) | |
return sum_of_numbers | |
def reverse_y_coords(df: pd.DataFrame, column: str): | |
df[column] = df[column] | |
df[column] = 1 - df[column].astype(float) | |
df[column] = df[column].round(6) | |
return df[column] | |
def merge_page_results(data: list): | |
merged = {} | |
for item in data: | |
page = item["page"] | |
if page not in merged: | |
merged[page] = {"page": page, "results": {}} | |
# Merge line-level results into the existing page | |
merged[page]["results"].update(item.get("results", {})) | |
return list(merged.values()) | |
def choose_and_run_redactor( | |
file_paths: List[str], | |
prepared_pdf_file_paths: List[str], | |
pdf_image_file_paths: List[str], | |
chosen_redact_entities: List[str], | |
chosen_redact_comprehend_entities: List[str], | |
text_extraction_method: str, | |
in_allow_list: List[str] = list(), | |
in_deny_list: List[str] = list(), | |
redact_whole_page_list: List[str] = list(), | |
latest_file_completed: int = 0, | |
combined_out_message: List = list(), | |
out_file_paths: List = list(), | |
log_files_output_paths: List = list(), | |
first_loop_state: bool = False, | |
page_min: int = 0, | |
page_max: int = 999, | |
estimated_time_taken_state: float = 0.0, | |
handwrite_signature_checkbox: List[str] = list(["Extract handwriting"]), | |
all_request_metadata_str: str = "", | |
annotations_all_pages: List[dict] = list(), | |
all_page_line_level_ocr_results_df: pd.DataFrame = None, | |
all_pages_decision_process_table: pd.DataFrame = None, | |
pymupdf_doc=list(), | |
current_loop_page: int = 0, | |
page_break_return: bool = False, | |
pii_identification_method: str = "Local", | |
comprehend_query_number: int = 0, | |
max_fuzzy_spelling_mistakes_num: int = 1, | |
match_fuzzy_whole_phrase_bool: bool = True, | |
aws_access_key_textbox: str = "", | |
aws_secret_key_textbox: str = "", | |
annotate_max_pages: int = 1, | |
review_file_state: pd.DataFrame = list(), | |
output_folder: str = OUTPUT_FOLDER, | |
document_cropboxes: List = list(), | |
page_sizes: List[dict] = list(), | |
textract_output_found: bool = False, | |
text_extraction_only: bool = False, | |
duplication_file_path_outputs: list = list(), | |
review_file_path: str = "", | |
input_folder: str = INPUT_FOLDER, | |
total_textract_query_number: int = 0, | |
ocr_file_path: str = "", | |
all_page_line_level_ocr_results: list[dict] = list(), | |
all_page_line_level_ocr_results_with_words: list[dict] = list(), | |
all_page_line_level_ocr_results_with_words_df: pd.DataFrame = None, | |
chosen_local_model: str = "tesseract", | |
language: str = DEFAULT_LANGUAGE, | |
prepare_images: bool = True, | |
RETURN_PDF_END_OF_REDACTION: bool = RETURN_PDF_END_OF_REDACTION, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
""" | |
This function orchestrates the redaction process based on the specified method and parameters. It takes the following inputs: | |
- file_paths (List[str]): A list of paths to the files to be redacted. | |
- prepared_pdf_file_paths (List[str]): A list of paths to the PDF files prepared for redaction. | |
- pdf_image_file_paths (List[str]): A list of paths to the PDF files converted to images for redaction. | |
- chosen_redact_entities (List[str]): A list of entity types to redact from the files using the local model (spacy) with Microsoft Presidio. | |
- chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from files, chosen from the official list from AWS Comprehend service. | |
- text_extraction_method (str): The method to use to extract text from documents. | |
- in_allow_list (List[List[str]], optional): A list of allowed terms for redaction. Defaults to empty list. Can also be entered as a string path to a CSV file, or as a single column pandas dataframe. | |
- in_deny_list (List[List[str]], optional): A list of denied terms for redaction. Defaults to empty list. Can also be entered as a string path to a CSV file, or as a single column pandas dataframe. | |
- redact_whole_page_list (List[List[str]], optional): A list of whole page numbers for redaction. Defaults to empty list. Can also be entered as a string path to a CSV file, or as a single column pandas dataframe. | |
- latest_file_completed (int, optional): The index of the last completed file. Defaults to 0. | |
- combined_out_message (list, optional): A list to store output messages. Defaults to an empty list. | |
- out_file_paths (list, optional): A list to store paths to the output files. Defaults to an empty list. | |
- log_files_output_paths (list, optional): A list to store paths to the log files. Defaults to an empty list. | |
- first_loop_state (bool, optional): A flag indicating if this is the first iteration. Defaults to False. | |
- page_min (int, optional): The minimum page number to start redaction from. Defaults to 0. | |
- page_max (int, optional): The maximum page number to end redaction at. Defaults to 999. | |
- estimated_time_taken_state (float, optional): The estimated time taken for the redaction process. Defaults to 0.0. | |
- handwrite_signature_checkbox (List[str], optional): A list of options for redacting handwriting and signatures. Defaults to ["Extract handwriting", "Extract signatures"]. | |
- all_request_metadata_str (str, optional): A string containing all request metadata. Defaults to an empty string. | |
- annotations_all_pages (List[dict], optional): A list of dictionaries containing all image annotations. Defaults to an empty list. | |
- all_page_line_level_ocr_results_df (pd.DataFrame, optional): A DataFrame containing all line-level OCR results. Defaults to an empty DataFrame. | |
- all_pages_decision_process_table (pd.DataFrame, optional): A DataFrame containing all decision process tables. Defaults to an empty DataFrame. | |
- pymupdf_doc (optional): A list containing the PDF document object. Defaults to an empty list. | |
- current_loop_page (int, optional): The current page being processed in the loop. Defaults to 0. | |
- page_break_return (bool, optional): A flag indicating if the function should return after a page break. Defaults to False. | |
- pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API). | |
- comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend. | |
- max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9. | |
- match_fuzzy_whole_phrase_bool (bool, optional): A boolean where 'True' means that the whole phrase is fuzzy matched, and 'False' means that each word is fuzzy matched separately (excluding stop words). | |
- aws_access_key_textbox (str, optional): AWS access key for account with Textract and Comprehend permissions. | |
- aws_secret_key_textbox (str, optional): AWS secret key for account with Textract and Comprehend permissions. | |
- annotate_max_pages (int, optional): Maximum page value for the annotation object. | |
- review_file_state (pd.DataFrame, optional): Output review file dataframe. | |
- output_folder (str, optional): Output folder for results. | |
- document_cropboxes (List, optional): List of document cropboxes for the PDF. | |
- page_sizes (List[dict], optional): List of dictionaries of PDF page sizes in PDF or image format. | |
- textract_output_found (bool, optional): Boolean is true when a textract OCR output for the file has been found. | |
- text_extraction_only (bool, optional): Boolean to determine if function should only extract text from the document, and not redact. | |
- duplication_file_outputs (list, optional): List to allow for export to the duplication function page. | |
- review_file_path (str, optional): The latest review file path created by the app | |
- input_folder (str, optional): The custom input path, if provided | |
- total_textract_query_number (int, optional): The number of textract queries up until this point. | |
- ocr_file_path (str, optional): The latest ocr file path created by the app. | |
- all_page_line_level_ocr_results (list, optional): All line level text on the page with bounding boxes. | |
- all_page_line_level_ocr_results_with_words (list, optional): All word level text on the page with bounding boxes. | |
- all_page_line_level_ocr_results_with_words_df (pd.Dataframe, optional): All word level text on the page with bounding boxes as a dataframe. | |
- chosen_local_model (str): Which local model is being used for OCR on images - "tesseract", "paddle" for PaddleOCR, or "hybrid" to combine both. | |
- language (str, optional): The language of the text in the files. Defaults to English. | |
- language (str, optional): The language to do AWS Comprehend calls. Defaults to value of language if not provided. | |
- prepare_images (bool, optional): Boolean to determine whether to load images for the PDF. | |
- RETURN_PDF_END_OF_REDACTION (bool, optional): Boolean to determine whether to return a redacted PDF at the end of the redaction process. | |
- progress (gr.Progress, optional): A progress tracker for the redaction process. Defaults to a Progress object with track_tqdm set to True. | |
The function returns a redacted document along with processing logs. | |
""" | |
tic = time.perf_counter() | |
out_message = "" | |
pdf_file_name_with_ext = "" | |
pdf_file_name_without_ext = "" | |
page_break_return = False | |
blank_request_metadata = list() | |
custom_recogniser_word_list_flat = list() | |
all_textract_request_metadata = ( | |
all_request_metadata_str.split("\n") if all_request_metadata_str else [] | |
) | |
review_out_file_paths = [prepared_pdf_file_paths[0]] | |
task_textbox = "redact" | |
# CLI mode may provide options to enter method names in a different format | |
if text_extraction_method == "AWS Textract": | |
text_extraction_method = TEXTRACT_TEXT_EXTRACT_OPTION | |
if text_extraction_method == "Local OCR": | |
text_extraction_method = TESSERACT_TEXT_EXTRACT_OPTION | |
if text_extraction_method == "Local text": | |
text_extraction_method = SELECTABLE_TEXT_EXTRACT_OPTION | |
if pii_identification_method == "None": | |
pii_identification_method = NO_REDACTION_PII_OPTION | |
# If output folder doesn't end with a forward slash, add one | |
if not output_folder.endswith("/"): | |
output_folder = output_folder + "/" | |
# Use provided language or default | |
language = language or DEFAULT_LANGUAGE | |
if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION: | |
if language not in textract_language_choices: | |
out_message = f"Language '{language}' is not supported by AWS Textract. Please select a different language." | |
raise Warning(out_message) | |
elif pii_identification_method == AWS_PII_OPTION: | |
if language not in aws_comprehend_language_choices: | |
out_message = f"Language '{language}' is not supported by AWS Comprehend. Please select a different language." | |
raise Warning(out_message) | |
if all_page_line_level_ocr_results_with_words_df is None: | |
all_page_line_level_ocr_results_with_words_df = pd.DataFrame() | |
# Create copies of out_file_path objects to avoid overwriting each other on append actions | |
out_file_paths = out_file_paths.copy() | |
log_files_output_paths = log_files_output_paths.copy() | |
# Ensure all_pages_decision_process_table is in correct format for downstream processes | |
if isinstance(all_pages_decision_process_table, list): | |
if not all_pages_decision_process_table: | |
all_pages_decision_process_table = pd.DataFrame( | |
columns=[ | |
"image_path", | |
"page", | |
"label", | |
"xmin", | |
"xmax", | |
"ymin", | |
"ymax", | |
"boundingBox", | |
"text", | |
"start", | |
"end", | |
"score", | |
"id", | |
] | |
) | |
elif isinstance(all_pages_decision_process_table, pd.DataFrame): | |
if all_pages_decision_process_table.empty: | |
all_pages_decision_process_table = pd.DataFrame( | |
columns=[ | |
"image_path", | |
"page", | |
"label", | |
"xmin", | |
"xmax", | |
"ymin", | |
"ymax", | |
"boundingBox", | |
"text", | |
"start", | |
"end", | |
"score", | |
"id", | |
] | |
) | |
# If this is the first time around, set variables to 0/blank | |
if first_loop_state is True: | |
# print("First_loop_state is True") | |
latest_file_completed = 0 | |
current_loop_page = 0 | |
out_file_paths = list() | |
log_files_output_paths = list() | |
estimate_total_processing_time = 0 | |
estimated_time_taken_state = 0 | |
comprehend_query_number = 0 | |
total_textract_query_number = 0 | |
elif current_loop_page == 0: | |
comprehend_query_number = 0 | |
total_textract_query_number = 0 | |
# If not the first time around, and the current page loop has been set to a huge number (been through all pages), reset current page to 0 | |
elif (first_loop_state is False) & (current_loop_page == 999): | |
current_loop_page = 0 | |
total_textract_query_number = 0 | |
comprehend_query_number = 0 | |
# Choose the correct file to prepare | |
if isinstance(file_paths, str): | |
file_paths_list = [os.path.abspath(file_paths)] | |
elif isinstance(file_paths, dict): | |
file_paths = file_paths["name"] | |
file_paths_list = [os.path.abspath(file_paths)] | |
else: | |
file_paths_list = file_paths | |
if len(file_paths_list) > MAX_SIMULTANEOUS_FILES: | |
out_message = f"Number of files to redact is greater than {MAX_SIMULTANEOUS_FILES}. Please submit a smaller number of files." | |
print(out_message) | |
raise Exception(out_message) | |
valid_extensions = {".pdf", ".jpg", ".jpeg", ".png"} | |
# Filter only files with valid extensions. Currently only allowing one file to be redacted at a time | |
# Filter the file_paths_list to include only files with valid extensions | |
filtered_files = [ | |
file | |
for file in file_paths_list | |
if os.path.splitext(file)[1].lower() in valid_extensions | |
] | |
# Check if any files were found and assign to file_paths_list | |
file_paths_list = filtered_files if filtered_files else [] | |
print("Latest file completed:", latest_file_completed) | |
# If latest_file_completed is used, get the specific file | |
if not isinstance(file_paths, (str, dict)): | |
file_paths_loop = ( | |
[file_paths_list[int(latest_file_completed)]] | |
if len(file_paths_list) > latest_file_completed | |
else [] | |
) | |
else: | |
file_paths_loop = file_paths_list | |
latest_file_completed = int(latest_file_completed) | |
if isinstance(file_paths, str): | |
number_of_files = 1 | |
else: | |
number_of_files = len(file_paths_list) | |
# If we have already redacted the last file, return the input out_message and file list to the relevant outputs | |
if latest_file_completed >= number_of_files: | |
print("Completed last file") | |
progress(0.95, "Completed last file, performing final checks") | |
current_loop_page = 0 | |
if isinstance(combined_out_message, list): | |
combined_out_message = "\n".join(combined_out_message) | |
if isinstance(out_message, list) and out_message: | |
combined_out_message = combined_out_message + "\n".join(out_message) | |
elif out_message: | |
combined_out_message = combined_out_message + "\n" + out_message | |
from tools.secure_regex_utils import safe_remove_leading_newlines | |
combined_out_message = safe_remove_leading_newlines(combined_out_message) | |
end_message = "\n\nPlease review and modify the suggested redaction outputs on the 'Review redactions' tab of the app (you can find this under the introduction text at the top of the page)." | |
if end_message not in combined_out_message: | |
combined_out_message = combined_out_message + end_message | |
# Only send across review file if redaction has been done | |
if pii_identification_method != NO_REDACTION_PII_OPTION: | |
if len(review_out_file_paths) == 1: | |
if review_file_path: | |
review_out_file_paths.append(review_file_path) | |
if not isinstance(pymupdf_doc, list): | |
number_of_pages = pymupdf_doc.page_count | |
if total_textract_query_number > number_of_pages: | |
total_textract_query_number = number_of_pages | |
estimate_total_processing_time = sum_numbers_before_seconds( | |
combined_out_message | |
) | |
print("Estimated total processing time:", str(estimate_total_processing_time)) | |
gr.Info(combined_out_message) | |
page_break_return = True | |
return ( | |
combined_out_message, | |
out_file_paths, | |
out_file_paths, | |
latest_file_completed, | |
log_files_output_paths, | |
log_files_output_paths, | |
estimated_time_taken_state, | |
all_request_metadata_str, | |
pymupdf_doc, | |
annotations_all_pages, | |
current_loop_page, | |
page_break_return, | |
all_page_line_level_ocr_results_df, | |
all_pages_decision_process_table, | |
comprehend_query_number, | |
review_out_file_paths, | |
annotate_max_pages, | |
annotate_max_pages, | |
prepared_pdf_file_paths, | |
pdf_image_file_paths, | |
review_file_state, | |
page_sizes, | |
duplication_file_path_outputs, | |
duplication_file_path_outputs, | |
review_file_path, | |
total_textract_query_number, | |
ocr_file_path, | |
all_page_line_level_ocr_results, | |
all_page_line_level_ocr_results_with_words, | |
all_page_line_level_ocr_results_with_words_df, | |
review_file_state, | |
task_textbox, | |
) | |
# if first_loop_state == False: | |
# Prepare documents and images as required if they don't already exist | |
prepare_images_flag = None # Determines whether to call prepare_image_or_pdf | |
if textract_output_found and text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION: | |
print("Existing Textract outputs found, not preparing images or documents.") | |
prepare_images_flag = False | |
# return # No need to call `prepare_image_or_pdf`, exit early | |
elif text_extraction_method == SELECTABLE_TEXT_EXTRACT_OPTION: | |
print("Running text extraction analysis, not preparing images.") | |
prepare_images_flag = False | |
elif prepare_images and not pdf_image_file_paths: | |
print("Prepared PDF images not found, loading from file") | |
prepare_images_flag = True | |
elif not prepare_images: | |
print("Not loading images for file") | |
prepare_images_flag = False | |
else: | |
print("Loading images for file") | |
prepare_images_flag = True | |
# Call prepare_image_or_pdf only if needed | |
if prepare_images_flag is not None: | |
( | |
out_message, | |
prepared_pdf_file_paths, | |
pdf_image_file_paths, | |
annotate_max_pages, | |
annotate_max_pages_bottom, | |
pymupdf_doc, | |
annotations_all_pages, | |
review_file_state, | |
document_cropboxes, | |
page_sizes, | |
textract_output_found, | |
all_img_details_state, | |
placeholder_ocr_results_df, | |
local_ocr_output_found_checkbox, | |
all_page_line_level_ocr_results_with_words_df, | |
) = prepare_image_or_pdf( | |
file_paths_loop, | |
text_extraction_method, | |
all_page_line_level_ocr_results_df, | |
all_page_line_level_ocr_results_with_words_df, | |
0, | |
out_message, | |
True, | |
annotate_max_pages, | |
annotations_all_pages, | |
document_cropboxes, | |
redact_whole_page_list, | |
output_folder=output_folder, | |
prepare_images=prepare_images_flag, | |
page_sizes=page_sizes, | |
pymupdf_doc=pymupdf_doc, | |
input_folder=input_folder, | |
) | |
page_sizes_df = pd.DataFrame(page_sizes) | |
if page_sizes_df.empty: | |
page_sizes_df = pd.DataFrame( | |
columns=[ | |
"page", | |
"image_path", | |
"image_width", | |
"image_height", | |
"mediabox_width", | |
"mediabox_height", | |
"cropbox_width", | |
"cropbox_height", | |
"original_cropbox", | |
] | |
) | |
page_sizes_df[["page"]] = page_sizes_df[["page"]].apply( | |
pd.to_numeric, errors="coerce" | |
) | |
page_sizes = page_sizes_df.to_dict(orient="records") | |
number_of_pages = pymupdf_doc.page_count | |
if number_of_pages > MAX_DOC_PAGES: | |
out_message = f"Number of pages in document is greater than {MAX_DOC_PAGES}. Please submit a smaller document." | |
print(out_message) | |
raise Exception(out_message) | |
# If we have reached the last page, return message and outputs | |
if current_loop_page >= number_of_pages: | |
print("Reached last page of document:", current_loop_page) | |
if total_textract_query_number > number_of_pages: | |
total_textract_query_number = number_of_pages | |
# Set to a very high number so as not to mix up with subsequent file processing by the user | |
current_loop_page = 999 | |
if out_message: | |
combined_out_message = combined_out_message + "\n" + out_message | |
# Only send across review file if redaction has been done | |
if pii_identification_method != NO_REDACTION_PII_OPTION: | |
# If only pdf currently in review outputs, add on the latest review file | |
if len(review_out_file_paths) == 1: | |
if review_file_path: | |
review_out_file_paths.append(review_file_path) | |
page_break_return = False | |
return ( | |
combined_out_message, | |
out_file_paths, | |
out_file_paths, | |
latest_file_completed, | |
log_files_output_paths, | |
log_files_output_paths, | |
estimated_time_taken_state, | |
all_request_metadata_str, | |
pymupdf_doc, | |
annotations_all_pages, | |
current_loop_page, | |
page_break_return, | |
all_page_line_level_ocr_results_df, | |
all_pages_decision_process_table, | |
comprehend_query_number, | |
review_out_file_paths, | |
annotate_max_pages, | |
annotate_max_pages, | |
prepared_pdf_file_paths, | |
pdf_image_file_paths, | |
review_file_state, | |
page_sizes, | |
duplication_file_path_outputs, | |
duplication_file_path_outputs, | |
review_file_path, | |
total_textract_query_number, | |
ocr_file_path, | |
all_page_line_level_ocr_results, | |
all_page_line_level_ocr_results_with_words, | |
all_page_line_level_ocr_results_with_words_df, | |
review_file_state, | |
task_textbox, | |
) | |
### Load/create allow list, deny list, and whole page redaction list | |
### Load/create allow list | |
# If string, assume file path | |
if isinstance(in_allow_list, str): | |
if in_allow_list: | |
in_allow_list = pd.read_csv(in_allow_list, header=None) | |
# Now, should be a pandas dataframe format | |
if isinstance(in_allow_list, pd.DataFrame): | |
if not in_allow_list.empty: | |
in_allow_list_flat = in_allow_list.iloc[:, 0].tolist() | |
else: | |
in_allow_list_flat = list() | |
else: | |
in_allow_list_flat = list() | |
### Load/create deny list | |
# If string, assume file path | |
if isinstance(in_deny_list, str): | |
if in_deny_list: | |
in_deny_list = pd.read_csv(in_deny_list, header=None) | |
if isinstance(in_deny_list, pd.DataFrame): | |
if not in_deny_list.empty: | |
custom_recogniser_word_list_flat = in_deny_list.iloc[:, 0].tolist() | |
else: | |
custom_recogniser_word_list_flat = list() | |
# Sort the strings in order from the longest string to the shortest | |
custom_recogniser_word_list_flat = sorted( | |
custom_recogniser_word_list_flat, key=len, reverse=True | |
) | |
else: | |
custom_recogniser_word_list_flat = list() | |
### Load/create whole page redaction list | |
# If string, assume file path | |
if isinstance(redact_whole_page_list, str): | |
if redact_whole_page_list: | |
redact_whole_page_list = pd.read_csv(redact_whole_page_list, header=None) | |
if isinstance(redact_whole_page_list, pd.DataFrame): | |
if not redact_whole_page_list.empty: | |
try: | |
redact_whole_page_list_flat = ( | |
redact_whole_page_list.iloc[:, 0].astype(int).tolist() | |
) | |
except Exception as e: | |
print( | |
"Could not convert whole page redaction data to number list due to:", | |
e, | |
) | |
redact_whole_page_list_flat = redact_whole_page_list.iloc[:, 0].tolist() | |
else: | |
redact_whole_page_list_flat = list() | |
else: | |
redact_whole_page_list_flat = list() | |
### Load/create PII identification method | |
# Try to connect to AWS services directly only if RUN_AWS_FUNCTIONS environmental variable is 1, otherwise an environment variable or direct textbox input is needed. | |
if pii_identification_method == AWS_PII_OPTION: | |
if RUN_AWS_FUNCTIONS == "1" and PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS == "1": | |
print("Connecting to Comprehend via existing SSO connection") | |
comprehend_client = boto3.client("comprehend", region_name=AWS_REGION) | |
elif aws_access_key_textbox and aws_secret_key_textbox: | |
print( | |
"Connecting to Comprehend using AWS access key and secret keys from user input." | |
) | |
comprehend_client = boto3.client( | |
"comprehend", | |
aws_access_key_id=aws_access_key_textbox, | |
aws_secret_access_key=aws_secret_key_textbox, | |
region_name=AWS_REGION, | |
) | |
elif RUN_AWS_FUNCTIONS == "1": | |
print("Connecting to Comprehend via existing SSO connection") | |
comprehend_client = boto3.client("comprehend", region_name=AWS_REGION) | |
elif AWS_ACCESS_KEY and AWS_SECRET_KEY: | |
print("Getting Comprehend credentials from environment variables") | |
comprehend_client = boto3.client( | |
"comprehend", | |
aws_access_key_id=AWS_ACCESS_KEY, | |
aws_secret_access_key=AWS_SECRET_KEY, | |
region_name=AWS_REGION, | |
) | |
else: | |
comprehend_client = "" | |
out_message = "Cannot connect to AWS Comprehend service. Please provide access keys under Textract settings on the Redaction settings tab, or choose another PII identification method." | |
print(out_message) | |
raise Exception(out_message) | |
else: | |
comprehend_client = "" | |
# Try to connect to AWS Textract Client if using that text extraction method | |
if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION: | |
if RUN_AWS_FUNCTIONS == "1" and PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS == "1": | |
print("Connecting to Textract via existing SSO connection") | |
textract_client = boto3.client("textract", region_name=AWS_REGION) | |
elif aws_access_key_textbox and aws_secret_key_textbox: | |
print( | |
"Connecting to Textract using AWS access key and secret keys from user input." | |
) | |
textract_client = boto3.client( | |
"textract", | |
aws_access_key_id=aws_access_key_textbox, | |
aws_secret_access_key=aws_secret_key_textbox, | |
region_name=AWS_REGION, | |
) | |
elif RUN_AWS_FUNCTIONS == "1": | |
print("Connecting to Textract via existing SSO connection") | |
textract_client = boto3.client("textract", region_name=AWS_REGION) | |
elif AWS_ACCESS_KEY and AWS_SECRET_KEY: | |
print("Getting Textract credentials from environment variables.") | |
textract_client = boto3.client( | |
"textract", | |
aws_access_key_id=AWS_ACCESS_KEY, | |
aws_secret_access_key=AWS_SECRET_KEY, | |
region_name=AWS_REGION, | |
) | |
elif textract_output_found is True: | |
print( | |
"Existing Textract data found for file, no need to connect to AWS Textract" | |
) | |
textract_client = boto3.client("textract", region_name=AWS_REGION) | |
else: | |
textract_client = "" | |
out_message = "Cannot connect to AWS Textract service." | |
print(out_message) | |
raise Exception(out_message) | |
else: | |
textract_client = "" | |
### Language check - check if selected language packs exist | |
try: | |
if ( | |
text_extraction_method == TESSERACT_TEXT_EXTRACT_OPTION | |
and chosen_local_model == "tesseract" | |
): | |
if language != "en": | |
progress( | |
0.1, desc=f"Downloading Tesseract language pack for {language}" | |
) | |
download_tesseract_lang_pack(language) | |
if language != "en": | |
progress(0.1, desc=f"Loading SpaCy model for {language}") | |
load_spacy_model(language) | |
except Exception as e: | |
print(f"Error downloading language packs for {language}: {e}") | |
raise Exception(f"Error downloading language packs for {language}: {e}") | |
# Check if output_folder exists, create it if it doesn't | |
if not os.path.exists(output_folder): | |
os.makedirs(output_folder) | |
progress(0.5, desc="Extracting text and redacting document") | |
all_pages_decision_process_table = pd.DataFrame( | |
columns=[ | |
"image_path", | |
"page", | |
"label", | |
"xmin", | |
"xmax", | |
"ymin", | |
"ymax", | |
"boundingBox", | |
"text", | |
"start", | |
"end", | |
"score", | |
"id", | |
] | |
) | |
all_page_line_level_ocr_results_df = pd.DataFrame( | |
columns=["page", "text", "left", "top", "width", "height", "line"] | |
) | |
# Run through file loop, redact each file at a time | |
for file in file_paths_loop: | |
# Get a string file path | |
if isinstance(file, str): | |
file_path = file | |
else: | |
file_path = file.name | |
if file_path: | |
pdf_file_name_without_ext = get_file_name_without_type(file_path) | |
pdf_file_name_with_ext = os.path.basename(file_path) | |
is_a_pdf = is_pdf(file_path) is True | |
if ( | |
is_a_pdf is False | |
and text_extraction_method == SELECTABLE_TEXT_EXTRACT_OPTION | |
): | |
# If user has not submitted a pdf, assume it's an image | |
print( | |
"File is not a PDF, assuming that image analysis needs to be used." | |
) | |
text_extraction_method = TESSERACT_TEXT_EXTRACT_OPTION | |
else: | |
out_message = "No file selected" | |
print(out_message) | |
raise Exception(out_message) | |
# Output file paths names | |
orig_pdf_file_path = output_folder + pdf_file_name_without_ext | |
review_file_path = orig_pdf_file_path + "_review_file.csv" | |
# Load in all_ocr_results_with_words if it exists as a file path and doesn't exist already | |
# file_name = get_file_name_without_type(file_path) | |
if text_extraction_method == SELECTABLE_TEXT_EXTRACT_OPTION: | |
file_ending = "local_text" | |
elif text_extraction_method == TESSERACT_TEXT_EXTRACT_OPTION: | |
file_ending = "local_ocr" | |
elif text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION: | |
file_ending = "textract" | |
all_page_line_level_ocr_results_with_words_json_file_path = ( | |
output_folder | |
+ pdf_file_name_without_ext | |
+ "_ocr_results_with_words_" | |
+ file_ending | |
+ ".json" | |
) | |
if not all_page_line_level_ocr_results_with_words: | |
if local_ocr_output_found_checkbox is True and os.path.exists( | |
all_page_line_level_ocr_results_with_words_json_file_path | |
): | |
( | |
all_page_line_level_ocr_results_with_words, | |
is_missing, | |
log_files_output_paths, | |
) = load_and_convert_ocr_results_with_words_json( | |
all_page_line_level_ocr_results_with_words_json_file_path, | |
log_files_output_paths, | |
page_sizes_df, | |
) | |
# original_all_page_line_level_ocr_results_with_words = all_page_line_level_ocr_results_with_words.copy() | |
# Remove any existing review_file paths from the review file outputs | |
if ( | |
text_extraction_method == TESSERACT_TEXT_EXTRACT_OPTION | |
or text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION | |
): | |
# Analyse and redact image-based pdf or image | |
if is_pdf_or_image(file_path) is False: | |
out_message = "Please upload a PDF file or image file (JPG, PNG) for image analysis." | |
raise Exception(out_message) | |
print( | |
"Redacting file " + pdf_file_name_with_ext + " as an image-based file" | |
) | |
( | |
pymupdf_doc, | |
all_pages_decision_process_table, | |
out_file_paths, | |
new_textract_request_metadata, | |
annotations_all_pages, | |
current_loop_page, | |
page_break_return, | |
all_page_line_level_ocr_results_df, | |
comprehend_query_number, | |
all_page_line_level_ocr_results, | |
all_page_line_level_ocr_results_with_words, | |
) = redact_image_pdf( | |
file_path, | |
pdf_image_file_paths, | |
language, | |
chosen_redact_entities, | |
chosen_redact_comprehend_entities, | |
in_allow_list_flat, | |
page_min, | |
page_max, | |
text_extraction_method, | |
handwrite_signature_checkbox, | |
blank_request_metadata, | |
current_loop_page, | |
page_break_return, | |
annotations_all_pages, | |
all_page_line_level_ocr_results_df, | |
all_pages_decision_process_table, | |
pymupdf_doc, | |
pii_identification_method, | |
comprehend_query_number, | |
comprehend_client, | |
textract_client, | |
custom_recogniser_word_list_flat, | |
redact_whole_page_list_flat, | |
max_fuzzy_spelling_mistakes_num, | |
match_fuzzy_whole_phrase_bool, | |
page_sizes_df, | |
text_extraction_only, | |
all_page_line_level_ocr_results, | |
all_page_line_level_ocr_results_with_words, | |
chosen_local_model, | |
log_files_output_paths=log_files_output_paths, | |
nlp_analyser=nlp_analyser, | |
output_folder=output_folder, | |
) | |
# This line creates a copy of out_file_paths to break potential links with log_files_output_paths | |
out_file_paths = out_file_paths.copy() | |
# Save Textract request metadata (if exists) | |
if new_textract_request_metadata and isinstance( | |
new_textract_request_metadata, list | |
): | |
all_textract_request_metadata.extend(new_textract_request_metadata) | |
elif text_extraction_method == SELECTABLE_TEXT_EXTRACT_OPTION: | |
if is_pdf(file_path) is False: | |
out_message = "Please upload a PDF file for text analysis. If you have an image, select 'Image analysis'." | |
raise Exception(out_message) | |
# Analyse text-based pdf | |
print("Redacting file as text-based PDF") | |
( | |
pymupdf_doc, | |
all_pages_decision_process_table, | |
all_page_line_level_ocr_results_df, | |
annotations_all_pages, | |
current_loop_page, | |
page_break_return, | |
comprehend_query_number, | |
all_page_line_level_ocr_results_with_words, | |
) = redact_text_pdf( | |
file_path, | |
language, | |
chosen_redact_entities, | |
chosen_redact_comprehend_entities, | |
in_allow_list_flat, | |
page_min, | |
page_max, | |
current_loop_page, | |
page_break_return, | |
annotations_all_pages, | |
all_page_line_level_ocr_results_df, | |
all_pages_decision_process_table, | |
pymupdf_doc, | |
all_page_line_level_ocr_results_with_words, | |
pii_identification_method, | |
comprehend_query_number, | |
comprehend_client, | |
custom_recogniser_word_list_flat, | |
redact_whole_page_list_flat, | |
max_fuzzy_spelling_mistakes_num, | |
match_fuzzy_whole_phrase_bool, | |
page_sizes_df, | |
document_cropboxes, | |
text_extraction_only, | |
output_folder=output_folder, | |
) | |
else: | |
out_message = "No redaction method selected" | |
print(out_message) | |
raise Exception(out_message) | |
# If at last page, save to file | |
if current_loop_page >= number_of_pages: | |
print("Current page loop:", current_loop_page, "is the last page.") | |
latest_file_completed += 1 | |
current_loop_page = 999 | |
if latest_file_completed != len(file_paths_list): | |
print( | |
"Completed file number:", | |
str(latest_file_completed), | |
"there are more files to do", | |
) | |
# Save redacted file | |
if pii_identification_method != NO_REDACTION_PII_OPTION: | |
if RETURN_PDF_END_OF_REDACTION is True: | |
progress(0.9, "Saving redacted file") | |
if is_pdf(file_path) is False: | |
out_redacted_pdf_file_path = ( | |
output_folder + pdf_file_name_without_ext + "_redacted.png" | |
) | |
# pymupdf_doc is an image list in this case | |
if isinstance(pymupdf_doc[-1], str): | |
img = Image.open(pymupdf_doc[-1]) | |
# Otherwise could be an image object | |
else: | |
img = pymupdf_doc[-1] | |
img.save( | |
out_redacted_pdf_file_path, "PNG", resolution=image_dpi | |
) | |
else: | |
out_redacted_pdf_file_path = ( | |
output_folder + pdf_file_name_without_ext + "_redacted.pdf" | |
) | |
print("Saving redacted PDF file:", out_redacted_pdf_file_path) | |
save_pdf_with_or_without_compression( | |
pymupdf_doc, out_redacted_pdf_file_path | |
) | |
if isinstance(out_redacted_pdf_file_path, str): | |
out_file_paths.append(out_redacted_pdf_file_path) | |
else: | |
out_file_paths.append(out_redacted_pdf_file_path[0]) | |
if not all_page_line_level_ocr_results_df.empty: | |
all_page_line_level_ocr_results_df = all_page_line_level_ocr_results_df[ | |
["page", "text", "left", "top", "width", "height", "line"] | |
] | |
else: | |
all_page_line_level_ocr_results_df = pd.DataFrame( | |
columns=["page", "text", "left", "top", "width", "height", "line"] | |
) | |
# ocr_file_path = orig_pdf_file_path + "_ocr_output.csv" | |
ocr_file_path = ( | |
output_folder | |
+ pdf_file_name_without_ext | |
+ "_ocr_output_" | |
+ file_ending | |
+ ".csv" | |
) | |
all_page_line_level_ocr_results_df.sort_values( | |
["page", "line"], inplace=True | |
) | |
all_page_line_level_ocr_results_df.to_csv( | |
ocr_file_path, index=None, encoding="utf-8-sig" | |
) | |
if isinstance(ocr_file_path, str): | |
out_file_paths.append(ocr_file_path) | |
else: | |
duplication_file_path_outputs.append(ocr_file_path[0]) | |
if all_page_line_level_ocr_results_with_words: | |
all_page_line_level_ocr_results_with_words = merge_page_results( | |
all_page_line_level_ocr_results_with_words | |
) | |
with open( | |
all_page_line_level_ocr_results_with_words_json_file_path, "w" | |
) as json_file: | |
json.dump( | |
all_page_line_level_ocr_results_with_words, | |
json_file, | |
separators=(",", ":"), | |
) | |
all_page_line_level_ocr_results_with_words_df = ( | |
word_level_ocr_output_to_dataframe( | |
all_page_line_level_ocr_results_with_words | |
) | |
) | |
all_page_line_level_ocr_results_with_words_df = ( | |
divide_coordinates_by_page_sizes( | |
all_page_line_level_ocr_results_with_words_df, | |
page_sizes_df, | |
xmin="word_x0", | |
xmax="word_x1", | |
ymin="word_y0", | |
ymax="word_y1", | |
) | |
) | |
if text_extraction_method == SELECTABLE_TEXT_EXTRACT_OPTION: | |
# Coordinates need to be reversed for ymin and ymax to match with image annotator objects downstream | |
if not all_page_line_level_ocr_results_with_words_df.empty: | |
all_page_line_level_ocr_results_with_words_df["word_y0"] = ( | |
reverse_y_coords( | |
all_page_line_level_ocr_results_with_words_df, "word_y0" | |
) | |
) | |
all_page_line_level_ocr_results_with_words_df["word_y1"] = ( | |
reverse_y_coords( | |
all_page_line_level_ocr_results_with_words_df, "word_y1" | |
) | |
) | |
all_page_line_level_ocr_results_with_words_df["line_text"] = "" | |
all_page_line_level_ocr_results_with_words_df["line_x0"] = "" | |
all_page_line_level_ocr_results_with_words_df["line_x1"] = "" | |
all_page_line_level_ocr_results_with_words_df["line_y0"] = "" | |
all_page_line_level_ocr_results_with_words_df["line_y1"] = "" | |
all_page_line_level_ocr_results_with_words_df.sort_values( | |
["page", "line", "word_x0"], inplace=True | |
) | |
all_page_line_level_ocr_results_with_words_df_file_path = ( | |
all_page_line_level_ocr_results_with_words_json_file_path.replace( | |
".json", ".csv" | |
) | |
) | |
all_page_line_level_ocr_results_with_words_df.to_csv( | |
all_page_line_level_ocr_results_with_words_df_file_path, | |
index=None, | |
encoding="utf-8-sig", | |
) | |
if ( | |
all_page_line_level_ocr_results_with_words_json_file_path | |
not in log_files_output_paths | |
): | |
if isinstance( | |
all_page_line_level_ocr_results_with_words_json_file_path, str | |
): | |
log_files_output_paths.append( | |
all_page_line_level_ocr_results_with_words_json_file_path | |
) | |
else: | |
log_files_output_paths.append( | |
all_page_line_level_ocr_results_with_words_json_file_path[0] | |
) | |
log_files_output_paths.append( | |
all_page_line_level_ocr_results_with_words_json_file_path | |
) | |
if ( | |
all_page_line_level_ocr_results_with_words_df_file_path | |
not in log_files_output_paths | |
): | |
if isinstance( | |
all_page_line_level_ocr_results_with_words_df_file_path, str | |
): | |
log_files_output_paths.append( | |
all_page_line_level_ocr_results_with_words_df_file_path | |
) | |
else: | |
log_files_output_paths.append( | |
all_page_line_level_ocr_results_with_words_df_file_path[0] | |
) | |
if ( | |
all_page_line_level_ocr_results_with_words_df_file_path | |
not in out_file_paths | |
): | |
if isinstance( | |
all_page_line_level_ocr_results_with_words_df_file_path, str | |
): | |
out_file_paths.append( | |
all_page_line_level_ocr_results_with_words_df_file_path | |
) | |
else: | |
out_file_paths.append( | |
all_page_line_level_ocr_results_with_words_df_file_path[0] | |
) | |
# Convert the gradio annotation boxes to relative coordinates | |
progress(0.93, "Creating review file output") | |
page_sizes = page_sizes_df.to_dict(orient="records") | |
all_image_annotations_df = convert_annotation_data_to_dataframe( | |
annotations_all_pages | |
) | |
all_image_annotations_df = divide_coordinates_by_page_sizes( | |
all_image_annotations_df, | |
page_sizes_df, | |
xmin="xmin", | |
xmax="xmax", | |
ymin="ymin", | |
ymax="ymax", | |
) | |
annotations_all_pages_divide = create_annotation_dicts_from_annotation_df( | |
all_image_annotations_df, page_sizes | |
) | |
annotations_all_pages_divide = remove_duplicate_images_with_blank_boxes( | |
annotations_all_pages_divide | |
) | |
# Save the gradio_annotation_boxes to a review csv file | |
review_file_state = convert_annotation_json_to_review_df( | |
annotations_all_pages_divide, | |
all_pages_decision_process_table, | |
page_sizes=page_sizes, | |
) | |
# Don't need page sizes in outputs | |
review_file_state.drop( | |
[ | |
"image_width", | |
"image_height", | |
"mediabox_width", | |
"mediabox_height", | |
"cropbox_width", | |
"cropbox_height", | |
], | |
axis=1, | |
inplace=True, | |
errors="ignore", | |
) | |
if isinstance(review_file_path, str): | |
review_file_state.to_csv( | |
review_file_path, index=None, encoding="utf-8-sig" | |
) | |
else: | |
review_file_state.to_csv( | |
review_file_path[0], index=None, encoding="utf-8-sig" | |
) | |
if pii_identification_method != NO_REDACTION_PII_OPTION: | |
if isinstance(review_file_path, str): | |
out_file_paths.append(review_file_path) | |
else: | |
out_file_paths.append(review_file_path[0]) | |
# Make a combined message for the file | |
if isinstance(combined_out_message, list): | |
combined_out_message = "\n".join(combined_out_message) | |
elif combined_out_message is None: | |
combined_out_message = "" | |
if isinstance(out_message, list) and out_message: | |
combined_out_message = combined_out_message + "\n".join(out_message) | |
elif isinstance(out_message, str) and out_message: | |
combined_out_message = combined_out_message + "\n" + out_message | |
toc = time.perf_counter() | |
time_taken = toc - tic | |
estimated_time_taken_state += time_taken | |
out_time_message = ( | |
f" Redacted in {estimated_time_taken_state:0.1f} seconds." | |
) | |
combined_out_message = ( | |
combined_out_message + " " + out_time_message | |
) # Ensure this is a single string | |
estimate_total_processing_time = sum_numbers_before_seconds( | |
combined_out_message | |
) | |
else: | |
toc = time.perf_counter() | |
time_taken = toc - tic | |
estimated_time_taken_state += time_taken | |
# If textract requests made, write to logging file. Also record number of Textract requests | |
if all_textract_request_metadata and isinstance( | |
all_textract_request_metadata, list | |
): | |
all_request_metadata_str = "\n".join(all_textract_request_metadata).strip() | |
# all_textract_request_metadata_file_path is constructed by output_folder + filename | |
# Split output_folder (trusted base) from pdf_file_name_without_ext + "_textract_metadata.txt" (untrusted) | |
secure_file_write( | |
output_folder, | |
pdf_file_name_without_ext + "_textract_metadata.txt", | |
all_request_metadata_str, | |
) | |
# Reconstruct the full path for logging purposes | |
all_textract_request_metadata_file_path = ( | |
output_folder + pdf_file_name_without_ext + "_textract_metadata.txt" | |
) | |
# Add the request metadata to the log outputs if not there already | |
if all_textract_request_metadata_file_path not in log_files_output_paths: | |
if isinstance(all_textract_request_metadata_file_path, str): | |
log_files_output_paths.append(all_textract_request_metadata_file_path) | |
else: | |
log_files_output_paths.append( | |
all_textract_request_metadata_file_path[0] | |
) | |
new_textract_query_numbers = len(all_textract_request_metadata) | |
total_textract_query_number += new_textract_query_numbers | |
# Ensure no duplicated output files | |
log_files_output_paths = sorted(list(set(log_files_output_paths))) | |
out_file_paths = sorted(list(set(out_file_paths))) | |
# Output file paths | |
if not review_file_path: | |
review_out_file_paths = [prepared_pdf_file_paths[-1]] | |
else: | |
review_out_file_paths = [prepared_pdf_file_paths[-1], review_file_path] | |
if total_textract_query_number > number_of_pages: | |
total_textract_query_number = number_of_pages | |
page_break_return = True | |
return ( | |
combined_out_message, | |
out_file_paths, | |
out_file_paths, | |
latest_file_completed, | |
log_files_output_paths, | |
log_files_output_paths, | |
estimated_time_taken_state, | |
all_request_metadata_str, | |
pymupdf_doc, | |
annotations_all_pages_divide, | |
current_loop_page, | |
page_break_return, | |
all_page_line_level_ocr_results_df, | |
all_pages_decision_process_table, | |
comprehend_query_number, | |
review_out_file_paths, | |
annotate_max_pages, | |
annotate_max_pages, | |
prepared_pdf_file_paths, | |
pdf_image_file_paths, | |
review_file_state, | |
page_sizes, | |
duplication_file_path_outputs, | |
duplication_file_path_outputs, | |
review_file_path, | |
total_textract_query_number, | |
ocr_file_path, | |
all_page_line_level_ocr_results, | |
all_page_line_level_ocr_results_with_words, | |
all_page_line_level_ocr_results_with_words_df, | |
review_file_state, | |
task_textbox, | |
) | |
def convert_pikepdf_coords_to_pymupdf( | |
pymupdf_page: Page, pikepdf_bbox, type="pikepdf_annot" | |
): | |
""" | |
Convert annotations from pikepdf to pymupdf format, handling the mediabox larger than rect. | |
""" | |
# Use cropbox if available, otherwise use mediabox | |
reference_box = pymupdf_page.rect | |
mediabox = pymupdf_page.mediabox | |
reference_box_height = reference_box.height | |
reference_box_width = reference_box.width | |
# Convert PyMuPDF coordinates back to PDF coordinates (bottom-left origin) | |
media_height = mediabox.height | |
media_width = mediabox.width | |
media_reference_y_diff = media_height - reference_box_height | |
media_reference_x_diff = media_width - reference_box_width | |
y_diff_ratio = media_reference_y_diff / reference_box_height | |
x_diff_ratio = media_reference_x_diff / reference_box_width | |
# Extract the annotation rectangle field | |
if type == "pikepdf_annot": | |
rect_field = pikepdf_bbox["/Rect"] | |
else: | |
rect_field = pikepdf_bbox | |
rect_coordinates = [float(coord) for coord in rect_field] # Convert to floats | |
# Unpack coordinates | |
x1, y1, x2, y2 = rect_coordinates | |
new_x1 = x1 - (media_reference_x_diff * x_diff_ratio) | |
new_y1 = media_height - y2 - (media_reference_y_diff * y_diff_ratio) | |
new_x2 = x2 - (media_reference_x_diff * x_diff_ratio) | |
new_y2 = media_height - y1 - (media_reference_y_diff * y_diff_ratio) | |
return new_x1, new_y1, new_x2, new_y2 | |
def convert_pikepdf_to_image_coords( | |
pymupdf_page, annot, image: Image, type="pikepdf_annot" | |
): | |
""" | |
Convert annotations from pikepdf coordinates to image coordinates. | |
""" | |
# Get the dimensions of the page in points with pymupdf | |
rect_height = pymupdf_page.rect.height | |
rect_width = pymupdf_page.rect.width | |
# Get the dimensions of the image | |
image_page_width, image_page_height = image.size | |
# Calculate scaling factors between pymupdf and PIL image | |
scale_width = image_page_width / rect_width | |
scale_height = image_page_height / rect_height | |
# Extract the /Rect field | |
if type == "pikepdf_annot": | |
rect_field = annot["/Rect"] | |
else: | |
rect_field = annot | |
# Convert the extracted /Rect field to a list of floats | |
rect_coordinates = [float(coord) for coord in rect_field] | |
# Convert the Y-coordinates (flip using the image height) | |
x1, y1, x2, y2 = rect_coordinates | |
x1_image = x1 * scale_width | |
new_y1_image = image_page_height - ( | |
y2 * scale_height | |
) # Flip Y0 (since it starts from bottom) | |
x2_image = x2 * scale_width | |
new_y2_image = image_page_height - (y1 * scale_height) # Flip Y1 | |
return x1_image, new_y1_image, x2_image, new_y2_image | |
def convert_pikepdf_decision_output_to_image_coords( | |
pymupdf_page: Document, pikepdf_decision_ouput_data: List[dict], image: Image | |
): | |
if isinstance(image, str): | |
image_path = image | |
image = Image.open(image_path) | |
# Loop through each item in the data | |
for item in pikepdf_decision_ouput_data: | |
# Extract the bounding box | |
bounding_box = item["boundingBox"] | |
# Create a pikepdf_bbox dictionary to match the expected input | |
pikepdf_bbox = {"/Rect": bounding_box} | |
# Call the conversion function | |
new_x1, new_y1, new_x2, new_y2 = convert_pikepdf_to_image_coords( | |
pymupdf_page, pikepdf_bbox, image, type="pikepdf_annot" | |
) | |
# Update the original object with the new bounding box values | |
item["boundingBox"] = [new_x1, new_y1, new_x2, new_y2] | |
return pikepdf_decision_ouput_data | |
def convert_image_coords_to_pymupdf( | |
pymupdf_page: Document, annot: dict, image: Image, type: str = "image_recognizer" | |
): | |
""" | |
Converts an image with redaction coordinates from a CustomImageRecognizerResult or pikepdf object with image coordinates to pymupdf coordinates. | |
""" | |
rect_height = pymupdf_page.rect.height | |
rect_width = pymupdf_page.rect.width | |
image_page_width, image_page_height = image.size | |
# Calculate scaling factors between PIL image and pymupdf | |
scale_width = rect_width / image_page_width | |
scale_height = rect_height / image_page_height | |
# Calculate scaled coordinates | |
if type == "image_recognizer": | |
x1 = annot.left * scale_width # + page_x_adjust | |
new_y1 = ( | |
annot.top * scale_height | |
) # - page_y_adjust # Flip Y0 (since it starts from bottom) | |
x2 = (annot.left + annot.width) * scale_width # + page_x_adjust # Calculate x1 | |
new_y2 = ( | |
annot.top + annot.height | |
) * scale_height # - page_y_adjust # Calculate y1 correctly | |
# Else assume it is a pikepdf derived object | |
else: | |
rect_field = annot["/Rect"] | |
rect_coordinates = [float(coord) for coord in rect_field] # Convert to floats | |
# Unpack coordinates | |
x1, y1, x2, y2 = rect_coordinates | |
x1 = x1 * scale_width # + page_x_adjust | |
new_y1 = ( | |
y2 + (y1 - y2) | |
) * scale_height # - page_y_adjust # Calculate y1 correctly | |
x2 = (x1 + (x2 - x1)) * scale_width # + page_x_adjust # Calculate x1 | |
new_y2 = ( | |
y2 * scale_height | |
) # - page_y_adjust # Flip Y0 (since it starts from bottom) | |
return x1, new_y1, x2, new_y2 | |
def convert_gradio_image_annotator_object_coords_to_pymupdf( | |
pymupdf_page: Page, annot: dict, image: Image, image_dimensions: dict = None | |
): | |
""" | |
Converts an image with redaction coordinates from a gradio annotation component to pymupdf coordinates. | |
""" | |
rect_height = pymupdf_page.rect.height | |
rect_width = pymupdf_page.rect.width | |
if image_dimensions: | |
image_page_width = image_dimensions["image_width"] | |
image_page_height = image_dimensions["image_height"] | |
elif image: | |
image_page_width, image_page_height = image.size | |
# Calculate scaling factors between PIL image and pymupdf | |
scale_width = rect_width / image_page_width | |
scale_height = rect_height / image_page_height | |
# Calculate scaled coordinates | |
x1 = annot["xmin"] * scale_width # + page_x_adjust | |
new_y1 = ( | |
annot["ymin"] * scale_height | |
) # - page_y_adjust # Flip Y0 (since it starts from bottom) | |
x2 = (annot["xmax"]) * scale_width # + page_x_adjust # Calculate x1 | |
new_y2 = (annot["ymax"]) * scale_height # - page_y_adjust # Calculate y1 correctly | |
return x1, new_y1, x2, new_y2 | |
def move_page_info(file_path: str) -> str: | |
# Split the string at '.png' | |
base, extension = file_path.rsplit(".pdf", 1) | |
# Extract the page info | |
page_info = base.split("page ")[1].split(" of")[0] # Get the page number | |
new_base = base.replace( | |
f"page {page_info} of ", "" | |
) # Remove the page info from the original position | |
# Construct the new file path | |
new_file_path = f"{new_base}_page_{page_info}.png" | |
return new_file_path | |
def prepare_custom_image_recogniser_result_annotation_box( | |
page: Page, annot: dict, image: Image, page_sizes_df: pd.DataFrame | |
): | |
""" | |
Prepare an image annotation box and coordinates based on a CustomImageRecogniserResult, PyMuPDF page, and PIL Image. | |
""" | |
img_annotation_box = {} | |
# For efficient lookup, set 'page' as index if it's not already | |
if "page" in page_sizes_df.columns: | |
page_sizes_df = page_sizes_df.set_index("page") | |
# PyMuPDF page numbers are 0-based, DataFrame index assumed 1-based | |
page_num_one_based = page.number + 1 | |
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = 0, 0, 0, 0 # Initialize defaults | |
if image: | |
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = ( | |
convert_image_coords_to_pymupdf(page, annot, image) | |
) | |
else: | |
# --- Calculate coordinates when no image is present --- | |
# Assumes annot coords are normalized relative to MediaBox (top-left origin) | |
try: | |
# 1. Get MediaBox dimensions from the DataFrame | |
page_info = page_sizes_df.loc[page_num_one_based] | |
mb_width = page_info["mediabox_width"] | |
mb_height = page_info["mediabox_height"] | |
x_offset = page_info["cropbox_x_offset"] | |
y_offset = page_info["cropbox_y_offset_from_top"] | |
# Check for invalid dimensions | |
if mb_width <= 0 or mb_height <= 0: | |
print( | |
f"Warning: Invalid MediaBox dimensions ({mb_width}x{mb_height}) for page {page_num_one_based}. Setting coords to 0." | |
) | |
else: | |
pymupdf_x1 = annot.left - x_offset | |
pymupdf_x2 = annot.left + annot.width - x_offset | |
pymupdf_y1 = annot.top - y_offset | |
pymupdf_y2 = annot.top + annot.height - y_offset | |
except KeyError: | |
print( | |
f"Warning: Page number {page_num_one_based} not found in page_sizes_df. Cannot get MediaBox dimensions. Setting coords to 0." | |
) | |
except AttributeError as e: | |
print( | |
f"Error accessing attributes ('left', 'top', etc.) on 'annot' object for page {page_num_one_based}: {e}" | |
) | |
except Exception as e: | |
print( | |
f"Error during coordinate calculation for page {page_num_one_based}: {e}" | |
) | |
rect = Rect( | |
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 | |
) # Create the PyMuPDF Rect | |
# Now creating image annotation object | |
image_x1 = annot.left | |
image_x2 = annot.left + annot.width | |
image_y1 = annot.top | |
image_y2 = annot.top + annot.height | |
# Create image annotation boxes | |
img_annotation_box["xmin"] = image_x1 | |
img_annotation_box["ymin"] = image_y1 | |
img_annotation_box["xmax"] = image_x2 # annot.left + annot.width | |
img_annotation_box["ymax"] = image_y2 # annot.top + annot.height | |
img_annotation_box["color"] = (0, 0, 0) | |
try: | |
img_annotation_box["label"] = str(annot.entity_type) | |
except Exception as e: | |
print(f"Error getting entity type: {e}") | |
img_annotation_box["label"] = "Redaction" | |
if hasattr(annot, "text") and annot.text: | |
img_annotation_box["text"] = str(annot.text) | |
else: | |
img_annotation_box["text"] = "" | |
# Assign an id | |
img_annotation_box = fill_missing_box_ids(img_annotation_box) | |
return img_annotation_box, rect | |
def convert_pikepdf_annotations_to_result_annotation_box( | |
page: Page, | |
annot: dict, | |
image: Image = None, | |
convert_pikepdf_to_pymupdf_coords: bool = True, | |
page_sizes_df: pd.DataFrame = pd.DataFrame(), | |
image_dimensions: dict = {}, | |
): | |
""" | |
Convert redaction objects with pikepdf coordinates to annotation boxes for PyMuPDF that can then be redacted from the document. First 1. converts pikepdf to pymupdf coordinates, then 2. converts pymupdf coordinates to image coordinates if page is an image. | |
""" | |
img_annotation_box = {} | |
page_no = page.number | |
if convert_pikepdf_to_pymupdf_coords is True: | |
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = ( | |
convert_pikepdf_coords_to_pymupdf(page, annot) | |
) | |
else: | |
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = ( | |
convert_image_coords_to_pymupdf( | |
page, annot, image, type="pikepdf_image_coords" | |
) | |
) | |
rect = Rect(pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2) | |
convert_df = pd.DataFrame( | |
{ | |
"page": [page_no], | |
"xmin": [pymupdf_x1], | |
"ymin": [pymupdf_y1], | |
"xmax": [pymupdf_x2], | |
"ymax": [pymupdf_y2], | |
} | |
) | |
converted_df = convert_df # divide_coordinates_by_page_sizes(convert_df, page_sizes_df, xmin="xmin", xmax="xmax", ymin="ymin", ymax="ymax") | |
img_annotation_box["xmin"] = converted_df["xmin"].max() | |
img_annotation_box["ymin"] = converted_df["ymin"].max() | |
img_annotation_box["xmax"] = converted_df["xmax"].max() | |
img_annotation_box["ymax"] = converted_df["ymax"].max() | |
img_annotation_box["color"] = (0, 0, 0) | |
if isinstance(annot, Dictionary): | |
img_annotation_box["label"] = str(annot["/T"]) | |
if hasattr(annot, "Contents"): | |
img_annotation_box["text"] = str(annot.Contents) | |
else: | |
img_annotation_box["text"] = "" | |
else: | |
img_annotation_box["label"] = "REDACTION" | |
img_annotation_box["text"] = "" | |
return img_annotation_box, rect | |
def set_cropbox_safely(page: Page, original_cropbox: Optional[Rect]): | |
""" | |
Sets the cropbox of a PyMuPDF page safely and defensively. | |
If the 'original_cropbox' is valid (i.e., a fitz.Rect instance, not None, not empty, | |
not infinite, and fully contained within the page's mediabox), it is set as the cropbox. | |
Otherwise, the page's mediabox is used, and a warning is printed to explain why. | |
Args: | |
page: The PyMuPDF page object. | |
original_cropbox: The Rect representing the desired cropbox. | |
""" | |
mediabox = page.mediabox | |
reason_for_defaulting = "" | |
# Check for None | |
if original_cropbox is None: | |
reason_for_defaulting = "the original cropbox is None." | |
# Check for incorrect type | |
elif not isinstance(original_cropbox, Rect): | |
reason_for_defaulting = f"the original cropbox is not a fitz.Rect instance (got {type(original_cropbox)})." | |
else: | |
# Normalise the cropbox (ensures x0 < x1 and y0 < y1) | |
original_cropbox.normalize() | |
# Check for empty or infinite or out-of-bounds | |
if original_cropbox.is_empty: | |
reason_for_defaulting = ( | |
f"the provided original cropbox {original_cropbox} is empty." | |
) | |
elif original_cropbox.is_infinite: | |
reason_for_defaulting = ( | |
f"the provided original cropbox {original_cropbox} is infinite." | |
) | |
elif not mediabox.contains(original_cropbox): | |
reason_for_defaulting = ( | |
f"the provided original cropbox {original_cropbox} is not fully contained " | |
f"within the page's mediabox {mediabox}." | |
) | |
if reason_for_defaulting: | |
print( | |
f"Warning (Page {page.number}): Cannot use original cropbox because {reason_for_defaulting} " | |
f"Defaulting to the page's mediabox as the cropbox." | |
) | |
page.set_cropbox(mediabox) | |
else: | |
page.set_cropbox(original_cropbox) | |
def redact_page_with_pymupdf( | |
page: Page, | |
page_annotations: dict, | |
image: Image = None, | |
custom_colours: bool = False, | |
redact_whole_page: bool = False, | |
convert_pikepdf_to_pymupdf_coords: bool = True, | |
original_cropbox: List[Rect] = list(), | |
page_sizes_df: pd.DataFrame = pd.DataFrame(), | |
): | |
rect_height = page.rect.height | |
rect_width = page.rect.width | |
mediabox_height = page.mediabox.height | |
mediabox_width = page.mediabox.width | |
page_no = page.number | |
page_num_reported = page_no + 1 | |
page_sizes_df[["page"]] = page_sizes_df[["page"]].apply( | |
pd.to_numeric, errors="coerce" | |
) | |
# Check if image dimensions for page exist in page_sizes_df | |
image_dimensions = {} | |
if not image and "image_width" in page_sizes_df.columns: | |
page_sizes_df[["image_width"]] = page_sizes_df[["image_width"]].apply( | |
pd.to_numeric, errors="coerce" | |
) | |
page_sizes_df[["image_height"]] = page_sizes_df[["image_height"]].apply( | |
pd.to_numeric, errors="coerce" | |
) | |
image_dimensions["image_width"] = page_sizes_df.loc[ | |
page_sizes_df["page"] == page_num_reported, "image_width" | |
].max() | |
image_dimensions["image_height"] = page_sizes_df.loc[ | |
page_sizes_df["page"] == page_num_reported, "image_height" | |
].max() | |
if pd.isna(image_dimensions["image_width"]): | |
image_dimensions = {} | |
out_annotation_boxes = {} | |
all_image_annotation_boxes = list() | |
if isinstance(image, Image.Image): | |
image_path = move_page_info(str(page)) | |
image.save(image_path) | |
elif isinstance(image, str): | |
if os.path.exists(image): | |
image_path = image | |
image = Image.open(image_path) | |
elif "image_path" in page_sizes_df.columns: | |
try: | |
image_path = page_sizes_df.loc[ | |
page_sizes_df["page"] == (page_no + 1), "image_path" | |
].iloc[0] | |
except IndexError: | |
image_path = "" | |
image = None | |
else: | |
image_path = "" | |
image = None | |
else: | |
# print("image is not an Image object or string") | |
image_path = "" | |
image = None | |
# Check if this is an object used in the Gradio Annotation component | |
if isinstance(page_annotations, dict): | |
page_annotations = page_annotations["boxes"] | |
for annot in page_annotations: | |
# Check if an Image recogniser result, or a Gradio annotation object | |
if (isinstance(annot, CustomImageRecognizerResult)) | isinstance(annot, dict): | |
img_annotation_box = {} | |
# Should already be in correct format if img_annotator_box is an input | |
if isinstance(annot, dict): | |
annot = fill_missing_box_ids(annot) | |
img_annotation_box = annot | |
box_coordinates = ( | |
img_annotation_box["xmin"], | |
img_annotation_box["ymin"], | |
img_annotation_box["xmax"], | |
img_annotation_box["ymax"], | |
) | |
# Check if all coordinates are equal to or less than 1 | |
are_coordinates_relative = all(coord <= 1 for coord in box_coordinates) | |
if are_coordinates_relative is True: | |
# Check if coordinates are relative, if so then multiply by mediabox size | |
pymupdf_x1 = img_annotation_box["xmin"] * mediabox_width | |
pymupdf_y1 = img_annotation_box["ymin"] * mediabox_height | |
pymupdf_x2 = img_annotation_box["xmax"] * mediabox_width | |
pymupdf_y2 = img_annotation_box["ymax"] * mediabox_height | |
elif image_dimensions or image: | |
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = ( | |
convert_gradio_image_annotator_object_coords_to_pymupdf( | |
page, img_annotation_box, image, image_dimensions | |
) | |
) | |
else: | |
print( | |
"Could not convert image annotator coordinates in redact_page_with_pymupdf" | |
) | |
print("img_annotation_box", img_annotation_box) | |
pymupdf_x1 = img_annotation_box["xmin"] | |
pymupdf_y1 = img_annotation_box["ymin"] | |
pymupdf_x2 = img_annotation_box["xmax"] | |
pymupdf_y2 = img_annotation_box["ymax"] | |
if hasattr(annot, "text") and annot.text: | |
img_annotation_box["text"] = str(annot.text) | |
else: | |
img_annotation_box["text"] = "" | |
rect = Rect( | |
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 | |
) # Create the PyMuPDF Rect | |
# Else should be CustomImageRecognizerResult | |
elif isinstance(annot, CustomImageRecognizerResult): | |
# print("annot is a CustomImageRecognizerResult") | |
img_annotation_box, rect = ( | |
prepare_custom_image_recogniser_result_annotation_box( | |
page, annot, image, page_sizes_df | |
) | |
) | |
# Else it should be a pikepdf annotation object | |
else: | |
if not image: | |
convert_pikepdf_to_pymupdf_coords = True | |
else: | |
convert_pikepdf_to_pymupdf_coords = False | |
img_annotation_box, rect = ( | |
convert_pikepdf_annotations_to_result_annotation_box( | |
page, | |
annot, | |
image, | |
convert_pikepdf_to_pymupdf_coords, | |
page_sizes_df, | |
image_dimensions=image_dimensions, | |
) | |
) | |
img_annotation_box = fill_missing_box_ids(img_annotation_box) | |
all_image_annotation_boxes.append(img_annotation_box) | |
# Redact the annotations from the document | |
redact_single_box(page, rect, img_annotation_box, custom_colours) | |
# If whole page is to be redacted, do that here | |
if redact_whole_page is True: | |
whole_page_img_annotation_box = redact_whole_pymupdf_page( | |
rect_height, rect_width, page, custom_colours, border=5 | |
) | |
all_image_annotation_boxes.append(whole_page_img_annotation_box) | |
out_annotation_boxes = { | |
"image": image_path, # Image.open(image_path), #image_path, | |
"boxes": all_image_annotation_boxes, | |
} | |
page.apply_redactions(images=0, graphics=0) | |
set_cropbox_safely(page, original_cropbox) | |
# page.set_cropbox(original_cropbox) | |
# Set CropBox to original size | |
page.clean_contents() | |
return page, out_annotation_boxes | |
### | |
# IMAGE-BASED OCR PDF TEXT DETECTION/REDACTION WITH TESSERACT OR AWS TEXTRACT | |
### | |
def merge_img_bboxes( | |
bboxes: list, | |
combined_results: Dict, | |
page_signature_recogniser_results: list = list(), | |
page_handwriting_recogniser_results: list = list(), | |
handwrite_signature_checkbox: List[str] = [ | |
"Extract handwriting", | |
"Extract signatures", | |
], | |
horizontal_threshold: int = 50, | |
vertical_threshold: int = 12, | |
): | |
""" | |
Merges bounding boxes for image annotations based on the provided results from signature and handwriting recognizers. | |
Args: | |
bboxes (list): A list of bounding boxes to be merged. | |
combined_results (Dict): A dictionary containing combined results with line text and their corresponding bounding boxes. | |
page_signature_recogniser_results (list, optional): A list of results from the signature recognizer. Defaults to an empty list. | |
page_handwriting_recogniser_results (list, optional): A list of results from the handwriting recognizer. Defaults to an empty list. | |
handwrite_signature_checkbox (List[str], optional): A list of options indicating whether to extract handwriting and signatures. Defaults to ["Extract handwriting", "Extract signatures"]. | |
horizontal_threshold (int, optional): The threshold for merging bounding boxes horizontally. Defaults to 50. | |
vertical_threshold (int, optional): The threshold for merging bounding boxes vertically. Defaults to 12. | |
Returns: | |
None: This function modifies the bounding boxes in place and does not return a value. | |
""" | |
all_bboxes = list() | |
merged_bboxes = list() | |
grouped_bboxes = defaultdict(list) | |
# Deep copy original bounding boxes to retain them | |
original_bboxes = copy.deepcopy(bboxes) | |
# Process signature and handwriting results | |
if page_signature_recogniser_results or page_handwriting_recogniser_results: | |
if "Extract handwriting" in handwrite_signature_checkbox: | |
print("Extracting handwriting in merge_img_bboxes function") | |
merged_bboxes.extend(copy.deepcopy(page_handwriting_recogniser_results)) | |
if "Extract signatures" in handwrite_signature_checkbox: | |
print("Extracting signatures in merge_img_bboxes function") | |
merged_bboxes.extend(copy.deepcopy(page_signature_recogniser_results)) | |
# Reconstruct bounding boxes for substrings of interest | |
reconstructed_bboxes = list() | |
for bbox in bboxes: | |
bbox_box = (bbox.left, bbox.top, bbox.left + bbox.width, bbox.top + bbox.height) | |
for line_text, line_info in combined_results.items(): | |
line_box = line_info["bounding_box"] | |
if bounding_boxes_overlap(bbox_box, line_box): | |
if bbox.text in line_text: | |
start_char = line_text.index(bbox.text) | |
end_char = start_char + len(bbox.text) | |
relevant_words = list() | |
current_char = 0 | |
for word in line_info["words"]: | |
word_end = current_char + len(word["text"]) | |
if ( | |
current_char <= start_char < word_end | |
or current_char < end_char <= word_end | |
or (start_char <= current_char and word_end <= end_char) | |
): | |
relevant_words.append(word) | |
if word_end >= end_char: | |
break | |
current_char = word_end | |
if not word["text"].endswith(" "): | |
current_char += 1 # +1 for space if the word doesn't already end with a space | |
if relevant_words: | |
left = min(word["bounding_box"][0] for word in relevant_words) | |
top = min(word["bounding_box"][1] for word in relevant_words) | |
right = max(word["bounding_box"][2] for word in relevant_words) | |
bottom = max(word["bounding_box"][3] for word in relevant_words) | |
combined_text = " ".join( | |
word["text"] for word in relevant_words | |
) | |
reconstructed_bbox = CustomImageRecognizerResult( | |
bbox.entity_type, | |
bbox.start, | |
bbox.end, | |
bbox.score, | |
left, | |
top, | |
right - left, # width | |
bottom - top, # height, | |
combined_text, | |
) | |
# reconstructed_bboxes.append(bbox) # Add original bbox | |
reconstructed_bboxes.append( | |
reconstructed_bbox | |
) # Add merged bbox | |
break | |
else: | |
reconstructed_bboxes.append(bbox) | |
# Group reconstructed bboxes by approximate vertical proximity | |
for box in reconstructed_bboxes: | |
grouped_bboxes[round(box.top / vertical_threshold)].append(box) | |
# Merge within each group | |
for _, group in grouped_bboxes.items(): | |
group.sort(key=lambda box: box.left) | |
merged_box = group[0] | |
for next_box in group[1:]: | |
if ( | |
next_box.left - (merged_box.left + merged_box.width) | |
<= horizontal_threshold | |
): | |
if next_box.text != merged_box.text: | |
new_text = merged_box.text + " " + next_box.text | |
else: | |
new_text = merged_box.text | |
if merged_box.entity_type != next_box.entity_type: | |
new_entity_type = ( | |
merged_box.entity_type + " - " + next_box.entity_type | |
) | |
else: | |
new_entity_type = merged_box.entity_type | |
new_left = min(merged_box.left, next_box.left) | |
new_top = min(merged_box.top, next_box.top) | |
new_width = ( | |
max( | |
merged_box.left + merged_box.width, | |
next_box.left + next_box.width, | |
) | |
- new_left | |
) | |
new_height = ( | |
max( | |
merged_box.top + merged_box.height, | |
next_box.top + next_box.height, | |
) | |
- new_top | |
) | |
merged_box = CustomImageRecognizerResult( | |
new_entity_type, | |
merged_box.start, | |
merged_box.end, | |
merged_box.score, | |
new_left, | |
new_top, | |
new_width, | |
new_height, | |
new_text, | |
) | |
else: | |
merged_bboxes.append(merged_box) | |
merged_box = next_box | |
merged_bboxes.append(merged_box) | |
all_bboxes.extend(original_bboxes) | |
all_bboxes.extend(merged_bboxes) | |
# Return the unique original and merged bounding boxes | |
unique_bboxes = list( | |
{ | |
(bbox.left, bbox.top, bbox.width, bbox.height): bbox for bbox in all_bboxes | |
}.values() | |
) | |
return unique_bboxes | |
def redact_image_pdf( | |
file_path: str, | |
pdf_image_file_paths: List[str], | |
language: str, | |
chosen_redact_entities: List[str], | |
chosen_redact_comprehend_entities: List[str], | |
allow_list: List[str] = None, | |
page_min: int = 0, | |
page_max: int = 999, | |
text_extraction_method: str = TESSERACT_TEXT_EXTRACT_OPTION, | |
handwrite_signature_checkbox: List[str] = [ | |
"Extract handwriting", | |
"Extract signatures", | |
], | |
textract_request_metadata: list = list(), | |
current_loop_page: int = 0, | |
page_break_return: bool = False, | |
annotations_all_pages: List = list(), | |
all_page_line_level_ocr_results_df: pd.DataFrame = pd.DataFrame( | |
columns=["page", "text", "left", "top", "width", "height", "line"] | |
), | |
all_pages_decision_process_table: pd.DataFrame = pd.DataFrame( | |
columns=[ | |
"image_path", | |
"page", | |
"label", | |
"xmin", | |
"xmax", | |
"ymin", | |
"ymax", | |
"boundingBox", | |
"text", | |
"start", | |
"end", | |
"score", | |
"id", | |
] | |
), | |
pymupdf_doc: Document = list(), | |
pii_identification_method: str = "Local", | |
comprehend_query_number: int = 0, | |
comprehend_client: str = "", | |
textract_client: str = "", | |
in_deny_list: List[str] = list(), | |
redact_whole_page_list: List[str] = list(), | |
max_fuzzy_spelling_mistakes_num: int = 1, | |
match_fuzzy_whole_phrase_bool: bool = True, | |
page_sizes_df: pd.DataFrame = pd.DataFrame(), | |
text_extraction_only: bool = False, | |
all_page_line_level_ocr_results=list(), | |
all_page_line_level_ocr_results_with_words=list(), | |
chosen_local_model: str = "tesseract", | |
page_break_val: int = int(PAGE_BREAK_VALUE), | |
log_files_output_paths: List = list(), | |
max_time: int = int(MAX_TIME_VALUE), | |
nlp_analyser: AnalyzerEngine = nlp_analyser, | |
output_folder: str = OUTPUT_FOLDER, | |
progress=Progress(track_tqdm=True), | |
): | |
""" | |
This function redacts sensitive information from a PDF document. It takes the following parameters in order: | |
- file_path (str): The path to the PDF file to be redacted. | |
- pdf_image_file_paths (List[str]): A list of paths to the PDF file pages converted to images. | |
- language (str): The language of the text in the PDF. | |
- chosen_redact_entities (List[str]): A list of entity types to redact from the PDF. | |
- chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from the list allowed by the AWS Comprehend service. | |
- allow_list (List[str], optional): A list of entity types to allow in the PDF. Defaults to None. | |
- page_min (int, optional): The minimum page number to start redaction from. Defaults to 0. | |
- page_max (int, optional): The maximum page number to end redaction at. Defaults to 999. | |
- text_extraction_method (str, optional): The type of analysis to perform on the PDF. Defaults to TESSERACT_TEXT_EXTRACT_OPTION. | |
- handwrite_signature_checkbox (List[str], optional): A list of options for redacting handwriting and signatures. Defaults to ["Extract handwriting", "Extract signatures"]. | |
- textract_request_metadata (list, optional): Metadata related to the redaction request. Defaults to an empty string. | |
- current_loop_page (int, optional): The current page being processed. Defaults to 0. | |
- page_break_return (bool, optional): Indicates if the function should return after a page break. Defaults to False. | |
- annotations_all_pages (List, optional): List of annotations on all pages that is used by the gradio_image_annotation object. | |
- all_page_line_level_ocr_results_df (pd.DataFrame, optional): All line level OCR results for the document as a Pandas dataframe, | |
- all_pages_decision_process_table (pd.DataFrame, optional): All redaction decisions for document as a Pandas dataframe. | |
- pymupdf_doc (Document, optional): The document as a PyMupdf object. | |
- pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API). | |
- comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend. | |
- comprehend_client (optional): A connection to the AWS Comprehend service via the boto3 package. | |
- textract_client (optional): A connection to the AWS Textract service via the boto3 package. | |
- in_deny_list (optional): A list of custom words that the user has chosen specifically to redact. | |
- redact_whole_page_list (optional, List[str]): A list of pages to fully redact. | |
- max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9. | |
- match_fuzzy_whole_phrase_bool (bool, optional): A boolean where 'True' means that the whole phrase is fuzzy matched, and 'False' means that each word is fuzzy matched separately (excluding stop words). | |
- page_sizes_df (pd.DataFrame, optional): A pandas dataframe of PDF page sizes in PDF or image format. | |
- text_extraction_only (bool, optional): Should the function only extract text, or also do redaction. | |
- all_page_line_level_ocr_results (optional): List of all page line level OCR results. | |
- all_page_line_level_ocr_results_with_words (optional): List of all page line level OCR results with words. | |
- chosen_local_model (str, optional): The local model chosen for OCR. Defaults to "tesseract", other choices are "paddle" for PaddleOCR, or "hybrid" for a combination of both. | |
- page_break_val (int, optional): The value at which to trigger a page break. Defaults to PAGE_BREAK_VALUE. | |
- log_files_output_paths (List, optional): List of file paths used for saving redaction process logging results. | |
- max_time (int, optional): The maximum amount of time (s) that the function should be running before it breaks. To avoid timeout errors with some APIs. | |
- nlp_analyser (AnalyzerEngine, optional): The nlp_analyser object to use for entity detection. Defaults to nlp_analyser. | |
- output_folder (str, optional): The folder for file outputs. | |
- progress (Progress, optional): A progress tracker for the redaction process. Defaults to a Progress object with track_tqdm set to True. | |
The function returns a redacted PDF document along with processing output objects. | |
""" | |
tic = time.perf_counter() | |
file_name = get_file_name_without_type(file_path) | |
comprehend_query_number_new = 0 | |
# Try updating the supported languages for the spacy analyser | |
try: | |
nlp_analyser = create_nlp_analyser(language, existing_nlp_analyser=nlp_analyser) | |
# Check list of nlp_analyser recognisers and languages | |
if language != "en": | |
gr.Info( | |
f"Language: {language} only supports the following entity detection: {str(nlp_analyser.registry.get_supported_entities(languages=[language]))}" | |
) | |
except Exception as e: | |
print(f"Error creating nlp_analyser for {language}: {e}") | |
raise Exception(f"Error creating nlp_analyser for {language}: {e}") | |
# Update custom word list analyser object with any new words that have been added to the custom deny list | |
if in_deny_list: | |
nlp_analyser.registry.remove_recognizer("CUSTOM") | |
new_custom_recogniser = custom_word_list_recogniser(in_deny_list) | |
nlp_analyser.registry.add_recognizer(new_custom_recogniser) | |
nlp_analyser.registry.remove_recognizer("CustomWordFuzzyRecognizer") | |
new_custom_fuzzy_recogniser = CustomWordFuzzyRecognizer( | |
supported_entities=["CUSTOM_FUZZY"], | |
custom_list=in_deny_list, | |
spelling_mistakes_max=max_fuzzy_spelling_mistakes_num, | |
search_whole_phrase=match_fuzzy_whole_phrase_bool, | |
) | |
nlp_analyser.registry.add_recognizer(new_custom_fuzzy_recogniser) | |
# Only load in PaddleOCR models if not running Textract | |
if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION: | |
image_analyser = CustomImageAnalyzerEngine( | |
analyzer_engine=nlp_analyser, ocr_engine="tesseract", language=language | |
) | |
else: | |
image_analyser = CustomImageAnalyzerEngine( | |
analyzer_engine=nlp_analyser, | |
ocr_engine=chosen_local_model, | |
language=language, | |
) | |
if pii_identification_method == "AWS Comprehend" and comprehend_client == "": | |
out_message = "Connection to AWS Comprehend service unsuccessful." | |
print(out_message) | |
raise Exception(out_message) | |
if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION and textract_client == "": | |
out_message_warning = "Connection to AWS Textract service unsuccessful. Redaction will only continue if local AWS Textract results can be found." | |
print(out_message_warning) | |
# raise Exception(out_message) | |
number_of_pages = pymupdf_doc.page_count | |
print("Number of pages:", str(number_of_pages)) | |
# Check that page_min and page_max are within expected ranges | |
if page_max > number_of_pages or page_max == 0: | |
page_max = number_of_pages | |
if page_min <= 0: | |
page_min = 0 | |
else: | |
page_min = page_min - 1 | |
print("Page range:", str(page_min + 1), "to", str(page_max)) | |
# If running Textract, check if file already exists. If it does, load in existing data | |
if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION: | |
textract_json_file_path = output_folder + file_name + "_textract.json" | |
textract_data, is_missing, log_files_output_paths = ( | |
load_and_convert_textract_json( | |
textract_json_file_path, log_files_output_paths, page_sizes_df | |
) | |
) | |
original_textract_data = textract_data.copy() | |
# print("Successfully loaded in Textract analysis results from file") | |
# If running local OCR option, check if file already exists. If it does, load in existing data | |
if text_extraction_method == TESSERACT_TEXT_EXTRACT_OPTION: | |
all_page_line_level_ocr_results_with_words_json_file_path = ( | |
output_folder + file_name + "_ocr_results_with_words_local_ocr.json" | |
) | |
( | |
all_page_line_level_ocr_results_with_words, | |
is_missing, | |
log_files_output_paths, | |
) = load_and_convert_ocr_results_with_words_json( | |
all_page_line_level_ocr_results_with_words_json_file_path, | |
log_files_output_paths, | |
page_sizes_df, | |
) | |
original_all_page_line_level_ocr_results_with_words = ( | |
all_page_line_level_ocr_results_with_words.copy() | |
) | |
# print("Loaded in local OCR analysis results from file") | |
### | |
if current_loop_page == 0: | |
page_loop_start = 0 | |
else: | |
page_loop_start = current_loop_page | |
progress_bar = tqdm( | |
range(page_loop_start, number_of_pages), | |
unit="pages remaining", | |
desc="Redacting pages", | |
) | |
# If there's data from a previous run (passed in via the DataFrame parameters), add it | |
all_line_level_ocr_results_list = list() | |
all_pages_decision_process_list = list() | |
if not all_page_line_level_ocr_results_df.empty: | |
all_line_level_ocr_results_list.extend( | |
all_page_line_level_ocr_results_df.to_dict("records") | |
) | |
if not all_pages_decision_process_table.empty: | |
all_pages_decision_process_list.extend( | |
all_pages_decision_process_table.to_dict("records") | |
) | |
# Go through each page | |
for page_no in progress_bar: | |
handwriting_or_signature_boxes = list() | |
page_signature_recogniser_results = list() | |
page_handwriting_recogniser_results = list() | |
page_line_level_ocr_results_with_words = list() | |
page_break_return = False | |
reported_page_number = str(page_no + 1) | |
# Try to find image location | |
try: | |
image_path = page_sizes_df.loc[ | |
page_sizes_df["page"] == (page_no + 1), "image_path" | |
].iloc[0] | |
except Exception as e: | |
print("Could not find image_path in page_sizes_df due to:", e) | |
image_path = pdf_image_file_paths[page_no] | |
page_image_annotations = {"image": image_path, "boxes": []} | |
pymupdf_page = pymupdf_doc.load_page(page_no) | |
if page_no >= page_min and page_no < page_max: | |
# Need image size to convert OCR outputs to the correct sizes | |
if isinstance(image_path, str): | |
if os.path.exists(image_path): | |
image = Image.open(image_path) | |
page_width, page_height = image.size | |
else: | |
# print("Image path does not exist, using mediabox coordinates as page sizes") | |
image = None | |
page_width = pymupdf_page.mediabox.width | |
page_height = pymupdf_page.mediabox.height | |
elif not isinstance(image_path, Image.Image): | |
print( | |
f"Unexpected image_path type: {type(image_path)}, using page mediabox coordinates as page sizes" | |
) # Ensure image_path is valid | |
image = None | |
page_width = pymupdf_page.mediabox.width | |
page_height = pymupdf_page.mediabox.height | |
try: | |
if not page_sizes_df.empty: | |
original_cropbox = page_sizes_df.loc[ | |
page_sizes_df["page"] == (page_no + 1), "original_cropbox" | |
].iloc[0] | |
except IndexError: | |
print( | |
"Can't find original cropbox details for page, using current PyMuPDF page cropbox" | |
) | |
original_cropbox = pymupdf_page.cropbox.irect | |
# Step 1: Perform OCR. Either with Tesseract, or with AWS Textract | |
# If using Tesseract | |
if text_extraction_method == TESSERACT_TEXT_EXTRACT_OPTION: | |
if all_page_line_level_ocr_results_with_words: | |
# Find the first dict where 'page' matches | |
matching_page = next( | |
( | |
item | |
for item in all_page_line_level_ocr_results_with_words | |
if int(item.get("page", -1)) == int(reported_page_number) | |
), | |
None, | |
) | |
page_line_level_ocr_results_with_words = ( | |
matching_page if matching_page else [] | |
) | |
else: | |
page_line_level_ocr_results_with_words = list() | |
if page_line_level_ocr_results_with_words: | |
print( | |
"Found OCR results for page in existing OCR with words object" | |
) | |
page_line_level_ocr_results = ( | |
recreate_page_line_level_ocr_results_with_page( | |
page_line_level_ocr_results_with_words | |
) | |
) | |
else: | |
page_word_level_ocr_results = image_analyser.perform_ocr(image_path) | |
( | |
page_line_level_ocr_results, | |
page_line_level_ocr_results_with_words, | |
) = combine_ocr_results( | |
page_word_level_ocr_results, page=reported_page_number | |
) | |
if all_page_line_level_ocr_results_with_words is None: | |
all_page_line_level_ocr_results_with_words = list() | |
all_page_line_level_ocr_results_with_words.append( | |
page_line_level_ocr_results_with_words | |
) | |
# Check if page exists in existing textract data. If not, send to service to analyse | |
if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION: | |
text_blocks = list() | |
if not textract_data: | |
try: | |
# Convert the image_path to bytes using an in-memory buffer | |
image_buffer = io.BytesIO() | |
image.save( | |
image_buffer, format="PNG" | |
) # Save as PNG, or adjust format if needed | |
pdf_page_as_bytes = image_buffer.getvalue() | |
text_blocks, new_textract_request_metadata = ( | |
analyse_page_with_textract( | |
pdf_page_as_bytes, | |
reported_page_number, | |
textract_client, | |
handwrite_signature_checkbox, | |
) | |
) # Analyse page with Textract | |
if textract_json_file_path not in log_files_output_paths: | |
log_files_output_paths.append(textract_json_file_path) | |
textract_data = {"pages": [text_blocks]} | |
except Exception as e: | |
print( | |
"Textract extraction for page", | |
reported_page_number, | |
"failed due to:", | |
e, | |
) | |
textract_data = {"pages": []} | |
new_textract_request_metadata = "Failed Textract API call" | |
textract_request_metadata.append(new_textract_request_metadata) | |
else: | |
# Check if the current reported_page_number exists in the loaded JSON | |
page_exists = any( | |
page["page_no"] == reported_page_number | |
for page in textract_data.get("pages", []) | |
) | |
if not page_exists: # If the page does not exist, analyze again | |
print( | |
f"Page number {reported_page_number} not found in existing Textract data. Analysing." | |
) | |
try: | |
# Convert the image_path to bytes using an in-memory buffer | |
image_buffer = io.BytesIO() | |
image.save( | |
image_buffer, format="PNG" | |
) # Save as PNG, or adjust format if needed | |
pdf_page_as_bytes = image_buffer.getvalue() | |
text_blocks, new_textract_request_metadata = ( | |
analyse_page_with_textract( | |
pdf_page_as_bytes, | |
reported_page_number, | |
textract_client, | |
handwrite_signature_checkbox, | |
) | |
) # Analyse page with Textract | |
# Check if "pages" key exists, if not, initialise it as an empty list | |
if "pages" not in textract_data: | |
textract_data["pages"] = list() | |
# Append the new page data | |
textract_data["pages"].append(text_blocks) | |
except Exception as e: | |
out_message = ( | |
"Textract extraction for page " | |
+ reported_page_number | |
+ " failed due to:" | |
+ str(e) | |
) | |
print(out_message) | |
text_blocks = list() | |
new_textract_request_metadata = "Failed Textract API call" | |
# Check if "pages" key exists, if not, initialise it as an empty list | |
if "pages" not in textract_data: | |
textract_data["pages"] = list() | |
raise Exception(out_message) | |
textract_request_metadata.append(new_textract_request_metadata) | |
else: | |
# If the page exists, retrieve the data | |
text_blocks = next( | |
page["data"] | |
for page in textract_data["pages"] | |
if page["page_no"] == reported_page_number | |
) | |
( | |
page_line_level_ocr_results, | |
handwriting_or_signature_boxes, | |
page_signature_recogniser_results, | |
page_handwriting_recogniser_results, | |
page_line_level_ocr_results_with_words, | |
) = json_to_ocrresult( | |
text_blocks, page_width, page_height, reported_page_number | |
) | |
if all_page_line_level_ocr_results_with_words is None: | |
all_page_line_level_ocr_results_with_words = list() | |
all_page_line_level_ocr_results_with_words.append( | |
page_line_level_ocr_results_with_words | |
) | |
# Convert to DataFrame and add to ongoing logging table | |
line_level_ocr_results_df = pd.DataFrame( | |
[ | |
{ | |
"page": page_line_level_ocr_results["page"], | |
"text": result.text, | |
"left": result.left, | |
"top": result.top, | |
"width": result.width, | |
"height": result.height, | |
"line": result.line, | |
} | |
for result in page_line_level_ocr_results["results"] | |
] | |
) | |
if not line_level_ocr_results_df.empty: # Ensure there are records to add | |
all_line_level_ocr_results_list.extend( | |
line_level_ocr_results_df.to_dict("records") | |
) | |
if pii_identification_method != NO_REDACTION_PII_OPTION: | |
# Step 2: Analyse text and identify PII | |
if chosen_redact_entities or chosen_redact_comprehend_entities: | |
page_redaction_bounding_boxes, comprehend_query_number_new = ( | |
image_analyser.analyze_text( | |
page_line_level_ocr_results["results"], | |
page_line_level_ocr_results_with_words["results"], | |
chosen_redact_comprehend_entities=chosen_redact_comprehend_entities, | |
pii_identification_method=pii_identification_method, | |
comprehend_client=comprehend_client, | |
custom_entities=chosen_redact_entities, | |
language=language, | |
allow_list=allow_list, | |
score_threshold=score_threshold, | |
nlp_analyser=nlp_analyser, | |
) | |
) | |
comprehend_query_number = ( | |
comprehend_query_number + comprehend_query_number_new | |
) | |
else: | |
page_redaction_bounding_boxes = list() | |
# Merge redaction bounding boxes that are close together | |
page_merged_redaction_bboxes = merge_img_bboxes( | |
page_redaction_bounding_boxes, | |
page_line_level_ocr_results_with_words["results"], | |
page_signature_recogniser_results, | |
page_handwriting_recogniser_results, | |
handwrite_signature_checkbox, | |
) | |
else: | |
page_merged_redaction_bboxes = list() | |
# 3. Draw the merged boxes | |
## Apply annotations to pdf with pymupdf | |
if is_pdf(file_path) is True: | |
if redact_whole_page_list: | |
int_reported_page_number = int(reported_page_number) | |
if int_reported_page_number in redact_whole_page_list: | |
redact_whole_page = True | |
else: | |
redact_whole_page = False | |
else: | |
redact_whole_page = False | |
pymupdf_page, page_image_annotations = redact_page_with_pymupdf( | |
pymupdf_page, | |
page_merged_redaction_bboxes, | |
image_path, | |
redact_whole_page=redact_whole_page, | |
original_cropbox=original_cropbox, | |
page_sizes_df=page_sizes_df, | |
) | |
# If an image_path file, draw onto the image_path | |
elif is_pdf(file_path) is False: | |
if isinstance(image_path, str): | |
if os.path.exists(image_path): | |
image = Image.open(image_path) | |
elif isinstance(image_path, Image.Image): | |
image = image_path | |
else: | |
# Assume image_path is an image | |
image = image_path | |
fill = (0, 0, 0) # Fill colour for redactions | |
draw = ImageDraw.Draw(image) | |
all_image_annotations_boxes = list() | |
for box in page_merged_redaction_bboxes: | |
try: | |
x0 = box.left | |
y0 = box.top | |
x1 = x0 + box.width | |
y1 = y0 + box.height | |
label = box.entity_type # Attempt to get the label | |
text = box.text | |
except AttributeError as e: | |
print(f"Error accessing box attributes: {e}") | |
label = "Redaction" # Default label if there's an error | |
# Check if coordinates are valid numbers | |
if any(v is None for v in [x0, y0, x1, y1]): | |
print(f"Invalid coordinates for box: {box}") | |
continue # Skip this box if coordinates are invalid | |
img_annotation_box = { | |
"xmin": x0, | |
"ymin": y0, | |
"xmax": x1, | |
"ymax": y1, | |
"label": label, | |
"color": (0, 0, 0), | |
"text": text, | |
} | |
img_annotation_box = fill_missing_box_ids(img_annotation_box) | |
# Directly append the dictionary with the required keys | |
all_image_annotations_boxes.append(img_annotation_box) | |
# Draw the rectangle | |
try: | |
draw.rectangle([x0, y0, x1, y1], fill=fill) | |
except Exception as e: | |
print(f"Error drawing rectangle: {e}") | |
page_image_annotations = { | |
"image": file_path, | |
"boxes": all_image_annotations_boxes, | |
} | |
redacted_image = image.copy() | |
# Convert decision process to table | |
decision_process_table = pd.DataFrame( | |
[ | |
{ | |
"text": result.text, | |
"xmin": result.left, | |
"ymin": result.top, | |
"xmax": result.left + result.width, | |
"ymax": result.top + result.height, | |
"label": result.entity_type, | |
"start": result.start, | |
"end": result.end, | |
"score": result.score, | |
"page": reported_page_number, | |
} | |
for result in page_merged_redaction_bboxes | |
] | |
) | |
# all_pages_decision_process_list.append(decision_process_table.to_dict('records')) | |
if not decision_process_table.empty: # Ensure there are records to add | |
all_pages_decision_process_list.extend( | |
decision_process_table.to_dict("records") | |
) | |
decision_process_table = fill_missing_ids(decision_process_table) | |
toc = time.perf_counter() | |
time_taken = toc - tic | |
# Break if time taken is greater than max_time seconds | |
if time_taken > max_time: | |
print("Processing for", max_time, "seconds, breaking loop.") | |
page_break_return = True | |
progress.close(_tqdm=progress_bar) | |
tqdm._instances.clear() | |
if is_pdf(file_path) is False: | |
pdf_image_file_paths.append(redacted_image) # .append(image_path) | |
pymupdf_doc = pdf_image_file_paths | |
# Check if the image_path already exists in annotations_all_pages | |
existing_index = next( | |
( | |
index | |
for index, ann in enumerate(annotations_all_pages) | |
if ann["image"] == page_image_annotations["image"] | |
), | |
None, | |
) | |
if existing_index is not None: | |
# Replace the existing annotation | |
annotations_all_pages[existing_index] = page_image_annotations | |
else: | |
# Append new annotation if it doesn't exist | |
annotations_all_pages.append(page_image_annotations) | |
# Save word level options | |
if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION: | |
if original_textract_data != textract_data: | |
# Write the updated existing textract data back to the JSON file | |
secure_file_write( | |
output_folder, | |
file_name + "_textract.json", | |
json.dumps(textract_data, separators=(",", ":")), | |
) | |
if textract_json_file_path not in log_files_output_paths: | |
log_files_output_paths.append(textract_json_file_path) | |
all_pages_decision_process_table = pd.DataFrame( | |
all_pages_decision_process_list | |
) | |
all_line_level_ocr_results_df = pd.DataFrame( | |
all_line_level_ocr_results_list | |
) | |
current_loop_page += 1 | |
return ( | |
pymupdf_doc, | |
all_pages_decision_process_table, | |
log_files_output_paths, | |
textract_request_metadata, | |
annotations_all_pages, | |
current_loop_page, | |
page_break_return, | |
all_line_level_ocr_results_df, | |
comprehend_query_number, | |
all_page_line_level_ocr_results, | |
all_page_line_level_ocr_results_with_words, | |
) | |
# If it's an image file | |
if is_pdf(file_path) is False: | |
pdf_image_file_paths.append(redacted_image) # .append(image_path) | |
pymupdf_doc = pdf_image_file_paths | |
# Check if the image_path already exists in annotations_all_pages | |
existing_index = next( | |
( | |
index | |
for index, ann in enumerate(annotations_all_pages) | |
if ann["image"] == page_image_annotations["image"] | |
), | |
None, | |
) | |
if existing_index is not None: | |
# Replace the existing annotation | |
annotations_all_pages[existing_index] = page_image_annotations | |
else: | |
# Append new annotation if it doesn't exist | |
annotations_all_pages.append(page_image_annotations) | |
current_loop_page += 1 | |
# Break if new page is a multiple of chosen page_break_val | |
if current_loop_page % page_break_val == 0: | |
page_break_return = True | |
progress.close(_tqdm=progress_bar) | |
tqdm._instances.clear() | |
if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION: | |
# Write the updated existing textract data back to the JSON file | |
if original_textract_data != textract_data: | |
secure_file_write( | |
output_folder, | |
file_name + "_textract.json", | |
json.dumps(textract_data, separators=(",", ":")), | |
) | |
if textract_json_file_path not in log_files_output_paths: | |
log_files_output_paths.append(textract_json_file_path) | |
if text_extraction_method == TESSERACT_TEXT_EXTRACT_OPTION: | |
if ( | |
original_all_page_line_level_ocr_results_with_words | |
!= all_page_line_level_ocr_results_with_words | |
): | |
# Write the updated existing textract data back to the JSON file | |
with open( | |
all_page_line_level_ocr_results_with_words_json_file_path, "w" | |
) as json_file: | |
json.dump( | |
all_page_line_level_ocr_results_with_words, | |
json_file, | |
separators=(",", ":"), | |
) # indent=4 makes the JSON file pretty-printed | |
if ( | |
all_page_line_level_ocr_results_with_words_json_file_path | |
not in log_files_output_paths | |
): | |
log_files_output_paths.append( | |
all_page_line_level_ocr_results_with_words_json_file_path | |
) | |
# all_pages_decision_process_table = pd.concat(all_pages_decision_process_list) | |
# all_line_level_ocr_results_df = pd.concat(all_line_level_ocr_results_list) | |
all_pages_decision_process_table = pd.DataFrame( | |
all_pages_decision_process_list | |
) | |
all_line_level_ocr_results_df = pd.DataFrame( | |
all_line_level_ocr_results_list | |
) | |
return ( | |
pymupdf_doc, | |
all_pages_decision_process_table, | |
log_files_output_paths, | |
textract_request_metadata, | |
annotations_all_pages, | |
current_loop_page, | |
page_break_return, | |
all_line_level_ocr_results_df, | |
comprehend_query_number, | |
all_page_line_level_ocr_results, | |
all_page_line_level_ocr_results_with_words, | |
) | |
if text_extraction_method == TEXTRACT_TEXT_EXTRACT_OPTION: | |
# Write the updated existing textract data back to the JSON file | |
if original_textract_data != textract_data: | |
secure_file_write( | |
output_folder, | |
file_name + "_textract.json", | |
json.dumps(textract_data, separators=(",", ":")), | |
) | |
if textract_json_file_path not in log_files_output_paths: | |
log_files_output_paths.append(textract_json_file_path) | |
if text_extraction_method == TESSERACT_TEXT_EXTRACT_OPTION: | |
if ( | |
original_all_page_line_level_ocr_results_with_words | |
!= all_page_line_level_ocr_results_with_words | |
): | |
# Write the updated existing textract data back to the JSON file | |
with open( | |
all_page_line_level_ocr_results_with_words_json_file_path, "w" | |
) as json_file: | |
json.dump( | |
all_page_line_level_ocr_results_with_words, | |
json_file, | |
separators=(",", ":"), | |
) # indent=4 makes the JSON file pretty-printed | |
if ( | |
all_page_line_level_ocr_results_with_words_json_file_path | |
not in log_files_output_paths | |
): | |
log_files_output_paths.append( | |
all_page_line_level_ocr_results_with_words_json_file_path | |
) | |
all_pages_decision_process_table = pd.DataFrame( | |
all_pages_decision_process_list | |
) # pd.concat(all_pages_decision_process_list) | |
all_line_level_ocr_results_df = pd.DataFrame( | |
all_line_level_ocr_results_list | |
) # pd.concat(all_line_level_ocr_results_list) | |
# Convert decision table and ocr results to relative coordinates | |
all_pages_decision_process_table = divide_coordinates_by_page_sizes( | |
all_pages_decision_process_table, | |
page_sizes_df, | |
xmin="xmin", | |
xmax="xmax", | |
ymin="ymin", | |
ymax="ymax", | |
) | |
all_line_level_ocr_results_df = divide_coordinates_by_page_sizes( | |
all_line_level_ocr_results_df, | |
page_sizes_df, | |
xmin="left", | |
xmax="width", | |
ymin="top", | |
ymax="height", | |
) | |
return ( | |
pymupdf_doc, | |
all_pages_decision_process_table, | |
log_files_output_paths, | |
textract_request_metadata, | |
annotations_all_pages, | |
current_loop_page, | |
page_break_return, | |
all_line_level_ocr_results_df, | |
comprehend_query_number, | |
all_page_line_level_ocr_results, | |
all_page_line_level_ocr_results_with_words, | |
) | |
### | |
# PIKEPDF TEXT DETECTION/REDACTION | |
### | |
def get_text_container_characters(text_container: LTTextContainer): | |
if isinstance(text_container, LTTextContainer): | |
characters = [ | |
char | |
for line in text_container | |
if isinstance(line, LTTextLine) or isinstance(line, LTTextLineHorizontal) | |
for char in line | |
] | |
return characters | |
return [] | |
def create_line_level_ocr_results_from_characters( | |
char_objects: List, line_number: int | |
) -> Tuple[List[OCRResult], List[List]]: | |
""" | |
Create OCRResult objects based on a list of pdfminer LTChar objects. | |
This version is corrected to use the specified OCRResult class definition. | |
""" | |
line_level_results_out = list() | |
line_level_characters_out = list() | |
character_objects_out = list() | |
full_text = "" | |
# [x0, y0, x1, y1] | |
overall_bbox = [float("inf"), float("inf"), float("-inf"), float("-inf")] | |
for char in char_objects: | |
character_objects_out.append(char) | |
if isinstance(char, LTAnno): | |
added_text = char.get_text() | |
full_text += added_text | |
if "\n" in added_text: | |
if full_text.strip(): | |
# Create OCRResult for line | |
line_level_results_out.append( | |
OCRResult( | |
text=full_text.strip(), | |
left=round(overall_bbox[0], 2), | |
top=round(overall_bbox[1], 2), | |
width=round(overall_bbox[2] - overall_bbox[0], 2), | |
height=round(overall_bbox[3] - overall_bbox[1], 2), | |
line=line_number, | |
) | |
) | |
line_level_characters_out.append(character_objects_out) | |
# Reset for the next line | |
character_objects_out = list() | |
full_text = "" | |
overall_bbox = [ | |
float("inf"), | |
float("inf"), | |
float("-inf"), | |
float("-inf"), | |
] | |
line_number += 1 | |
continue | |
# This part handles LTChar objects | |
added_text = clean_unicode_text(char.get_text()) | |
full_text += added_text | |
x0, y0, x1, y1 = char.bbox | |
overall_bbox[0] = min(overall_bbox[0], x0) | |
overall_bbox[1] = min(overall_bbox[1], y0) | |
overall_bbox[2] = max(overall_bbox[2], x1) | |
overall_bbox[3] = max(overall_bbox[3], y1) | |
# Process the last line | |
if full_text.strip(): | |
line_number += 1 | |
line_ocr_result = OCRResult( | |
text=full_text.strip(), | |
left=round(overall_bbox[0], 2), | |
top=round(overall_bbox[1], 2), | |
width=round(overall_bbox[2] - overall_bbox[0], 2), | |
height=round(overall_bbox[3] - overall_bbox[1], 2), | |
line=line_number, | |
) | |
line_level_results_out.append(line_ocr_result) | |
line_level_characters_out.append(character_objects_out) | |
return line_level_results_out, line_level_characters_out | |
def generate_words_for_line(line_chars: List) -> List[Dict[str, Any]]: | |
""" | |
Generates word-level results for a single, pre-defined line of characters. | |
This robust version correctly identifies word breaks by: | |
1. Treating specific punctuation characters as standalone words. | |
2. Explicitly using space characters (' ') as a primary word separator. | |
3. Using a geometric gap between characters as a secondary, heuristic separator. | |
Args: | |
line_chars: A list of pdfminer.six LTChar/LTAnno objects for one line. | |
Returns: | |
A list of dictionaries, where each dictionary represents an individual word. | |
""" | |
# We only care about characters with coordinates and text for word building. | |
text_chars = [c for c in line_chars if hasattr(c, "bbox") and c.get_text()] | |
if not text_chars: | |
return [] | |
# Sort characters by horizontal position for correct processing. | |
text_chars.sort(key=lambda c: c.bbox[0]) | |
# NEW: Define punctuation that should be split into separate words. | |
# The hyphen '-' is intentionally excluded to keep words like 'high-tech' together. | |
PUNCTUATION_TO_SPLIT = {".", ",", "?", "!", ":", ";", "(", ")", "[", "]", "{", "}"} | |
line_words = list() | |
current_word_text = "" | |
current_word_bbox = [float("inf"), float("inf"), -1, -1] # [x0, y0, x1, y1] | |
prev_char = None | |
def finalize_word(): | |
nonlocal current_word_text, current_word_bbox | |
# Only add the word if it contains non-space text | |
if current_word_text.strip(): | |
# bbox from [x0, y0, x1, y1] to your required format | |
final_bbox = [ | |
round(current_word_bbox[0], 2), | |
round(current_word_bbox[3], 2), # Note: using y1 from pdfminer bbox | |
round(current_word_bbox[2], 2), | |
round(current_word_bbox[1], 2), # Note: using y0 from pdfminer bbox | |
] | |
line_words.append( | |
{"text": current_word_text.strip(), "bounding_box": final_bbox} | |
) | |
# Reset for the next word | |
current_word_text = "" | |
current_word_bbox = [float("inf"), float("inf"), -1, -1] | |
for char in text_chars: | |
char_text = clean_unicode_text(char.get_text()) | |
# 1. NEW: Check for splitting punctuation first. | |
if char_text in PUNCTUATION_TO_SPLIT: | |
# Finalize any word that came immediately before the punctuation. | |
finalize_word() | |
# Treat the punctuation itself as a separate word. | |
px0, py0, px1, py1 = char.bbox | |
punc_bbox = [round(px0, 2), round(py1, 2), round(px1, 2), round(py0, 2)] | |
line_words.append({"text": char_text, "bounding_box": punc_bbox}) | |
prev_char = char | |
continue # Skip to the next character | |
# 2. Primary Signal: Is the character a space? | |
if char_text.isspace(): | |
finalize_word() # End the preceding word | |
prev_char = char | |
continue # Skip to the next character, do not add the space to any word | |
# 3. Secondary Signal: Is there a large geometric gap? | |
if prev_char: | |
# A gap is considered a word break if it's larger than a fraction of the font size. | |
space_threshold = prev_char.size * 0.25 # 25% of the char size | |
min_gap = 1.0 # Or at least 1.0 unit | |
gap = ( | |
char.bbox[0] - prev_char.bbox[2] | |
) # gap = current_char.x0 - prev_char.x1 | |
if gap > max(space_threshold, min_gap): | |
finalize_word() # Found a gap, so end the previous word. | |
# Append the character's text and update the bounding box for the current word | |
current_word_text += char_text | |
x0, y0, x1, y1 = char.bbox | |
current_word_bbox[0] = min(current_word_bbox[0], x0) | |
current_word_bbox[1] = min(current_word_bbox[3], y0) # pdfminer y0 is bottom | |
current_word_bbox[2] = max(current_word_bbox[2], x1) | |
current_word_bbox[3] = max(current_word_bbox[1], y1) # pdfminer y1 is top | |
prev_char = char | |
# After the loop, finalize the last word that was being built. | |
finalize_word() | |
return line_words | |
def process_page_to_structured_ocr( | |
all_char_objects: List, | |
page_number: int, | |
text_line_number: int, # This will now be treated as the STARTING line number | |
) -> Tuple[Dict[str, Any], List[OCRResult], List[List]]: | |
""" | |
Orchestrates the OCR process, correctly handling multiple lines. | |
Returns: | |
A tuple containing: | |
1. A dictionary with detailed line/word results for the page. | |
2. A list of the complete OCRResult objects for each line. | |
3. A list of lists, containing the character objects for each line. | |
""" | |
page_data = {"page": str(page_number), "results": {}} | |
# Step 1: Get definitive lines and their character groups. | |
# This function correctly returns all lines found in the input characters. | |
line_results, lines_char_groups = create_line_level_ocr_results_from_characters( | |
all_char_objects, text_line_number | |
) | |
if not line_results: | |
return {}, [], [] | |
# Step 2: Iterate through each found line and generate its words. | |
for i, (line_info, char_group) in enumerate(zip(line_results, lines_char_groups)): | |
current_line_number = line_info.line # text_line_number + i | |
word_level_results = generate_words_for_line(char_group) | |
# Create a unique, incrementing line number for each iteration. | |
line_key = f"text_line_{current_line_number}" | |
line_bbox = [ | |
line_info.left, | |
line_info.top, | |
line_info.left + line_info.width, | |
line_info.top + line_info.height, | |
] | |
# Now, each line is added to the dictionary with its own unique key. | |
page_data["results"][line_key] = { | |
"line": current_line_number, # Use the unique line number | |
"text": line_info.text, | |
"bounding_box": line_bbox, | |
"words": word_level_results, | |
} | |
# The list of OCRResult objects is already correct. | |
line_level_ocr_results_list = line_results | |
# Return the structured dictionary, the list of OCRResult objects, and the character groups | |
return page_data, line_level_ocr_results_list, lines_char_groups | |
def create_text_redaction_process_results( | |
analyser_results, analysed_bounding_boxes, page_num | |
): | |
decision_process_table = pd.DataFrame() | |
if len(analyser_results) > 0: | |
# Create summary df of annotations to be made | |
analysed_bounding_boxes_df_new = pd.DataFrame(analysed_bounding_boxes) | |
# Remove brackets and split the string into four separate columns | |
# Split the boundingBox list into four separate columns | |
analysed_bounding_boxes_df_new[["xmin", "ymin", "xmax", "ymax"]] = ( | |
analysed_bounding_boxes_df_new["boundingBox"].apply(pd.Series) | |
) | |
# Convert the new columns to integers (if needed) | |
# analysed_bounding_boxes_df_new.loc[:, ['xmin', 'ymin', 'xmax', 'ymax']] = (analysed_bounding_boxes_df_new[['xmin', 'ymin', 'xmax', 'ymax']].astype(float) / 5).round() * 5 | |
analysed_bounding_boxes_df_text = ( | |
analysed_bounding_boxes_df_new["result"] | |
.astype(str) | |
.str.split(",", expand=True) | |
.replace(".*: ", "", regex=True) | |
) | |
analysed_bounding_boxes_df_text.columns = ["label", "start", "end", "score"] | |
analysed_bounding_boxes_df_new = pd.concat( | |
[analysed_bounding_boxes_df_new, analysed_bounding_boxes_df_text], axis=1 | |
) | |
analysed_bounding_boxes_df_new["page"] = page_num + 1 | |
decision_process_table = pd.concat( | |
[decision_process_table, analysed_bounding_boxes_df_new], axis=0 | |
).drop("result", axis=1) | |
return decision_process_table | |
def create_pikepdf_annotations_for_bounding_boxes(analysed_bounding_boxes): | |
pikepdf_redaction_annotations_on_page = list() | |
for analysed_bounding_box in analysed_bounding_boxes: | |
bounding_box = analysed_bounding_box["boundingBox"] | |
annotation = Dictionary( | |
Type=Name.Annot, | |
Subtype=Name.Square, # Name.Highlight, | |
QuadPoints=[ | |
bounding_box[0], | |
bounding_box[3], | |
bounding_box[2], | |
bounding_box[3], | |
bounding_box[0], | |
bounding_box[1], | |
bounding_box[2], | |
bounding_box[1], | |
], | |
Rect=[bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[3]], | |
C=[0, 0, 0], | |
IC=[0, 0, 0], | |
CA=1, # Transparency | |
T=analysed_bounding_box["result"].entity_type, | |
Contents=analysed_bounding_box["text"], | |
BS=Dictionary( | |
W=0, S=Name.S # Border width: 1 point # Border style: solid | |
), | |
) | |
pikepdf_redaction_annotations_on_page.append(annotation) | |
return pikepdf_redaction_annotations_on_page | |
def redact_text_pdf( | |
file_path: str, # Path to the PDF file to be redacted | |
language: str, # Language of the PDF content | |
chosen_redact_entities: List[str], # List of entities to be redacted | |
chosen_redact_comprehend_entities: List[str], | |
allow_list: List[str] = None, # Optional list of allowed entities | |
page_min: int = 0, # Minimum page number to start redaction | |
page_max: int = 999, # Maximum page number to end redaction | |
current_loop_page: int = 0, # Current page being processed in the loop | |
page_break_return: bool = False, # Flag to indicate if a page break should be returned | |
annotations_all_pages: List[dict] = list(), # List of annotations across all pages | |
all_line_level_ocr_results_df: pd.DataFrame = pd.DataFrame( | |
columns=["page", "text", "left", "top", "width", "height", "line"] | |
), # DataFrame for OCR results | |
all_pages_decision_process_table: pd.DataFrame = pd.DataFrame( | |
columns=[ | |
"image_path", | |
"page", | |
"label", | |
"xmin", | |
"xmax", | |
"ymin", | |
"ymax", | |
"text", | |
"id", | |
] | |
), # DataFrame for decision process table | |
pymupdf_doc: List = list(), # List of PyMuPDF documents | |
all_page_line_level_ocr_results_with_words: List = list(), | |
pii_identification_method: str = "Local", | |
comprehend_query_number: int = 0, | |
comprehend_client="", | |
in_deny_list: List[str] = list(), | |
redact_whole_page_list: List[str] = list(), | |
max_fuzzy_spelling_mistakes_num: int = 1, | |
match_fuzzy_whole_phrase_bool: bool = True, | |
page_sizes_df: pd.DataFrame = pd.DataFrame(), | |
original_cropboxes: List[dict] = list(), | |
text_extraction_only: bool = False, | |
output_folder: str = OUTPUT_FOLDER, | |
page_break_val: int = int(PAGE_BREAK_VALUE), # Value for page break | |
max_time: int = int(MAX_TIME_VALUE), | |
nlp_analyser: AnalyzerEngine = nlp_analyser, | |
progress: Progress = Progress(track_tqdm=True), # Progress tracking object | |
): | |
""" | |
Redact chosen entities from a PDF that is made up of multiple pages that are not images. | |
Input Variables: | |
- file_path: Path to the PDF file to be redacted | |
- language: Language of the PDF content | |
- chosen_redact_entities: List of entities to be redacted | |
- chosen_redact_comprehend_entities: List of entities to be redacted for AWS Comprehend | |
- allow_list: Optional list of allowed entities | |
- page_min: Minimum page number to start redaction | |
- page_max: Maximum page number to end redaction | |
- text_extraction_method: Type of analysis to perform | |
- current_loop_page: Current page being processed in the loop | |
- page_break_return: Flag to indicate if a page break should be returned | |
- annotations_all_pages: List of annotations across all pages | |
- all_line_level_ocr_results_df: DataFrame for OCR results | |
- all_pages_decision_process_table: DataFrame for decision process table | |
- pymupdf_doc: List of PyMuPDF documents | |
- pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API). | |
- comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend. | |
- comprehend_client (optional): A connection to the AWS Comprehend service via the boto3 package. | |
- in_deny_list (optional, List[str]): A list of custom words that the user has chosen specifically to redact. | |
- redact_whole_page_list (optional, List[str]): A list of pages to fully redact. | |
- max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9. | |
- match_fuzzy_whole_phrase_bool (bool, optional): A boolean where 'True' means that the whole phrase is fuzzy matched, and 'False' means that each word is fuzzy matched separately (excluding stop words). | |
- page_sizes_df (pd.DataFrame, optional): A pandas dataframe of PDF page sizes in PDF or image format. | |
- original_cropboxes (List[dict], optional): A list of dictionaries containing pymupdf cropbox information. | |
- text_extraction_only (bool, optional): Should the function only extract text, or also do redaction. | |
- language (str, optional): The language to do AWS Comprehend calls. Defaults to value of language if not provided. | |
- output_folder (str, optional): The output folder for the function | |
- page_break_val: Value for page break | |
- max_time (int, optional): The maximum amount of time (s) that the function should be running before it breaks. To avoid timeout errors with some APIs. | |
- nlp_analyser (AnalyzerEngine, optional): The nlp_analyser object to use for entity detection. Defaults to nlp_analyser. | |
- progress: Progress tracking object | |
""" | |
tic = time.perf_counter() | |
if isinstance(all_line_level_ocr_results_df, pd.DataFrame): | |
all_line_level_ocr_results_list = [all_line_level_ocr_results_df] | |
if isinstance(all_pages_decision_process_table, pd.DataFrame): | |
# Convert decision outputs to list of dataframes: | |
all_pages_decision_process_list = [all_pages_decision_process_table] | |
if pii_identification_method == "AWS Comprehend" and comprehend_client == "": | |
out_message = "Connection to AWS Comprehend service not found." | |
raise Exception(out_message) | |
# Try updating the supported languages for the spacy analyser | |
try: | |
nlp_analyser = create_nlp_analyser(language, existing_nlp_analyser=nlp_analyser) | |
# Check list of nlp_analyser recognisers and languages | |
if language != "en": | |
gr.Info( | |
f"Language: {language} only supports the following entity detection: {str(nlp_analyser.registry.get_supported_entities(languages=[language]))}" | |
) | |
except Exception as e: | |
print(f"Error creating nlp_analyser for {language}: {e}") | |
raise Exception(f"Error creating nlp_analyser for {language}: {e}") | |
# Update custom word list analyser object with any new words that have been added to the custom deny list | |
if in_deny_list: | |
nlp_analyser.registry.remove_recognizer("CUSTOM") | |
new_custom_recogniser = custom_word_list_recogniser(in_deny_list) | |
nlp_analyser.registry.add_recognizer(new_custom_recogniser) | |
nlp_analyser.registry.remove_recognizer("CustomWordFuzzyRecognizer") | |
new_custom_fuzzy_recogniser = CustomWordFuzzyRecognizer( | |
supported_entities=["CUSTOM_FUZZY"], | |
custom_list=in_deny_list, | |
spelling_mistakes_max=max_fuzzy_spelling_mistakes_num, | |
search_whole_phrase=match_fuzzy_whole_phrase_bool, | |
) | |
nlp_analyser.registry.add_recognizer(new_custom_fuzzy_recogniser) | |
# Open with Pikepdf to get text lines | |
pikepdf_pdf = Pdf.open(file_path) | |
number_of_pages = len(pikepdf_pdf.pages) | |
# file_name = get_file_name_without_type(file_path) | |
if not all_page_line_level_ocr_results_with_words: | |
all_page_line_level_ocr_results_with_words = list() | |
# Check that page_min and page_max are within expected ranges | |
if page_max > number_of_pages or page_max == 0: | |
page_max = number_of_pages | |
if page_min <= 0: | |
page_min = 0 | |
else: | |
page_min = page_min - 1 | |
print("Page range is", str(page_min + 1), "to", str(page_max)) | |
# Run through each page in document to 1. Extract text and then 2. Create redaction boxes | |
progress_bar = tqdm( | |
range(current_loop_page, number_of_pages), | |
unit="pages remaining", | |
desc="Redacting pages", | |
) | |
for page_no in progress_bar: | |
reported_page_number = str(page_no + 1) | |
# Create annotations for every page, even if blank. | |
# Try to find image path location | |
try: | |
image_path = page_sizes_df.loc[ | |
page_sizes_df["page"] == int(reported_page_number), "image_path" | |
].iloc[0] | |
except Exception as e: | |
print("Image path not found:", e) | |
image_path = "" | |
page_image_annotations = {"image": image_path, "boxes": []} # image | |
pymupdf_page = pymupdf_doc.load_page(page_no) | |
pymupdf_page.set_cropbox(pymupdf_page.mediabox) # Set CropBox to MediaBox | |
if page_min <= page_no < page_max: | |
# Go page by page | |
for page_layout in extract_pages( | |
file_path, page_numbers=[page_no], maxpages=1 | |
): | |
all_page_line_text_extraction_characters = list() | |
all_page_line_level_text_extraction_results_list = list() | |
page_analyser_results = list() | |
page_redaction_bounding_boxes = list() | |
characters = list() | |
pikepdf_redaction_annotations_on_page = list() | |
page_decision_process_table = pd.DataFrame( | |
columns=[ | |
"image_path", | |
"page", | |
"label", | |
"xmin", | |
"xmax", | |
"ymin", | |
"ymax", | |
"text", | |
"id", | |
] | |
) | |
page_text_ocr_outputs = pd.DataFrame( | |
columns=["page", "text", "left", "top", "width", "height", "line"] | |
) | |
page_text_ocr_outputs_list = list() | |
text_line_no = 1 | |
for n, text_container in enumerate(page_layout): | |
characters = list() | |
if isinstance(text_container, LTTextContainer) or isinstance( | |
text_container, LTAnno | |
): | |
characters = get_text_container_characters(text_container) | |
# text_line_no += 1 | |
# Create dataframe for all the text on the page | |
# line_level_text_results_list, line_characters = create_line_level_ocr_results_from_characters(characters) | |
# line_level_ocr_results_with_words = generate_word_level_ocr(characters, page_number=int(reported_page_number), text_line_number=text_line_no) | |
( | |
line_level_ocr_results_with_words, | |
line_level_text_results_list, | |
line_characters, | |
) = process_page_to_structured_ocr( | |
characters, | |
page_number=int(reported_page_number), | |
text_line_number=text_line_no, | |
) | |
text_line_no += len(line_level_text_results_list) | |
### Create page_text_ocr_outputs (OCR format outputs) | |
if line_level_text_results_list: | |
# Convert to DataFrame and add to ongoing logging table | |
line_level_text_results_df = pd.DataFrame( | |
[ | |
{ | |
"page": page_no + 1, | |
"text": (result.text).strip(), | |
"left": result.left, | |
"top": result.top, | |
"width": result.width, | |
"height": result.height, | |
"line": result.line, | |
} | |
for result in line_level_text_results_list | |
] | |
) | |
page_text_ocr_outputs_list.append(line_level_text_results_df) | |
all_page_line_level_text_extraction_results_list.extend( | |
line_level_text_results_list | |
) | |
all_page_line_text_extraction_characters.extend(line_characters) | |
all_page_line_level_ocr_results_with_words.append( | |
line_level_ocr_results_with_words | |
) | |
if page_text_ocr_outputs_list: | |
page_text_ocr_outputs = pd.concat(page_text_ocr_outputs_list) | |
else: | |
page_text_ocr_outputs = pd.DataFrame( | |
columns=[ | |
"page", | |
"text", | |
"left", | |
"top", | |
"width", | |
"height", | |
"line", | |
] | |
) | |
### REDACTION | |
if pii_identification_method != NO_REDACTION_PII_OPTION: | |
if chosen_redact_entities or chosen_redact_comprehend_entities: | |
page_redaction_bounding_boxes = run_page_text_redaction( | |
language, | |
chosen_redact_entities, | |
chosen_redact_comprehend_entities, | |
all_page_line_level_text_extraction_results_list, | |
all_page_line_text_extraction_characters, | |
page_analyser_results, | |
page_redaction_bounding_boxes, | |
comprehend_client, | |
allow_list, | |
pii_identification_method, | |
nlp_analyser, | |
score_threshold, | |
custom_entities, | |
comprehend_query_number, | |
) | |
# Annotate redactions on page | |
pikepdf_redaction_annotations_on_page = ( | |
create_pikepdf_annotations_for_bounding_boxes( | |
page_redaction_bounding_boxes | |
) | |
) | |
else: | |
pikepdf_redaction_annotations_on_page = list() | |
# Make pymupdf page redactions | |
if redact_whole_page_list: | |
int_reported_page_number = int(reported_page_number) | |
if int_reported_page_number in redact_whole_page_list: | |
redact_whole_page = True | |
else: | |
redact_whole_page = False | |
else: | |
redact_whole_page = False | |
pymupdf_page, page_image_annotations = redact_page_with_pymupdf( | |
pymupdf_page, | |
pikepdf_redaction_annotations_on_page, | |
image_path, | |
redact_whole_page=redact_whole_page, | |
convert_pikepdf_to_pymupdf_coords=True, | |
original_cropbox=original_cropboxes[page_no], | |
page_sizes_df=page_sizes_df, | |
) | |
# Create decision process table | |
page_decision_process_table = create_text_redaction_process_results( | |
page_analyser_results, | |
page_redaction_bounding_boxes, | |
current_loop_page, | |
) | |
if not page_decision_process_table.empty: | |
all_pages_decision_process_list.append( | |
page_decision_process_table | |
) | |
# Else, user chose not to run redaction | |
else: | |
pass | |
# print("Not redacting page:", page_no) | |
# Join extracted text outputs for all lines together | |
if not page_text_ocr_outputs.empty: | |
page_text_ocr_outputs = page_text_ocr_outputs.sort_values( | |
["line"] | |
).reset_index(drop=True) | |
page_text_ocr_outputs = page_text_ocr_outputs.loc[ | |
:, ["page", "text", "left", "top", "width", "height", "line"] | |
] | |
all_line_level_ocr_results_list.append(page_text_ocr_outputs) | |
toc = time.perf_counter() | |
time_taken = toc - tic | |
# Break if time taken is greater than max_time seconds | |
if time_taken > max_time: | |
print("Processing for", max_time, "seconds, breaking.") | |
page_break_return = True | |
progress.close(_tqdm=progress_bar) | |
tqdm._instances.clear() | |
# Check if the image already exists in annotations_all_pages | |
existing_index = next( | |
( | |
index | |
for index, ann in enumerate(annotations_all_pages) | |
if ann["image"] == page_image_annotations["image"] | |
), | |
None, | |
) | |
if existing_index is not None: | |
# Replace the existing annotation | |
annotations_all_pages[existing_index] = page_image_annotations | |
else: | |
# Append new annotation if it doesn't exist | |
annotations_all_pages.append(page_image_annotations) | |
# Write logs | |
all_pages_decision_process_table = pd.concat( | |
all_pages_decision_process_list | |
) | |
all_line_level_ocr_results_df = pd.concat( | |
all_line_level_ocr_results_list | |
) | |
print( | |
"all_line_level_ocr_results_df:", all_line_level_ocr_results_df | |
) | |
current_loop_page += 1 | |
return ( | |
pymupdf_doc, | |
all_pages_decision_process_table, | |
all_line_level_ocr_results_df, | |
annotations_all_pages, | |
current_loop_page, | |
page_break_return, | |
comprehend_query_number, | |
all_page_line_level_ocr_results_with_words, | |
) | |
# Check if the image already exists in annotations_all_pages | |
existing_index = next( | |
( | |
index | |
for index, ann in enumerate(annotations_all_pages) | |
if ann["image"] == page_image_annotations["image"] | |
), | |
None, | |
) | |
if existing_index is not None: | |
# Replace the existing annotation | |
annotations_all_pages[existing_index] = page_image_annotations | |
else: | |
# Append new annotation if it doesn't exist | |
annotations_all_pages.append(page_image_annotations) | |
current_loop_page += 1 | |
# Break if new page is a multiple of page_break_val | |
if current_loop_page % page_break_val == 0: | |
page_break_return = True | |
progress.close(_tqdm=progress_bar) | |
# Write logs | |
all_pages_decision_process_table = pd.concat( | |
all_pages_decision_process_list | |
) | |
return ( | |
pymupdf_doc, | |
all_pages_decision_process_table, | |
all_line_level_ocr_results_df, | |
annotations_all_pages, | |
current_loop_page, | |
page_break_return, | |
comprehend_query_number, | |
all_page_line_level_ocr_results_with_words, | |
) | |
# Write all page outputs | |
all_pages_decision_process_table = pd.concat(all_pages_decision_process_list) | |
all_line_level_ocr_results_df = pd.concat(all_line_level_ocr_results_list) | |
# Convert decision table to relative coordinates | |
all_pages_decision_process_table = divide_coordinates_by_page_sizes( | |
all_pages_decision_process_table, | |
page_sizes_df, | |
xmin="xmin", | |
xmax="xmax", | |
ymin="ymin", | |
ymax="ymax", | |
) | |
# Coordinates need to be reversed for ymin and ymax to match with image annotator objects downstream | |
all_pages_decision_process_table["ymin"] = reverse_y_coords( | |
all_pages_decision_process_table, "ymin" | |
) | |
all_pages_decision_process_table["ymax"] = reverse_y_coords( | |
all_pages_decision_process_table, "ymax" | |
) | |
# Convert decision table to relative coordinates | |
all_line_level_ocr_results_df = divide_coordinates_by_page_sizes( | |
all_line_level_ocr_results_df, | |
page_sizes_df, | |
xmin="left", | |
xmax="width", | |
ymin="top", | |
ymax="height", | |
) | |
# print("all_line_level_ocr_results_df:", all_line_level_ocr_results_df) | |
# Coordinates need to be reversed for ymin and ymax to match with image annotator objects downstream | |
if not all_line_level_ocr_results_df.empty: | |
all_line_level_ocr_results_df["top"] = reverse_y_coords( | |
all_line_level_ocr_results_df, "top" | |
) | |
# Remove empty dictionary items from ocr results with words | |
all_page_line_level_ocr_results_with_words = [ | |
d for d in all_page_line_level_ocr_results_with_words if d | |
] | |
return ( | |
pymupdf_doc, | |
all_pages_decision_process_table, | |
all_line_level_ocr_results_df, | |
annotations_all_pages, | |
current_loop_page, | |
page_break_return, | |
comprehend_query_number, | |
all_page_line_level_ocr_results_with_words, | |
) | |