|
import re |
|
import secrets |
|
import base64 |
|
import time |
|
import boto3 |
|
import botocore |
|
import pandas as pd |
|
|
|
from faker import Faker |
|
from gradio import Progress |
|
from typing import List, Dict, Any |
|
|
|
from presidio_analyzer import AnalyzerEngine, BatchAnalyzerEngine, DictAnalyzerResult, RecognizerResult |
|
from presidio_anonymizer import AnonymizerEngine, BatchAnonymizerEngine |
|
from presidio_anonymizer.entities import OperatorConfig, ConflictResolutionStrategy |
|
from tools.aws_functions import RUN_AWS_FUNCTIONS, AWS_ACCESS_KEY, AWS_SECRET_KEY |
|
|
|
from tools.helper_functions import output_folder, get_file_name_without_type, read_file, detect_file_type |
|
from tools.load_spacy_model_custom_recognisers import nlp_analyser, score_threshold, custom_word_list_recogniser, CustomWordFuzzyRecognizer, custom_entities |
|
from tools.custom_image_analyser_engine import do_aws_comprehend_call |
|
|
|
|
|
from tools.presidio_analyzer_custom import analyze_dict |
|
|
|
|
|
fake = Faker("en_UK") |
|
def fake_first_name(x): |
|
return fake.first_name() |
|
|
|
def initial_clean(text): |
|
|
|
html_pattern_regex = r'<.*?>|&([a-z0-9]+|#[0-9]{1,6}|#x[0-9a-f]{1,6});|\xa0| ' |
|
html_start_pattern_end_dots_regex = r'<(.*?)\.\.' |
|
non_ascii_pattern = r'[^\x00-\x7F]+' |
|
multiple_spaces_regex = r'\s{2,}' |
|
|
|
|
|
patterns = [ |
|
(html_pattern_regex, ' '), |
|
(html_start_pattern_end_dots_regex, ' '), |
|
(non_ascii_pattern, ' '), |
|
(multiple_spaces_regex, ' ') |
|
] |
|
|
|
|
|
for pattern, replacement in patterns: |
|
text = re.sub(pattern, replacement, text) |
|
|
|
return text |
|
|
|
def process_recognizer_result(result, recognizer_result, data_row, dictionary_key, df_dict, keys_to_keep): |
|
output = [] |
|
|
|
if hasattr(result, 'value'): |
|
text = result.value[data_row] |
|
else: |
|
text = "" |
|
|
|
if isinstance(recognizer_result, list): |
|
for sub_result in recognizer_result: |
|
if isinstance(text, str): |
|
found_text = text[sub_result.start:sub_result.end] |
|
else: |
|
found_text = '' |
|
analysis_explanation = {key: sub_result.__dict__[key] for key in keys_to_keep} |
|
analysis_explanation.update({ |
|
'data_row': str(data_row), |
|
'column': list(df_dict.keys())[dictionary_key], |
|
'entity': found_text |
|
}) |
|
output.append(str(analysis_explanation)) |
|
|
|
return output |
|
|
|
|
|
def generate_decision_process_output(analyzer_results: List[DictAnalyzerResult], df_dict: Dict[str, List[Any]]) -> str: |
|
""" |
|
Generate a detailed output of the decision process for entity recognition. |
|
|
|
This function takes the results from the analyzer and the original data dictionary, |
|
and produces a string output detailing the decision process for each recognized entity. |
|
It includes information such as entity type, position, confidence score, and the context |
|
in which the entity was found. |
|
|
|
Args: |
|
analyzer_results (List[DictAnalyzerResult]): The results from the entity analyzer. |
|
df_dict (Dict[str, List[Any]]): The original data in dictionary format. |
|
|
|
Returns: |
|
str: A string containing the detailed decision process output. |
|
""" |
|
decision_process_output = [] |
|
keys_to_keep = ['entity_type', 'start', 'end'] |
|
|
|
|
|
for i, result in enumerate(analyzer_results): |
|
|
|
|
|
if isinstance(result, RecognizerResult): |
|
decision_process_output.extend(process_recognizer_result(result, result, 0, i, df_dict, keys_to_keep)) |
|
|
|
|
|
elif isinstance(result, list) or isinstance(result, DictAnalyzerResult): |
|
for x, recognizer_result in enumerate(result.recognizer_results): |
|
decision_process_output.extend(process_recognizer_result(result, recognizer_result, x, i, df_dict, keys_to_keep)) |
|
|
|
else: |
|
try: |
|
decision_process_output.extend(process_recognizer_result(result, result, 0, i, df_dict, keys_to_keep)) |
|
except Exception as e: |
|
print(e) |
|
|
|
decision_process_output_str = '\n'.join(decision_process_output) |
|
|
|
return decision_process_output_str |
|
|
|
def anon_consistent_names(df): |
|
|
|
df_dict = df.to_dict(orient="list") |
|
|
|
analyzer = AnalyzerEngine() |
|
batch_analyzer = BatchAnalyzerEngine(analyzer_engine=analyzer) |
|
|
|
analyzer_results = batch_analyzer.analyze_dict(df_dict, language="en") |
|
analyzer_results = list(analyzer_results) |
|
|
|
|
|
text = analyzer_results[3].value |
|
|
|
|
|
recognizer_result = str(analyzer_results[3].recognizer_results) |
|
|
|
|
|
recognizer_result |
|
|
|
|
|
data_str = recognizer_result |
|
|
|
|
|
|
|
list_strs = data_str[1:-1].split('], [') |
|
|
|
def parse_dict(s): |
|
s = s.strip('[]') |
|
items = s.split(', ') |
|
d = {} |
|
for item in items: |
|
key, value = item.split(': ') |
|
if key == 'score': |
|
d[key] = float(value) |
|
elif key in ['start', 'end']: |
|
d[key] = int(value) |
|
else: |
|
d[key] = value |
|
return d |
|
|
|
|
|
|
|
result = [] |
|
|
|
for lst_str in list_strs: |
|
|
|
dict_strs = lst_str.split(', type: ') |
|
dict_strs = [dict_strs[0]] + ['type: ' + s for s in dict_strs[1:]] |
|
|
|
|
|
dicts = [parse_dict(d) for d in dict_strs] |
|
result.append(dicts) |
|
|
|
|
|
|
|
|
|
names = [] |
|
|
|
for idx, paragraph in enumerate(text): |
|
paragraph_texts = [] |
|
for dictionary in result[idx]: |
|
if dictionary['type'] == 'PERSON': |
|
paragraph_texts.append(paragraph[dictionary['start']:dictionary['end']]) |
|
names.append(paragraph_texts) |
|
|
|
|
|
|
|
unique_names = list(set(name for sublist in names for name in sublist)) |
|
|
|
|
|
fake_names = pd.Series(unique_names).apply(fake_first_name) |
|
|
|
|
|
mapping_df = pd.DataFrame(data={"Unique names":unique_names, |
|
"Fake names": fake_names}) |
|
|
|
|
|
|
|
|
|
name_map = {r'\b' + k + r'\b': v for k, v in zip(mapping_df['Unique names'], mapping_df['Fake names'])} |
|
|
|
|
|
name_map |
|
|
|
|
|
scrubbed_df_consistent_names = df.replace(name_map, regex = True) |
|
|
|
|
|
scrubbed_df_consistent_names |
|
|
|
return scrubbed_df_consistent_names |
|
|
|
def anonymise_data_files(file_paths: List[str], |
|
in_text: str, |
|
anon_strat: str, |
|
chosen_cols: List[str], |
|
language: str, |
|
chosen_redact_entities: List[str], |
|
in_allow_list: List[str] = None, |
|
latest_file_completed: int = 0, |
|
out_message: list = [], |
|
out_file_paths: list = [], |
|
log_files_output_paths: list = [], |
|
in_excel_sheets: list = [], |
|
first_loop_state: bool = False, |
|
output_folder: str = output_folder, |
|
in_deny_list:list[str]=[], |
|
max_fuzzy_spelling_mistakes_num:int=0, |
|
pii_identification_method:str="Local", |
|
chosen_redact_comprehend_entities:List[str]=[], |
|
comprehend_query_number:int=0, |
|
aws_access_key_textbox:str='', |
|
aws_secret_key_textbox:str='', |
|
progress: Progress = Progress(track_tqdm=True)): |
|
""" |
|
This function anonymises data files based on the provided parameters. |
|
|
|
Parameters: |
|
- file_paths (List[str]): A list of file paths to anonymise. |
|
- in_text (str): The text to anonymise if file_paths is 'open_text'. |
|
- anon_strat (str): The anonymisation strategy to use. |
|
- chosen_cols (List[str]): A list of column names to anonymise. |
|
- language (str): The language of the text to anonymise. |
|
- chosen_redact_entities (List[str]): A list of entities to redact. |
|
- in_allow_list (List[str], optional): A list of allowed values. Defaults to None. |
|
- latest_file_completed (int, optional): The index of the last file completed. Defaults to 0. |
|
- out_message (list, optional): A list to store output messages. Defaults to an empty list. |
|
- out_file_paths (list, optional): A list to store output file paths. Defaults to an empty list. |
|
- log_files_output_paths (list, optional): A list to store log file paths. Defaults to an empty list. |
|
- in_excel_sheets (list, optional): A list of Excel sheet names. Defaults to an empty list. |
|
- first_loop_state (bool, optional): Indicates if this is the first loop iteration. Defaults to False. |
|
- output_folder (str, optional): The output folder path. Defaults to the global output_folder variable. |
|
- in_deny_list (list[str], optional): A list of specific terms to redact. |
|
- max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9. |
|
- pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API). |
|
- chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from files, chosen from the official list from AWS Comprehend service. |
|
- comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend. |
|
- aws_access_key_textbox (str, optional): AWS access key for account with Textract and Comprehend permissions. |
|
- aws_secret_key_textbox (str, optional): AWS secret key for account with Textract and Comprehend permissions. |
|
- progress (Progress, optional): A Progress object to track progress. Defaults to a Progress object with track_tqdm=True. |
|
""" |
|
|
|
tic = time.perf_counter() |
|
comprehend_client = "" |
|
|
|
|
|
if first_loop_state==True: |
|
latest_file_completed = 0 |
|
out_message = [] |
|
out_file_paths = [] |
|
|
|
|
|
|
|
if isinstance(out_message, str): |
|
out_message = [out_message] |
|
|
|
|
|
|
|
if isinstance(log_files_output_paths, str): |
|
log_files_output_paths = [] |
|
|
|
if not out_file_paths: |
|
out_file_paths = [] |
|
|
|
|
|
if in_allow_list: |
|
in_allow_list_flat = in_allow_list |
|
else: |
|
in_allow_list_flat = [] |
|
|
|
anon_df = pd.DataFrame() |
|
|
|
|
|
if pii_identification_method == "AWS Comprehend": |
|
print("Trying to connect to AWS Comprehend service") |
|
if aws_access_key_textbox and aws_secret_key_textbox: |
|
print("Connecting to Comprehend using AWS access key and secret keys from textboxes.") |
|
print("aws_access_key_textbox:", aws_access_key_textbox) |
|
print("aws_secret_access_key:", aws_secret_key_textbox) |
|
comprehend_client = boto3.client('comprehend', |
|
aws_access_key_id=aws_access_key_textbox, |
|
aws_secret_access_key=aws_secret_key_textbox) |
|
elif RUN_AWS_FUNCTIONS == "1": |
|
print("Connecting to Comprehend via existing SSO connection") |
|
comprehend_client = boto3.client('comprehend') |
|
elif AWS_ACCESS_KEY and AWS_SECRET_KEY: |
|
print("Getting Comprehend credentials from environment variables") |
|
comprehend_client = boto3.client('comprehend', |
|
aws_access_key_id=AWS_ACCESS_KEY, |
|
aws_secret_access_key=AWS_SECRET_KEY) |
|
else: |
|
comprehend_client = "" |
|
out_message = "Cannot connect to AWS Comprehend service. Please provide access keys under Textract settings on the Redaction settings tab, or choose another PII identification method." |
|
print(out_message) |
|
|
|
|
|
if not file_paths: |
|
if in_text: |
|
file_paths=['open_text'] |
|
else: |
|
out_message = "Please enter text or a file to redact." |
|
return out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths |
|
|
|
|
|
if latest_file_completed >= len(file_paths): |
|
print("Last file reached") |
|
|
|
latest_file_completed = 99 |
|
final_out_message = '\n'.join(out_message) |
|
return final_out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths |
|
|
|
file_path_loop = [file_paths[int(latest_file_completed)]] |
|
|
|
for anon_file in progress.tqdm(file_path_loop, desc="Anonymising files", unit = "file"): |
|
|
|
if anon_file=='open_text': |
|
anon_df = pd.DataFrame(data={'text':[in_text]}) |
|
chosen_cols=['text'] |
|
sheet_name = "" |
|
file_type = "" |
|
out_file_part = anon_file |
|
|
|
out_file_paths, out_message, key_string, log_files_output_paths = anon_wrapper_func(anon_file, anon_df, chosen_cols, out_file_paths, out_file_part, out_message, sheet_name, anon_strat, language, chosen_redact_entities, in_allow_list, file_type, "", log_files_output_paths, in_deny_list, max_fuzzy_spelling_mistakes_num, pii_identification_method, chosen_redact_comprehend_entities, comprehend_query_number, comprehend_client, output_folder=output_folder) |
|
else: |
|
|
|
file_type = detect_file_type(anon_file) |
|
print("File type is:", file_type) |
|
|
|
out_file_part = get_file_name_without_type(anon_file.name) |
|
|
|
if file_type == 'xlsx': |
|
print("Running through all xlsx sheets") |
|
|
|
if not in_excel_sheets: |
|
out_message.append("No Excel sheets selected. Please select at least one to anonymise.") |
|
continue |
|
|
|
anon_xlsx = pd.ExcelFile(anon_file) |
|
|
|
|
|
anon_xlsx_export_file_name = output_folder + out_file_part + "_redacted.xlsx" |
|
|
|
from openpyxl import Workbook |
|
|
|
wb = Workbook() |
|
wb.save(anon_xlsx_export_file_name) |
|
|
|
|
|
for sheet_name in in_excel_sheets: |
|
|
|
if sheet_name not in anon_xlsx.sheet_names: |
|
continue |
|
|
|
anon_df = pd.read_excel(anon_file, sheet_name=sheet_name) |
|
|
|
out_file_paths, out_message, key_string, log_files_output_paths = anon_wrapper_func(anon_file, anon_df, chosen_cols, out_file_paths, out_file_part, out_message, sheet_name, anon_strat, language, chosen_redact_entities, in_allow_list, file_type, "", log_files_output_paths, in_deny_list, max_fuzzy_spelling_mistakes_num, pii_identification_method, chosen_redact_comprehend_entities, comprehend_query_number, comprehend_client, output_folder=output_folder) |
|
|
|
else: |
|
sheet_name = "" |
|
anon_df = read_file(anon_file) |
|
out_file_part = get_file_name_without_type(anon_file.name) |
|
|
|
out_file_paths, out_message, key_string, log_files_output_paths = anon_wrapper_func(anon_file, anon_df, chosen_cols, out_file_paths, out_file_part, out_message, sheet_name, anon_strat, language, chosen_redact_entities, in_allow_list, file_type, "", log_files_output_paths, in_deny_list, max_fuzzy_spelling_mistakes_num, pii_identification_method, chosen_redact_comprehend_entities, comprehend_query_number, comprehend_client, output_folder=output_folder) |
|
|
|
|
|
if latest_file_completed != len(file_paths): |
|
print("Completed file number:", str(latest_file_completed)) |
|
latest_file_completed += 1 |
|
|
|
toc = time.perf_counter() |
|
out_time = f"in {toc - tic:0.1f} seconds." |
|
print(out_time) |
|
|
|
if anon_strat == "encrypt": |
|
out_message.append(". Your decryption key is " + key_string + ".") |
|
|
|
out_message.append("Anonymisation of file '" + out_file_part + "' successfully completed in") |
|
|
|
out_message_out = '\n'.join(out_message) |
|
out_message_out = out_message_out + " " + out_time |
|
|
|
out_message_out = out_message_out + "\n\nGo to to the Redaction settings tab to see redaction logs. Please give feedback on the results below to help improve this app." |
|
|
|
return out_message_out, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths |
|
|
|
def anon_wrapper_func( |
|
anon_file: str, |
|
anon_df: pd.DataFrame, |
|
chosen_cols: List[str], |
|
out_file_paths: List[str], |
|
out_file_part: str, |
|
out_message: str, |
|
excel_sheet_name: str, |
|
anon_strat: str, |
|
language: str, |
|
chosen_redact_entities: List[str], |
|
in_allow_list: List[str], |
|
file_type: str, |
|
anon_xlsx_export_file_name: str, |
|
log_files_output_paths: List[str], |
|
in_deny_list: List[str]=[], |
|
max_fuzzy_spelling_mistakes_num:int=0, |
|
pii_identification_method:str="Local", |
|
chosen_redact_comprehend_entities:List[str]=[], |
|
comprehend_query_number:int=0, |
|
comprehend_client:botocore.client.BaseClient="", |
|
output_folder: str = output_folder |
|
): |
|
""" |
|
This function wraps the anonymisation process for a given dataframe. It filters the dataframe based on chosen columns, applies the specified anonymisation strategy using the anonymise_script function, and exports the anonymised data to a file. |
|
|
|
Input Variables: |
|
- anon_file: The path to the file containing the data to be anonymized. |
|
- anon_df: The pandas DataFrame containing the data to be anonymized. |
|
- chosen_cols: A list of column names to be anonymized. |
|
- out_file_paths: A list of paths where the anonymized files will be saved. |
|
- out_file_part: A part of the output file name. |
|
- out_message: A message to be displayed during the anonymization process. |
|
- excel_sheet_name: The name of the Excel sheet where the anonymized data will be exported. |
|
- anon_strat: The anonymization strategy to be applied. |
|
- language: The language of the data to be anonymized. |
|
- chosen_redact_entities: A list of entities to be redacted. |
|
- in_allow_list: A list of allowed values. |
|
- file_type: The type of file to be exported. |
|
- anon_xlsx_export_file_name: The name of the anonymized Excel file. |
|
- log_files_output_paths: A list of paths where the log files will be saved. |
|
- in_deny_list: List of specific terms to remove from the data. |
|
- max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9. |
|
- pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API). |
|
- chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from files, chosen from the official list from AWS Comprehend service. |
|
- comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend. |
|
- comprehend_client (optional): The client object from AWS containing a client connection to AWS Comprehend if that option is chosen on the first tab. |
|
- output_folder: The folder where the anonymized files will be saved. Defaults to the 'output_folder' variable. |
|
""" |
|
def check_lists(list1, list2): |
|
return any(string in list2 for string in list1) |
|
|
|
def get_common_strings(list1, list2): |
|
""" |
|
Finds the common strings between two lists. |
|
|
|
Args: |
|
list1: The first list of strings. |
|
list2: The second list of strings. |
|
|
|
Returns: |
|
A list containing the common strings. |
|
""" |
|
common_strings = [] |
|
for string in list1: |
|
if string in list2: |
|
common_strings.append(string) |
|
return common_strings |
|
|
|
if pii_identification_method == "AWS Comprehend" and comprehend_client == "": |
|
raise("Connection to AWS Comprehend service not found, please check connection details.") |
|
|
|
|
|
all_cols_original_order = list(anon_df.columns) |
|
|
|
any_cols_found = check_lists(chosen_cols, all_cols_original_order) |
|
|
|
if any_cols_found == False: |
|
out_message = "No chosen columns found in dataframe: " + out_file_part |
|
print(out_message) |
|
else: |
|
chosen_cols_in_anon_df = get_common_strings(chosen_cols, all_cols_original_order) |
|
|
|
|
|
|
|
|
|
anon_df_part = anon_df[chosen_cols_in_anon_df] |
|
anon_df_remain = anon_df.drop(chosen_cols_in_anon_df, axis = 1) |
|
|
|
|
|
anon_df_part_out, key_string, decision_process_output_str = anonymise_script(anon_df_part, anon_strat, language, chosen_redact_entities, in_allow_list, in_deny_list, max_fuzzy_spelling_mistakes_num, pii_identification_method, chosen_redact_comprehend_entities, comprehend_query_number, comprehend_client) |
|
|
|
|
|
anon_df_out = pd.concat([anon_df_part_out, anon_df_remain], axis = 1) |
|
anon_df_out = anon_df_out[all_cols_original_order] |
|
|
|
|
|
|
|
|
|
if anon_strat == "replace with 'REDACTED'": anon_strat_txt = "redact_replace" |
|
elif anon_strat == "replace with <ENTITY_NAME>": anon_strat_txt = "redact_entity_type" |
|
elif anon_strat == "redact completely": anon_strat_txt = "redact_remove" |
|
else: anon_strat_txt = anon_strat |
|
|
|
|
|
if file_type == 'xlsx': |
|
|
|
anon_export_file_name = anon_xlsx_export_file_name |
|
|
|
|
|
with pd.ExcelWriter(anon_xlsx_export_file_name, engine='openpyxl', mode='a') as writer: |
|
|
|
anon_df_out.to_excel(writer, sheet_name=excel_sheet_name, index=None) |
|
|
|
decision_process_log_output_file = anon_xlsx_export_file_name + "_" + excel_sheet_name + "_decision_process_output.txt" |
|
with open(decision_process_log_output_file, "w") as f: |
|
f.write(decision_process_output_str) |
|
|
|
else: |
|
anon_export_file_name = output_folder + out_file_part + "_anon_" + anon_strat_txt + ".csv" |
|
anon_df_out.to_csv(anon_export_file_name, index = None) |
|
|
|
decision_process_log_output_file = anon_export_file_name + "_decision_process_output.txt" |
|
with open(decision_process_log_output_file, "w") as f: |
|
f.write(decision_process_output_str) |
|
|
|
out_file_paths.append(anon_export_file_name) |
|
log_files_output_paths.append(decision_process_log_output_file) |
|
|
|
|
|
out_file_paths = list(set(out_file_paths)) |
|
|
|
|
|
if anon_file=='open_text': |
|
out_message = [anon_df_out['text'][0]] |
|
|
|
return out_file_paths, out_message, key_string, log_files_output_paths |
|
|
|
def anonymise_script(df:pd.DataFrame, anon_strat:str, language:str, chosen_redact_entities:List[str], in_allow_list:List[str]=[], in_deny_list:List[str]=[], max_fuzzy_spelling_mistakes_num:int=0, pii_identification_method:str="Local", chosen_redact_comprehend_entities:List[str]=[], comprehend_query_number:int=0, comprehend_client:botocore.client.BaseClient="", custom_entities=custom_entities, progress=Progress(track_tqdm=False)): |
|
''' |
|
Conduct anonymisation of a dataframe using Presidio and/or AWS Comprehend if chosen. |
|
''' |
|
|
|
print("Identifying personal information") |
|
analyse_tic = time.perf_counter() |
|
|
|
|
|
results_by_column = {} |
|
key_string = "" |
|
|
|
|
|
df_dict = df.to_dict(orient="list") |
|
|
|
if in_allow_list: |
|
in_allow_list_flat = in_allow_list |
|
else: |
|
in_allow_list_flat = [] |
|
|
|
if isinstance(in_deny_list, pd.DataFrame): |
|
if not in_deny_list.empty: |
|
in_deny_list = in_deny_list.iloc[:, 0].tolist() |
|
else: |
|
|
|
in_deny_list = [] |
|
|
|
|
|
in_deny_list = sorted(in_deny_list, key=len, reverse=True) |
|
|
|
if in_deny_list: |
|
nlp_analyser.registry.remove_recognizer("CUSTOM") |
|
new_custom_recogniser = custom_word_list_recogniser(in_deny_list) |
|
nlp_analyser.registry.add_recognizer(new_custom_recogniser) |
|
|
|
nlp_analyser.registry.remove_recognizer("CustomWordFuzzyRecognizer") |
|
new_custom_fuzzy_recogniser = CustomWordFuzzyRecognizer(supported_entities=["CUSTOM_FUZZY"], custom_list=in_deny_list, spelling_mistakes_max=in_deny_list, search_whole_phrase=max_fuzzy_spelling_mistakes_num) |
|
nlp_analyser.registry.add_recognizer(new_custom_fuzzy_recogniser) |
|
|
|
|
|
batch_analyzer = BatchAnalyzerEngine(analyzer_engine=nlp_analyser) |
|
|
|
anonymizer = AnonymizerEngine() |
|
|
|
batch_anonymizer = BatchAnonymizerEngine(anonymizer_engine = anonymizer) |
|
|
|
analyzer_results = [] |
|
|
|
if pii_identification_method == "Local": |
|
|
|
|
|
custom_results = analyze_dict(batch_analyzer, |
|
df_dict, |
|
language=language, |
|
entities=chosen_redact_entities, |
|
score_threshold=score_threshold, |
|
return_decision_process=True, |
|
allow_list=in_allow_list_flat) |
|
|
|
|
|
for result in custom_results: |
|
results_by_column[result.key] = result |
|
|
|
|
|
analyzer_results = list(results_by_column.values()) |
|
|
|
|
|
elif pii_identification_method == "AWS Comprehend" and comprehend_client: |
|
|
|
|
|
if custom_entities: |
|
custom_redact_entities = [ |
|
entity for entity in chosen_redact_comprehend_entities |
|
if entity in custom_entities |
|
] |
|
if custom_redact_entities: |
|
|
|
custom_results = analyze_dict(batch_analyzer, |
|
df_dict, |
|
language=language, |
|
entities=custom_redact_entities, |
|
score_threshold=score_threshold, |
|
return_decision_process=True, |
|
allow_list=in_allow_list_flat) |
|
|
|
|
|
for result in custom_results: |
|
results_by_column[result.key] = result |
|
|
|
max_retries = 3 |
|
retry_delay = 3 |
|
|
|
|
|
for column_name, texts in progress.tqdm(df_dict.items(), desc="Querying AWS Comprehend service.", unit = "Columns"): |
|
|
|
if column_name in results_by_column: |
|
column_results = results_by_column[column_name] |
|
else: |
|
column_results = DictAnalyzerResult( |
|
recognizer_results=[[] for _ in texts], |
|
key=column_name, |
|
value=texts |
|
) |
|
|
|
|
|
for text_idx, text in progress.tqdm(enumerate(texts), desc="Querying AWS Comprehend service.", unit = "Row"): |
|
|
|
for attempt in range(max_retries): |
|
try: |
|
response = comprehend_client.detect_pii_entities( |
|
Text=str(text), |
|
LanguageCode=language |
|
) |
|
|
|
comprehend_query_number += 1 |
|
|
|
|
|
for entity in response["Entities"]: |
|
if entity.get("Type") not in chosen_redact_comprehend_entities: |
|
continue |
|
|
|
recognizer_result = RecognizerResult( |
|
entity_type=entity["Type"], |
|
start=entity["BeginOffset"], |
|
end=entity["EndOffset"], |
|
score=entity["Score"] |
|
) |
|
column_results.recognizer_results[text_idx].append(recognizer_result) |
|
|
|
break |
|
|
|
except Exception as e: |
|
if attempt == max_retries - 1: |
|
print(f"AWS Comprehend calls failed for text: {text[:100]}... due to", e) |
|
raise |
|
time.sleep(retry_delay) |
|
|
|
|
|
results_by_column[column_name] = column_results |
|
|
|
|
|
analyzer_results = list(results_by_column.values()) |
|
|
|
elif (pii_identification_method == "AWS Comprehend") & (not comprehend_client): |
|
raise("Unable to redact, Comprehend connection details not found.") |
|
|
|
else: |
|
print("Unable to redact.") |
|
|
|
|
|
decision_process_output_str = generate_decision_process_output(analyzer_results, df_dict) |
|
|
|
analyse_toc = time.perf_counter() |
|
analyse_time_out = f"Analysing the text took {analyse_toc - analyse_tic:0.1f} seconds." |
|
print(analyse_time_out) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
simple_replace_config = eval('{"DEFAULT": OperatorConfig("replace", {"new_value": "REDACTED"})}') |
|
replace_config = eval('{"DEFAULT": OperatorConfig("replace")}') |
|
redact_config = eval('{"DEFAULT": OperatorConfig("redact")}') |
|
hash_config = eval('{"DEFAULT": OperatorConfig("hash")}') |
|
mask_config = eval('{"DEFAULT": OperatorConfig("mask", {"masking_char":"*", "chars_to_mask":100, "from_end":True})}') |
|
people_encrypt_config = eval('{"PERSON": OperatorConfig("encrypt", {"key": key_string})}') |
|
fake_first_name_config = eval('{"PERSON": OperatorConfig("custom", {"lambda": fake_first_name})}') |
|
|
|
if anon_strat == "replace with 'REDACTED'": chosen_mask_config = simple_replace_config |
|
if anon_strat == "replace with <ENTITY_NAME>": chosen_mask_config = replace_config |
|
if anon_strat == "redact completely": chosen_mask_config = redact_config |
|
if anon_strat == "hash": chosen_mask_config = hash_config |
|
if anon_strat == "mask": chosen_mask_config = mask_config |
|
if anon_strat == "encrypt": |
|
chosen_mask_config = people_encrypt_config |
|
|
|
key = secrets.token_bytes(16) |
|
key_string = base64.b64encode(key).decode('utf-8') |
|
elif anon_strat == "fake_first_name": chosen_mask_config = fake_first_name_config |
|
|
|
|
|
|
|
|
|
combined_config = {**chosen_mask_config} |
|
|
|
anonymizer_results = batch_anonymizer.anonymize_dict(analyzer_results, operators=combined_config) |
|
|
|
scrubbed_df = pd.DataFrame(anonymizer_results) |
|
|
|
return scrubbed_df, key_string, decision_process_output_str |