document_redaction / tools /data_anonymise.py
seanpedrickcase's picture
Can now redaction text or csv/xlsx files. Can redact multiple files. Embeds redactions as image-based file by default
7810536
raw
history blame
10.6 kB
import re
import secrets
import base64
import time
import pandas as pd
from faker import Faker
from gradio import Progress
from typing import List
from presidio_analyzer import AnalyzerEngine, BatchAnalyzerEngine
from presidio_anonymizer import AnonymizerEngine, BatchAnonymizerEngine
from presidio_anonymizer.entities import OperatorConfig
from tools.helper_functions import output_folder, get_file_path_end, read_file
from tools.load_spacy_model_custom_recognisers import nlp_analyser, score_threshold
# Use custom version of analyze_dict to be able to track progress
from tools.presidio_analyzer_custom import analyze_dict
fake = Faker("en_UK")
def fake_first_name(x):
return fake.first_name()
def anon_consistent_names(df):
# ## Pick out common names and replace them with the same person value
df_dict = df.to_dict(orient="list")
analyzer = AnalyzerEngine()
batch_analyzer = BatchAnalyzerEngine(analyzer_engine=analyzer)
analyzer_results = batch_analyzer.analyze_dict(df_dict, language="en")
analyzer_results = list(analyzer_results)
# + tags=[]
text = analyzer_results[3].value
# + tags=[]
recognizer_result = str(analyzer_results[3].recognizer_results)
# + tags=[]
recognizer_result
# + tags=[]
data_str = recognizer_result # abbreviated for brevity
# Adjusting the parse_dict function to handle trailing ']'
# Splitting the main data string into individual list strings
list_strs = data_str[1:-1].split('], [')
def parse_dict(s):
s = s.strip('[]') # Removing any surrounding brackets
items = s.split(', ')
d = {}
for item in items:
key, value = item.split(': ')
if key == 'score':
d[key] = float(value)
elif key in ['start', 'end']:
d[key] = int(value)
else:
d[key] = value
return d
# Re-running the improved processing code
result = []
for lst_str in list_strs:
# Splitting each list string into individual dictionary strings
dict_strs = lst_str.split(', type: ')
dict_strs = [dict_strs[0]] + ['type: ' + s for s in dict_strs[1:]] # Prepending "type: " back to the split strings
# Parsing each dictionary string
dicts = [parse_dict(d) for d in dict_strs]
result.append(dicts)
#result
# + tags=[]
names = []
for idx, paragraph in enumerate(text):
paragraph_texts = []
for dictionary in result[idx]:
if dictionary['type'] == 'PERSON':
paragraph_texts.append(paragraph[dictionary['start']:dictionary['end']])
names.append(paragraph_texts)
# + tags=[]
# Flatten the list of lists and extract unique names
unique_names = list(set(name for sublist in names for name in sublist))
# + tags=[]
fake_names = pd.Series(unique_names).apply(fake_first_name)
# + tags=[]
mapping_df = pd.DataFrame(data={"Unique names":unique_names,
"Fake names": fake_names})
# + tags=[]
# Convert mapping dataframe to dictionary
# Convert mapping dataframe to dictionary, adding word boundaries for full-word match
name_map = {r'\b' + k + r'\b': v for k, v in zip(mapping_df['Unique names'], mapping_df['Fake names'])}
# + tags=[]
name_map
# + tags=[]
scrubbed_df_consistent_names = df.replace(name_map, regex = True)
# + tags=[]
scrubbed_df_consistent_names
return scrubbed_df_consistent_names
def anonymise_script(df, anon_strat, language:str, chosen_redact_entities:List[str], allow_list:List[str]=[], progress=Progress(track_tqdm=False)):
# DataFrame to dict
df_dict = df.to_dict(orient="list")
if allow_list:
allow_list_flat = [item for sublist in allow_list for item in sublist]
#analyzer = nlp_analyser #AnalyzerEngine()
batch_analyzer = BatchAnalyzerEngine(analyzer_engine=nlp_analyser)
anonymizer = AnonymizerEngine()
batch_anonymizer = BatchAnonymizerEngine(anonymizer_engine = anonymizer)
# analyzer_results = batch_analyzer.analyze_dict(df_dict, language=language,
# entities=chosen_redact_entities,
# score_threshold=score_threshold,
# return_decision_process=False,
# allow_list=allow_list_flat)
print("Identifying personal information")
analyse_tic = time.perf_counter()
print("Allow list:", allow_list)
# Use custom analyzer to be able to track progress with Gradio
analyzer_results = analyze_dict(batch_analyzer, df_dict, language=language,
entities=chosen_redact_entities,
score_threshold=score_threshold,
return_decision_process=False,
allow_list=allow_list_flat)
analyzer_results = list(analyzer_results)
#analyzer_results
analyse_toc = time.perf_counter()
analyse_time_out = f"Analysing the text took {analyse_toc - analyse_tic:0.1f} seconds."
print(analyse_time_out)
# Generate a 128-bit AES key. Then encode the key using base64 to get a string representation
key = secrets.token_bytes(16) # 128 bits = 16 bytes
key_string = base64.b64encode(key).decode('utf-8')
# Create faker function (note that it has to receive a value)
fake = Faker("en_UK")
def fake_first_name(x):
return fake.first_name()
# Set up the anonymization configuration WITHOUT DATE_TIME
replace_config = eval('{"DEFAULT": OperatorConfig("replace")}')
redact_config = eval('{"DEFAULT": OperatorConfig("redact")}')
hash_config = eval('{"DEFAULT": OperatorConfig("hash")}')
mask_config = eval('{"DEFAULT": OperatorConfig("mask", {"masking_char":"*", "chars_to_mask":100, "from_end":True})}')
people_encrypt_config = eval('{"PERSON": OperatorConfig("encrypt", {"key": key_string})}') # The encryption is using AES cypher in CBC mode and requires a cryptographic key as an input for both the encryption and the decryption.
fake_first_name_config = eval('{"PERSON": OperatorConfig("custom", {"lambda": fake_first_name})}')
if anon_strat == "replace": chosen_mask_config = replace_config
if anon_strat == "redact": chosen_mask_config = redact_config
if anon_strat == "hash": chosen_mask_config = hash_config
if anon_strat == "mask": chosen_mask_config = mask_config
if anon_strat == "encrypt": chosen_mask_config = people_encrypt_config
elif anon_strat == "fake_first_name": chosen_mask_config = fake_first_name_config
# I think in general people will want to keep date / times
keep_date_config = eval('{"DATE_TIME": OperatorConfig("keep")}')
combined_config = {**chosen_mask_config, **keep_date_config}
combined_config
anonymizer_results = batch_anonymizer.anonymize_dict(analyzer_results, operators=combined_config)
scrubbed_df = pd.DataFrame(anonymizer_results)
# Create reporting message
out_message = "Successfully anonymised"
if anon_strat == "encrypt":
out_message = out_message + ". Your decryption key is " + key_string + "."
return scrubbed_df, out_message
def do_anonymise(in_file, in_text:str, anon_strat:str, chosen_cols:List[str], language:str, chosen_redact_entities:List[str], allow_list:List[str]=None, progress=Progress(track_tqdm=True)):
def check_lists(list1, list2):
return any(string in list2 for string in list1)
def get_common_strings(list1, list2):
"""
Finds the common strings between two lists.
Args:
list1: The first list of strings.
list2: The second list of strings.
Returns:
A list containing the common strings.
"""
common_strings = []
for string in list1:
if string in list2:
common_strings.append(string)
return common_strings
# Load file
anon_df = pd.DataFrame()
out_files_list = []
# Check if files and text exist
if not in_file:
if in_text:
in_file=['open_text']
else:
out_message = "Please enter text or a file to redact."
return out_message, None
for match_file in progress.tqdm(in_file, desc="Anonymising files", unit = "file"):
if match_file=='open_text':
anon_df = pd.DataFrame(data={'text':[in_text]})
chosen_cols=['text']
out_file_part = match_file
else:
anon_df = read_file(match_file)
out_file_part = get_file_path_end(match_file.name)
# Check for chosen col, skip file if not found
all_cols_original_order = list(anon_df.columns)
any_cols_found = check_lists(chosen_cols, all_cols_original_order)
if any_cols_found == False:
out_message = "No chosen columns found in dataframe: " + out_file_part
print(out_message)
continue
else:
chosen_cols_in_anon_df = get_common_strings(chosen_cols, all_cols_original_order)
# Split dataframe to keep only selected columns
print("Remaining columns to redact:", chosen_cols_in_anon_df)
anon_df_part = anon_df[chosen_cols_in_anon_df]
anon_df_remain = anon_df.drop(chosen_cols_in_anon_df, axis = 1)
# Anonymise the selected columns
anon_df_part_out, out_message = anonymise_script(anon_df_part, anon_strat, language, chosen_redact_entities, allow_list)
# Rejoin the dataframe together
anon_df_out = pd.concat([anon_df_part_out, anon_df_remain], axis = 1)
anon_df_out = anon_df_out[all_cols_original_order]
# Export file
# out_file_part = re.sub(r'\.csv', '', match_file.name)
anon_export_file_name = output_folder + out_file_part + "_anon_" + anon_strat + ".csv"
anon_df_out.to_csv(anon_export_file_name, index = None)
out_files_list.append(anon_export_file_name)
# Print result text to output text box if just anonymising open text
if match_file=='open_text':
out_message = anon_df_out['text'][0]
return out_message, out_files_list