Moved review components to give more space for page. Extended zoom limits. Existing redaction labels should now appear in new redaction box dropdown.
a9dcd2e
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
from typing import List | |
from gradio_image_annotation import image_annotator | |
from gradio_image_annotation.image_annotator import AnnotatedImageData | |
from tools.file_conversion import is_pdf, convert_review_json_to_pandas_df | |
from tools.helper_functions import get_file_path_end, output_folder | |
from tools.file_redaction import redact_page_with_pymupdf | |
import json | |
import os | |
import pymupdf | |
from fitz import Document | |
from PIL import ImageDraw, Image | |
from collections import defaultdict | |
def decrease_page(number:int): | |
''' | |
Decrease page number for review redactions page. | |
''' | |
#print("number:", str(number)) | |
if number > 1: | |
return number - 1, number - 1 | |
else: | |
return 1, 1 | |
def increase_page(number:int, image_annotator_object:AnnotatedImageData): | |
''' | |
Increase page number for review redactions page. | |
''' | |
if not image_annotator_object: | |
return 1, 1 | |
max_pages = len(image_annotator_object) | |
if number < max_pages: | |
return number + 1, number + 1 | |
else: | |
return max_pages, max_pages | |
def update_zoom(current_zoom_level:int, annotate_current_page:int, decrease:bool=True): | |
if decrease == False: | |
if current_zoom_level >= 70: | |
current_zoom_level -= 10 | |
else: | |
if current_zoom_level < 110: | |
current_zoom_level += 10 | |
return current_zoom_level, annotate_current_page | |
def remove_duplicate_images_with_blank_boxes(data: List[dict]) -> List[dict]: | |
''' | |
Remove items from the annotator object where the same page exists twice. | |
''' | |
# Group items by 'image' | |
image_groups = defaultdict(list) | |
for item in data: | |
image_groups[item['image']].append(item) | |
# Process each group to prioritize items with non-empty boxes | |
result = [] | |
for image, items in image_groups.items(): | |
# Filter items with non-empty boxes | |
non_empty_boxes = [item for item in items if item.get('boxes')] | |
if non_empty_boxes: | |
# Keep the first entry with non-empty boxes | |
result.append(non_empty_boxes[0]) | |
else: | |
# If all items have empty or missing boxes, keep the first item | |
result.append(items[0]) | |
return result | |
def get_recogniser_dataframe_out(image_annotator_object, recogniser_dataframe_gr): | |
try: | |
review_dataframe = convert_review_json_to_pandas_df(image_annotator_object)[["page", "label"]] | |
recogniser_entities = review_dataframe["label"].unique().tolist() | |
recogniser_entities.append("ALL") | |
recogniser_entities = sorted(recogniser_entities) | |
recogniser_dataframe_out = gr.Dataframe(review_dataframe) | |
recogniser_entities_drop = gr.Dropdown(value=recogniser_entities[0], choices=recogniser_entities, allow_custom_value=True, interactive=True) | |
except Exception as e: | |
print("Could not extract recogniser information:", e) | |
recogniser_dataframe_out = recogniser_dataframe_gr | |
recogniser_entities_drop = gr.Dropdown(value="", choices=[""], allow_custom_value=True, interactive=True) | |
recogniser_entities = ["Redaction"] | |
return recogniser_dataframe_out, recogniser_dataframe_out, recogniser_entities_drop, recogniser_entities | |
def update_annotator(image_annotator_object:AnnotatedImageData, page_num:int, recogniser_entities_drop=gr.Dropdown(value="ALL", allow_custom_value=True), recogniser_dataframe_gr=gr.Dataframe(pd.DataFrame(data={"page":[], "label":[]})), zoom:int=100): | |
''' | |
Update a gradio_image_annotation object with new annotation data | |
''' | |
recogniser_entities_list = ["Redaction"] | |
recogniser_dataframe_out = pd.DataFrame() | |
if recogniser_dataframe_gr.empty: | |
recogniser_dataframe_gr, recogniser_dataframe_out, recogniser_entities_drop, recogniser_entities_list = get_recogniser_dataframe_out(image_annotator_object, recogniser_dataframe_gr) | |
elif recogniser_dataframe_gr.iloc[0,0] == "": | |
recogniser_dataframe_gr, recogniser_dataframe_out, recogniser_entities_drop, recogniser_entities_list = get_recogniser_dataframe_out(image_annotator_object, recogniser_dataframe_gr) | |
else: | |
review_dataframe = update_entities_df(recogniser_entities_drop, recogniser_dataframe_gr) | |
recogniser_dataframe_out = gr.Dataframe(review_dataframe) | |
recogniser_entities_list = review_dataframe["label"].unique().tolist() | |
recogniser_entities_list = sorted(recogniser_entities_list) | |
zoom_str = str(zoom) + '%' | |
recogniser_colour_list = [(0, 0, 0) for _ in range(len(recogniser_entities_list))] | |
if not image_annotator_object: | |
page_num_reported = 1 | |
out_image_annotator = image_annotator( | |
image_annotator_object[page_num_reported - 1], | |
boxes_alpha=0.1, | |
box_thickness=1, | |
label_list=recogniser_entities_list, | |
label_colors=recogniser_colour_list, | |
show_label=False, | |
height=zoom_str, | |
width=zoom_str, | |
box_min_size=1, | |
box_selected_thickness=2, | |
handle_size=4, | |
sources=None,#["upload"], | |
show_clear_button=False, | |
show_share_button=False, | |
show_remove_button=False, | |
handles_cursor=True, | |
interactive=True | |
) | |
number_reported = gr.Number(label = "Page (press enter to change)", value=page_num_reported, precision=0) | |
return out_image_annotator, number_reported, number_reported, page_num_reported, recogniser_entities_drop, recogniser_dataframe_out, recogniser_dataframe_gr | |
#print("page_num at start of update_annotator function:", page_num) | |
if page_num is None: | |
page_num = 0 | |
# Check bounding values for current page and page max | |
if page_num > 0: | |
page_num_reported = page_num | |
elif page_num == 0: page_num_reported = 1 | |
else: | |
page_num = 0 | |
page_num_reported = 1 | |
page_max_reported = len(image_annotator_object) | |
if page_num_reported > page_max_reported: | |
page_num_reported = page_max_reported | |
image_annotator_object = remove_duplicate_images_with_blank_boxes(image_annotator_object) | |
out_image_annotator = image_annotator( | |
value = image_annotator_object[page_num_reported - 1], | |
boxes_alpha=0.1, | |
box_thickness=1, | |
label_list=recogniser_entities_list, | |
label_colors=recogniser_colour_list, | |
show_label=False, | |
height=zoom_str, | |
width=zoom_str, | |
box_min_size=1, | |
box_selected_thickness=2, | |
handle_size=4, | |
sources=None,#["upload"], | |
show_clear_button=False, | |
show_share_button=False, | |
show_remove_button=False, | |
handles_cursor=True, | |
interactive=True | |
) | |
number_reported = gr.Number(label = "Page (press enter to change)", value=page_num_reported, precision=0) | |
return out_image_annotator, number_reported, number_reported, page_num_reported, recogniser_entities_drop, recogniser_dataframe_out, recogniser_dataframe_gr | |
def modify_existing_page_redactions(image_annotated:AnnotatedImageData, current_page:int, previous_page:int, all_image_annotations:List[AnnotatedImageData], recogniser_entities_drop=gr.Dropdown(value="ALL", allow_custom_value=True),recogniser_dataframe=gr.Dataframe(pd.DataFrame(data={"page":[], "label":[]})), clear_all:bool=False): | |
''' | |
Overwrite current image annotations with modifications | |
''' | |
if not current_page: | |
current_page = 1 | |
#If no previous page or is 0, i.e. first time run, then rewrite current page | |
#if not previous_page: | |
# previous_page = current_page | |
#print("image_annotated:", image_annotated) | |
image_annotated['image'] = all_image_annotations[previous_page - 1]["image"] | |
if clear_all == False: | |
all_image_annotations[previous_page - 1] = image_annotated | |
else: | |
all_image_annotations[previous_page - 1]["boxes"] = [] | |
#print("all_image_annotations:", all_image_annotations) | |
# Rewrite all_image_annotations search dataframe with latest updates | |
try: | |
review_dataframe = convert_review_json_to_pandas_df(all_image_annotations)[["page", "label"]] | |
#print("review_dataframe['label']", review_dataframe["label"]) | |
recogniser_entities = review_dataframe["label"].unique().tolist() | |
recogniser_entities.append("ALL") | |
recogniser_entities = sorted(recogniser_entities) | |
recogniser_dataframe_out = gr.Dataframe(review_dataframe) | |
#recogniser_dataframe_gr = gr.Dataframe(review_dataframe) | |
recogniser_entities_drop = gr.Dropdown(value=recogniser_entities_drop, choices=recogniser_entities, allow_custom_value=True, interactive=True) | |
except Exception as e: | |
print("Could not extract recogniser information:", e) | |
recogniser_dataframe_out = recogniser_dataframe | |
return all_image_annotations, current_page, current_page, recogniser_entities_drop, recogniser_dataframe_out | |
def apply_redactions(image_annotated:AnnotatedImageData, file_paths:List[str], doc:Document, all_image_annotations:List[AnnotatedImageData], current_page:int, review_file_state, save_pdf:bool=True, progress=gr.Progress(track_tqdm=True)): | |
''' | |
Apply modified redactions to a pymupdf and export review files | |
''' | |
#print("all_image_annotations:", all_image_annotations) | |
output_files = [] | |
output_log_files = [] | |
#print("File paths in apply_redactions:", file_paths) | |
image_annotated['image'] = all_image_annotations[current_page - 1]["image"] | |
all_image_annotations[current_page - 1] = image_annotated | |
if not image_annotated: | |
print("No image annotations found") | |
return doc, all_image_annotations | |
if isinstance(file_paths, str): | |
file_paths = [file_paths] | |
for file_path in file_paths: | |
#print("file_path:", file_path) | |
file_base = get_file_path_end(file_path) | |
file_extension = os.path.splitext(file_path)[1].lower() | |
if save_pdf == True: | |
# If working with image docs | |
if (is_pdf(file_path) == False) & (file_extension not in '.csv'): | |
image = Image.open(file_paths[-1]) | |
#image = pdf_doc | |
draw = ImageDraw.Draw(image) | |
for img_annotation_box in image_annotated['boxes']: | |
coords = [img_annotation_box["xmin"], | |
img_annotation_box["ymin"], | |
img_annotation_box["xmax"], | |
img_annotation_box["ymax"]] | |
fill = img_annotation_box["color"] | |
draw.rectangle(coords, fill=fill) | |
image.save(output_folder + file_base + "_redacted.png") | |
doc = [image] | |
elif file_extension in '.csv': | |
print("This is a csv") | |
pdf_doc = [] | |
# If working with pdfs | |
elif is_pdf(file_path) == True: | |
pdf_doc = pymupdf.open(file_path) | |
number_of_pages = pdf_doc.page_count | |
print("Saving pages to file.") | |
for i in progress.tqdm(range(0, number_of_pages), desc="Saving redactions to file", unit = "pages"): | |
#print("Saving page", str(i)) | |
image_loc = all_image_annotations[i]['image'] | |
#print("Image location:", image_loc) | |
# Load in image object | |
if isinstance(image_loc, np.ndarray): | |
image = Image.fromarray(image_loc.astype('uint8')) | |
#all_image_annotations[i]['image'] = image_loc.tolist() | |
elif isinstance(image_loc, Image.Image): | |
image = image_loc | |
#image_out_folder = output_folder + file_base + "_page_" + str(i) + ".png" | |
#image_loc.save(image_out_folder) | |
#all_image_annotations[i]['image'] = image_out_folder | |
elif isinstance(image_loc, str): | |
image = Image.open(image_loc) | |
pymupdf_page = pdf_doc.load_page(i) #doc.load_page(current_page -1) | |
pymupdf_page = redact_page_with_pymupdf(pymupdf_page, all_image_annotations[i], image) | |
else: | |
print("File type not recognised.") | |
#try: | |
if pdf_doc: | |
out_pdf_file_path = output_folder + file_base + "_redacted.pdf" | |
pdf_doc.save(out_pdf_file_path) | |
output_files.append(out_pdf_file_path) | |
try: | |
print("Saving annotations to JSON") | |
out_annotation_file_path = output_folder + file_base + '_review_file.json' | |
with open(out_annotation_file_path, 'w') as f: | |
json.dump(all_image_annotations, f) | |
output_log_files.append(out_annotation_file_path) | |
print("Saving annotations to CSV review file") | |
#print("review_file_state:", review_file_state) | |
# Convert json to csv and also save this | |
review_df = convert_review_json_to_pandas_df(all_image_annotations, review_file_state) | |
out_review_file_file_path = output_folder + file_base + '_review_file.csv' | |
review_df.to_csv(out_review_file_file_path, index=None) | |
output_files.append(out_review_file_file_path) | |
except Exception as e: | |
print("Could not save annotations to json or csv file:", e) | |
return doc, all_image_annotations, output_files, output_log_files | |
def get_boxes_json(annotations:AnnotatedImageData): | |
return annotations["boxes"] | |
def update_entities_df(choice:str, df:pd.DataFrame): | |
if choice=="ALL": | |
return df | |
else: | |
return df.loc[df["label"]==choice,:] | |
def df_select_callback(df: pd.DataFrame, evt: gr.SelectData): | |
#print("index", evt.index) | |
#print("value", evt.value) | |
#print("row_value", evt.row_value) | |
row_value_page = evt.row_value[0] # This is the page number value | |
return row_value_page | |