Spaces:
Sleeping
Sleeping
Added option for running redact function through CLI (i.e. not going through Gradio UI or API). Test functions for running this through AWS Lambda.
e5dfae7
from pdf2image import convert_from_path, pdfinfo_from_path | |
from tools.helper_functions import get_file_path_end, output_folder, tesseract_ocr_option, text_ocr_option, textract_option, local_pii_detector, aws_pii_detector | |
from PIL import Image, ImageFile | |
ImageFile.LOAD_TRUNCATED_IMAGES = True | |
import os | |
import re | |
import gradio as gr | |
import time | |
import json | |
import pymupdf | |
from tqdm import tqdm | |
from gradio import Progress | |
from typing import List, Optional | |
image_dpi = 300.0 | |
def is_pdf_or_image(filename): | |
""" | |
Check if a file name is a PDF or an image file. | |
Args: | |
filename (str): The name of the file. | |
Returns: | |
bool: True if the file name ends with ".pdf", ".jpg", or ".png", False otherwise. | |
""" | |
if filename.lower().endswith(".pdf") or filename.lower().endswith(".jpg") or filename.lower().endswith(".jpeg") or filename.lower().endswith(".png"): | |
output = True | |
else: | |
output = False | |
return output | |
def is_pdf(filename): | |
""" | |
Check if a file name is a PDF. | |
Args: | |
filename (str): The name of the file. | |
Returns: | |
bool: True if the file name ends with ".pdf", False otherwise. | |
""" | |
return filename.lower().endswith(".pdf") | |
# %% | |
## Convert pdf to image if necessary | |
def convert_pdf_to_images(pdf_path:str, page_min:int = 0, image_dpi:float = image_dpi, progress=Progress(track_tqdm=True)): | |
print("pdf_path in convert_pdf_to_images:", pdf_path) | |
# Get the number of pages in the PDF | |
page_count = pdfinfo_from_path(pdf_path)['Pages'] | |
print("Number of pages in PDF: ", str(page_count)) | |
images = [] | |
# Open the PDF file | |
#for page_num in progress.tqdm(range(0,page_count), total=page_count, unit="pages", desc="Converting pages"): range(page_min,page_count): # | |
for page_num in tqdm(range(page_min,page_count), total=page_count, unit="pages", desc="Preparing pages"): | |
print("page_num in convert_pdf_to_images:", page_num) | |
print("Converting page: ", str(page_num + 1)) | |
# Convert one page to image | |
out_path = pdf_path + "_" + str(page_num) + ".png" | |
# Ensure the directory exists | |
os.makedirs(os.path.dirname(out_path), exist_ok=True) | |
# Check if the image already exists | |
if os.path.exists(out_path): | |
#print(f"Loading existing image from {out_path}.") | |
image = Image.open(out_path) # Load the existing image | |
else: | |
image_l = convert_from_path(pdf_path, first_page=page_num+1, last_page=page_num+1, dpi=image_dpi, use_cropbox=True, use_pdftocairo=False) | |
image = image_l[0] | |
# Convert to greyscale | |
image = image.convert("L") | |
image.save(out_path, format="PNG") # Save the new image | |
# If no images are returned, break the loop | |
if not image: | |
print("Conversion of page", str(page_num), "to file failed.") | |
break | |
# print("Conversion of page", str(page_num), "to file succeeded.") | |
# print("image:", image) | |
images.append(out_path) | |
print("PDF has been converted to images.") | |
# print("Images:", images) | |
return images | |
# Function to take in a file path, decide if it is an image or pdf, then process appropriately. | |
def process_file(file_path:str): | |
# Get the file extension | |
file_extension = os.path.splitext(file_path)[1].lower() | |
# Check if the file is an image type | |
if file_extension in ['.jpg', '.jpeg', '.png']: | |
print(f"{file_path} is an image file.") | |
# Perform image processing here | |
img_object = [Image.open(file_path)] | |
# Load images from the file paths | |
# Check if the file is a PDF | |
elif file_extension == '.pdf': | |
print(f"{file_path} is a PDF file. Converting to image set") | |
# Run your function for processing PDF files here | |
img_object = convert_pdf_to_images(file_path) | |
else: | |
print(f"{file_path} is not an image or PDF file.") | |
img_object = [''] | |
return img_object | |
def get_input_file_names(file_input): | |
''' | |
Get list of input files to report to logs. | |
''' | |
all_relevant_files = [] | |
file_name_with_extension = "" | |
full_file_name = "" | |
print("file_input in input file names:", file_input) | |
if isinstance(file_input, dict): | |
file_input = os.path.abspath(file_input["name"]) | |
if isinstance(file_input, str): | |
file_input_list = [file_input] | |
else: | |
file_input_list = file_input | |
for file in file_input_list: | |
if isinstance(file, str): | |
file_path = file | |
else: | |
file_path = file.name | |
file_path_without_ext = get_file_path_end(file_path) | |
file_extension = os.path.splitext(file_path)[1].lower() | |
# Check if the file is an image type | |
if file_extension in ['.jpg', '.jpeg', '.png', '.pdf', '.xlsx', '.csv', '.parquet']: | |
all_relevant_files.append(file_path_without_ext) | |
file_name_with_extension = file_path_without_ext + file_extension | |
full_file_name = file_path | |
all_relevant_files_str = ", ".join(all_relevant_files) | |
print("all_relevant_files_str:", all_relevant_files_str) | |
return all_relevant_files_str, file_name_with_extension, full_file_name | |
def prepare_image_or_pdf( | |
file_paths: List[str], | |
in_redact_method: str, | |
in_allow_list: Optional[List[List[str]]] = None, | |
latest_file_completed: int = 0, | |
out_message: List[str] = [], | |
first_loop_state: bool = False, | |
number_of_pages:int = 1, | |
current_loop_page_number:int=0, | |
all_annotations_object:List = [], | |
prepare_for_review:bool = False, | |
progress: Progress = Progress(track_tqdm=True) | |
) -> tuple[List[str], List[str]]: | |
""" | |
Prepare and process image or text PDF files for redaction. | |
This function takes a list of file paths, processes each file based on the specified redaction method, | |
and returns the output messages and processed file paths. | |
Args: | |
file_paths (List[str]): List of file paths to process. | |
in_redact_method (str): The redaction method to use. | |
in_allow_list (Optional[List[List[str]]]): List of allowed terms for redaction. | |
latest_file_completed (int): Index of the last completed file. | |
out_message (List[str]): List to store output messages. | |
first_loop_state (bool): Flag indicating if this is the first iteration. | |
number_of_pages (int): integer indicating the number of pages in the document | |
all_annotations_object(List of annotation objects): All annotations for current document | |
prepare_for_review(bool): Is this preparation step preparing pdfs and json files to review current redactions? | |
progress (Progress): Progress tracker for the operation. | |
Returns: | |
tuple[List[str], List[str]]: A tuple containing the output messages and processed file paths. | |
""" | |
tic = time.perf_counter() | |
# If this is the first time around, set variables to 0/blank | |
if first_loop_state==True: | |
print("first_loop_state is True") | |
latest_file_completed = 0 | |
out_message = [] | |
all_annotations_object = [] | |
else: | |
print("Now attempting file:", str(latest_file_completed)) | |
# This is only run when a new page is loaded, so can reset page loop values. If end of last file (99), current loop number set to 999 | |
# if latest_file_completed == 99: | |
# current_loop_page_number = 999 | |
# page_break_return = False | |
# else: | |
# current_loop_page_number = 0 | |
# page_break_return = False | |
# If out message or converted_file_paths are blank, change to a list so it can be appended to | |
if isinstance(out_message, str): | |
out_message = [out_message] | |
converted_file_paths = [] | |
image_file_paths = [] | |
pymupdf_doc = [] | |
if not file_paths: | |
file_paths = [] | |
if isinstance(file_paths, dict): | |
file_paths = os.path.abspath(file_paths["name"]) | |
if isinstance(file_paths, str): | |
file_path_number = 1 | |
else: | |
file_path_number = len(file_paths) | |
#print("Current_loop_page_number at start of prepare_image_or_pdf function is:", current_loop_page_number) | |
print("Number of file paths:", file_path_number) | |
print("Latest_file_completed:", latest_file_completed) | |
latest_file_completed = int(latest_file_completed) | |
# If we have already redacted the last file, return the input out_message and file list to the relevant components | |
if latest_file_completed >= file_path_number: | |
print("Last file reached, returning files:", str(latest_file_completed)) | |
if isinstance(out_message, list): | |
final_out_message = '\n'.join(out_message) | |
else: | |
final_out_message = out_message | |
return final_out_message, converted_file_paths, image_file_paths, number_of_pages, number_of_pages, pymupdf_doc, all_annotations_object | |
#in_allow_list_flat = [item for sublist in in_allow_list for item in sublist] | |
progress(0.1, desc='Preparing file') | |
if isinstance(file_paths, str): | |
file_paths_list = [file_paths] | |
file_paths_loop = file_paths_list | |
else: | |
if prepare_for_review == False: | |
file_paths_list = file_paths | |
file_paths_loop = [file_paths_list[int(latest_file_completed)]] | |
else: | |
file_paths_list = file_paths | |
file_paths_loop = file_paths | |
# Sort files to prioritise PDF files first, then JSON files. This means that the pdf can be loaded in, and pdf page path locations can be added to the json | |
file_paths_loop = sorted(file_paths_loop, key=lambda x: (os.path.splitext(x)[1] != '.pdf', os.path.splitext(x)[1] != '.json')) | |
# Loop through files to load in | |
for file in file_paths_loop: | |
if isinstance(file, str): | |
file_path = file | |
else: | |
file_path = file.name | |
file_path_without_ext = get_file_path_end(file_path) | |
if not file_path: | |
out_message = "Please select a file." | |
print(out_message) | |
return out_message, converted_file_paths, image_file_paths, number_of_pages, number_of_pages, pymupdf_doc, all_annotations_object | |
file_extension = os.path.splitext(file_path)[1].lower() | |
# Check if the file is an image type and the user selected text ocr option | |
if file_extension in ['.jpg', '.jpeg', '.png'] and in_redact_method == text_ocr_option: | |
in_redact_method = tesseract_ocr_option | |
# If the file name ends with redactions.json, assume it is an annoations object, overwrite the current variable | |
if file_path.endswith(".json"): | |
if prepare_for_review == True: | |
if isinstance(file_path, str): | |
with open(file_path, 'r') as json_file: | |
all_annotations_object = json.load(json_file) | |
else: | |
# Assuming file_path is a NamedString or similar | |
all_annotations_object = json.loads(file_path) # Use loads for string content | |
# Get list of page numbers | |
image_file_paths_pages = [ | |
int(re.search(r'_(\d+)\.png$', os.path.basename(s)).group(1)) | |
for s in image_file_paths | |
if re.search(r'_(\d+)\.png$', os.path.basename(s)) | |
] | |
image_file_paths_pages = [int(i) for i in image_file_paths_pages] | |
# If PDF pages have been converted to image files, replace the current image paths in the json to this | |
if image_file_paths: | |
for i, annotation in enumerate(all_annotations_object): | |
annotation_page_number = int(re.search(r'_(\d+)\.png$', annotation["image"]).group(1)) | |
# Check if the annotation page number exists in the image file paths pages | |
if annotation_page_number in image_file_paths_pages: | |
# Set the correct image page directly since we know it's in the list | |
correct_image_page = annotation_page_number | |
annotation["image"] = image_file_paths[correct_image_page] | |
else: | |
print("Page not found.") | |
#print("all_annotations_object:", all_annotations_object) | |
# Write the response to a JSON file in output folder | |
out_folder = output_folder + file_path_without_ext + file_extension | |
with open(out_folder, 'w') as json_file: | |
json.dump(all_annotations_object, json_file, indent=4) # indent=4 makes the JSON file pretty-printed | |
continue | |
else: | |
# If the file loaded has end textract.json, assume this is a textract response object. Save this to the output folder so it can be found later during redaction and go to the next file. | |
json_contents = json.load(file_path) | |
# Write the response to a JSON file in output folder | |
out_folder = output_folder + file_path_without_ext + file_extension | |
with open(out_folder, 'w') as json_file: | |
json.dump(json_contents, json_file, indent=4) # indent=4 makes the JSON file pretty-printed | |
continue | |
print("in_redact_method:", in_redact_method) | |
# Convert pdf/image file to correct format for redaction | |
if in_redact_method == tesseract_ocr_option or in_redact_method == textract_option: | |
if is_pdf_or_image(file_path) == False: | |
out_message = "Please upload a PDF file or image file (JPG, PNG) for image analysis." | |
print(out_message) | |
return out_message, converted_file_paths, image_file_paths, number_of_pages, number_of_pages, pymupdf_doc, all_annotations_object | |
print("In correct preparation area.") | |
print("file_path at process_file:", file_path) | |
converted_file_path = process_file(file_path) | |
image_file_path = converted_file_path | |
elif in_redact_method == text_ocr_option: | |
if is_pdf(file_path) == False: | |
out_message = "Please upload a PDF file for text analysis." | |
print(out_message) | |
return out_message, converted_file_paths, image_file_paths, number_of_pages, number_of_pages, pymupdf_doc, all_annotations_object | |
converted_file_path = file_path # Pikepdf works with the basic unconverted pdf file | |
image_file_path = process_file(file_path) | |
converted_file_paths.append(converted_file_path) | |
image_file_paths.extend(image_file_path) | |
# If a pdf, load as a pymupdf document | |
if is_pdf(file_path): | |
pymupdf_doc = pymupdf.open(file_path) | |
elif is_pdf_or_image(file_path): # Alternatively, if it's an image | |
# Convert image to a pymupdf document | |
pymupdf_doc = pymupdf.open() # Create a new empty document | |
img = Image.open(file_path) # Open the image file | |
rect = pymupdf.Rect(0, 0, img.width, img.height) # Create a rectangle for the image | |
page = pymupdf_doc.new_page(width=img.width, height=img.height) # Add a new page | |
page.insert_image(rect, filename=file_path) # Insert the image into the page | |
toc = time.perf_counter() | |
out_time = f"File '{file_path_without_ext}' prepared in {toc - tic:0.1f} seconds." | |
print(out_time) | |
out_message.append(out_time) | |
out_message_out = '\n'.join(out_message) | |
number_of_pages = len(image_file_paths) | |
return out_message_out, converted_file_paths, image_file_paths, number_of_pages, number_of_pages, pymupdf_doc, all_annotations_object | |
def convert_text_pdf_to_img_pdf(in_file_path:str, out_text_file_path:List[str], image_dpi:float=image_dpi): | |
file_path_without_ext = get_file_path_end(in_file_path) | |
out_file_paths = out_text_file_path | |
# Convert annotated text pdf back to image to give genuine redactions | |
print("Creating image version of redacted PDF to embed redactions.") | |
pdf_text_image_paths = process_file(out_text_file_path[0]) | |
out_text_image_file_path = output_folder + file_path_without_ext + "_text_redacted_as_img.pdf" | |
pdf_text_image_paths[0].save(out_text_image_file_path, "PDF" ,resolution=image_dpi, save_all=True, append_images=pdf_text_image_paths[1:]) | |
# out_file_paths.append(out_text_image_file_path) | |
out_file_paths = [out_text_image_file_path] | |
out_message = "PDF " + file_path_without_ext + " converted to image-based file." | |
print(out_message) | |
#print("Out file paths:", out_file_paths) | |
return out_message, out_file_paths | |