|  | import os | 
					
						
						|  | import socket | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | os.environ['TLDEXTRACT_CACHE'] = 'tld/.tld_set_snapshot' | 
					
						
						|  |  | 
					
						
						|  | import gradio as gr | 
					
						
						|  | import pandas as pd | 
					
						
						|  | from datetime import datetime | 
					
						
						|  | from gradio_image_annotation import image_annotator | 
					
						
						|  | from gradio_image_annotation.image_annotator import AnnotatedImageData | 
					
						
						|  |  | 
					
						
						|  | from tools.helper_functions import ensure_output_folder_exists, add_folder_to_path, put_columns_in_df, get_connection_params, output_folder, get_or_create_env_var, reveal_feedback_buttons, custom_regex_load, reset_state_vars, load_in_default_allow_list, tesseract_ocr_option, text_ocr_option, textract_option, local_pii_detector, aws_pii_detector | 
					
						
						|  | from tools.aws_functions import upload_file_to_s3, download_file_from_s3, RUN_AWS_FUNCTIONS, bucket_name | 
					
						
						|  | from tools.file_redaction import choose_and_run_redactor | 
					
						
						|  | from tools.file_conversion import prepare_image_or_pdf, get_input_file_names | 
					
						
						|  | from tools.redaction_review import apply_redactions, modify_existing_page_redactions, decrease_page, increase_page, update_annotator, update_zoom, update_entities_df, df_select_callback | 
					
						
						|  | from tools.data_anonymise import anonymise_data_files | 
					
						
						|  | from tools.auth import authenticate_user | 
					
						
						|  | from tools.load_spacy_model_custom_recognisers import custom_entities | 
					
						
						|  | from tools.custom_csvlogger import CSVLogger_custom | 
					
						
						|  |  | 
					
						
						|  | today_rev = datetime.now().strftime("%Y%m%d") | 
					
						
						|  |  | 
					
						
						|  | add_folder_to_path("tesseract/") | 
					
						
						|  | add_folder_to_path("poppler/poppler-24.02.0/Library/bin/") | 
					
						
						|  |  | 
					
						
						|  | ensure_output_folder_exists() | 
					
						
						|  |  | 
					
						
						|  | chosen_comprehend_entities = ['BANK_ACCOUNT_NUMBER','BANK_ROUTING','CREDIT_DEBIT_NUMBER','CREDIT_DEBIT_CVV','CREDIT_DEBIT_EXPIRY','PIN','EMAIL','ADDRESS','NAME','PHONE', 'PASSPORT_NUMBER','DRIVER_ID', 'USERNAME','PASSWORD', 'IP_ADDRESS','MAC_ADDRESS', 'LICENSE_PLATE','VEHICLE_IDENTIFICATION_NUMBER','UK_NATIONAL_INSURANCE_NUMBER', 'INTERNATIONAL_BANK_ACCOUNT_NUMBER','SWIFT_CODE','UK_NATIONAL_HEALTH_SERVICE_NUMBER'] | 
					
						
						|  |  | 
					
						
						|  | full_comprehend_entity_list = ['BANK_ACCOUNT_NUMBER','BANK_ROUTING','CREDIT_DEBIT_NUMBER','CREDIT_DEBIT_CVV','CREDIT_DEBIT_EXPIRY','PIN','EMAIL','ADDRESS','NAME','PHONE','SSN','DATE_TIME','PASSPORT_NUMBER','DRIVER_ID','URL','AGE','USERNAME','PASSWORD','AWS_ACCESS_KEY','AWS_SECRET_KEY','IP_ADDRESS','MAC_ADDRESS','ALL','LICENSE_PLATE','VEHICLE_IDENTIFICATION_NUMBER','UK_NATIONAL_INSURANCE_NUMBER','CA_SOCIAL_INSURANCE_NUMBER','US_INDIVIDUAL_TAX_IDENTIFICATION_NUMBER','UK_UNIQUE_TAXPAYER_REFERENCE_NUMBER','IN_PERMANENT_ACCOUNT_NUMBER','IN_NREGA','INTERNATIONAL_BANK_ACCOUNT_NUMBER','SWIFT_CODE','UK_NATIONAL_HEALTH_SERVICE_NUMBER','CA_HEALTH_NUMBER','IN_AADHAAR','IN_VOTER_NUMBER'] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | chosen_comprehend_entities.extend(custom_entities) | 
					
						
						|  | full_comprehend_entity_list.extend(custom_entities) | 
					
						
						|  |  | 
					
						
						|  | chosen_redact_entities = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE", "CUSTOM"] | 
					
						
						|  |  | 
					
						
						|  | full_entity_list = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE", 'CREDIT_CARD', 'CRYPTO', 'DATE_TIME', 'IBAN_CODE', 'IP_ADDRESS', 'NRP', 'LOCATION', 'MEDICAL_LICENSE', 'URL', 'UK_NHS', 'CUSTOM'] | 
					
						
						|  |  | 
					
						
						|  | language = 'en' | 
					
						
						|  |  | 
					
						
						|  | host_name = socket.gethostname() | 
					
						
						|  | feedback_logs_folder = 'feedback/' + today_rev + '/' + host_name + '/' | 
					
						
						|  | access_logs_folder = 'logs/' + today_rev + '/' + host_name + '/' | 
					
						
						|  | usage_logs_folder = 'usage/' + today_rev + '/' + host_name + '/' | 
					
						
						|  |  | 
					
						
						|  | file_input_height = 200 | 
					
						
						|  |  | 
					
						
						|  | if RUN_AWS_FUNCTIONS == "1": | 
					
						
						|  | default_ocr_val = textract_option | 
					
						
						|  | default_pii_detector = local_pii_detector | 
					
						
						|  | else: | 
					
						
						|  | default_ocr_val = text_ocr_option | 
					
						
						|  | default_pii_detector = local_pii_detector | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | app = gr.Blocks(theme = gr.themes.Base(), fill_width=True) | 
					
						
						|  |  | 
					
						
						|  | with app: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pdf_doc_state = gr.State([]) | 
					
						
						|  | all_image_annotations_state = gr.State([]) | 
					
						
						|  | all_line_level_ocr_results_df_state = gr.State(pd.DataFrame()) | 
					
						
						|  | all_decision_process_table_state = gr.State(pd.DataFrame()) | 
					
						
						|  |  | 
					
						
						|  | session_hash_state = gr.State() | 
					
						
						|  | s3_output_folder_state = gr.State() | 
					
						
						|  |  | 
					
						
						|  | first_loop_state = gr.State(True) | 
					
						
						|  | second_loop_state = gr.State(False) | 
					
						
						|  |  | 
					
						
						|  | prepared_pdf_state = gr.State([]) | 
					
						
						|  | images_pdf_state = gr.State([]) | 
					
						
						|  |  | 
					
						
						|  | output_image_files_state = gr.State([]) | 
					
						
						|  | output_file_list_state = gr.State([]) | 
					
						
						|  | text_output_file_list_state = gr.State([]) | 
					
						
						|  | log_files_output_list_state = gr.State([]) | 
					
						
						|  |  | 
					
						
						|  | review_file_state = gr.State(pd.DataFrame()) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | log_file_name = 'log.csv' | 
					
						
						|  |  | 
					
						
						|  | feedback_logs_state = gr.State(feedback_logs_folder + log_file_name) | 
					
						
						|  | feedback_s3_logs_loc_state = gr.State(feedback_logs_folder) | 
					
						
						|  | access_logs_state = gr.State(access_logs_folder + log_file_name) | 
					
						
						|  | access_s3_logs_loc_state = gr.State(access_logs_folder) | 
					
						
						|  | usage_logs_state = gr.State(usage_logs_folder + log_file_name) | 
					
						
						|  | usage_s3_logs_loc_state = gr.State(usage_logs_folder) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | session_hash_textbox = gr.Textbox(label= "session_hash_textbox", value="", visible=False) | 
					
						
						|  | textract_metadata_textbox = gr.Textbox(label = "textract_metadata_textbox", value="", visible=False) | 
					
						
						|  | comprehend_query_number = gr.Number(label = "comprehend_query_number", value=0, visible=False) | 
					
						
						|  |  | 
					
						
						|  | doc_full_file_name_textbox = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False) | 
					
						
						|  | doc_file_name_no_extension_textbox = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False) | 
					
						
						|  | doc_file_name_with_extension_textbox = gr.Textbox(label = "doc_file_name_with_extension_textbox", value="", visible=False) | 
					
						
						|  | doc_file_name_textbox_list = gr.Dropdown(label = "doc_file_name_textbox_list", value="", allow_custom_value=True,visible=False) | 
					
						
						|  |  | 
					
						
						|  | data_full_file_name_textbox = gr.Textbox(label = "data_full_file_name_textbox", value="", visible=False) | 
					
						
						|  | data_file_name_no_extension_textbox = gr.Textbox(label = "data_full_file_name_textbox", value="", visible=False) | 
					
						
						|  | data_file_name_with_extension_textbox = gr.Textbox(label = "data_file_name_with_extension_textbox", value="", visible=False) | 
					
						
						|  | data_file_name_textbox_list = gr.Dropdown(label = "data_file_name_textbox_list", value="", allow_custom_value=True,visible=False) | 
					
						
						|  |  | 
					
						
						|  | estimated_time_taken_number = gr.Number(label = "estimated_time_taken_number", value=0.0, precision=1, visible=False) | 
					
						
						|  | annotate_previous_page = gr.Number(value=0, label="Previous page", precision=0, visible=False) | 
					
						
						|  |  | 
					
						
						|  | s3_logs_output_textbox = gr.Textbox(label="Feedback submission logs", visible=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | annotator_zoom_number = gr.Number(label = "Current annotator zoom level", value=100, precision=0, visible=False) | 
					
						
						|  | zoom_true_bool = gr.State(True) | 
					
						
						|  | zoom_false_bool = gr.State(False) | 
					
						
						|  |  | 
					
						
						|  | clear_all_page_redactions = gr.State(True) | 
					
						
						|  | prepare_for_review_bool = gr.Checkbox(value=True, visible=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | default_allow_list_file_name = "default_allow_list.csv" | 
					
						
						|  | default_allow_list_loc = output_folder + "/" + default_allow_list_file_name | 
					
						
						|  | in_allow_list_state = gr.State(pd.DataFrame()) | 
					
						
						|  |  | 
					
						
						|  | default_deny_list_file_name = "default_deny_list.csv" | 
					
						
						|  | default_deny_list_loc = output_folder + "/" + default_deny_list_file_name | 
					
						
						|  | in_deny_list_state = gr.State([]) | 
					
						
						|  | in_deny_list_text_in = gr.Textbox(value="Deny list", visible=False) | 
					
						
						|  |  | 
					
						
						|  | fully_redacted_list_file_name = "default_fully_redacted_list.csv" | 
					
						
						|  | fully_redacted_list_loc = output_folder + "/" + fully_redacted_list_file_name | 
					
						
						|  | in_fully_redacted_list_state = gr.State([]) | 
					
						
						|  | in_fully_redacted_text_in = gr.Textbox(value="Fully redacted page list", visible=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | s3_default_bucket = gr.Textbox(label = "Default S3 bucket", value=bucket_name, visible=False) | 
					
						
						|  | s3_default_allow_list_file = gr.Textbox(label = "Default allow list file", value=default_allow_list_file_name, visible=False) | 
					
						
						|  | default_allow_list_output_folder_location = gr.Textbox(label = "Output default allow list location", value=default_allow_list_loc, visible=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | recogniser_entity_dataframe_base = gr.Dataframe(pd.DataFrame(data={"page":[], "label":[]}), col_count=2, type="pandas", visible=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | gr.Markdown( | 
					
						
						|  | """# Document redaction | 
					
						
						|  |  | 
					
						
						|  | Redact personally identifiable information (PII) from documents (pdf, images), open text, or tabular data (xlsx/csv/parquet). Please see the [User Guide](https://github.com/seanpedrick-case/doc_redaction/blob/main/README.md) for a walkthrough on how to use the app. Below is a very brief overview. | 
					
						
						|  |  | 
					
						
						|  | To identify text in documents, the 'local' text/OCR image analysis uses spacy/tesseract, and works ok for documents with typed text. If available, choose 'AWS Textract service' to redact more complex elements e.g. signatures or handwriting. | 
					
						
						|  |  | 
					
						
						|  | Then, choose a method for PII identification. 'Local' is quick and gives good results if you are primarily looking for a custom list of terms to redact (see Redaction settings). If available, AWS Comprehend gives better results at a small cost. | 
					
						
						|  |  | 
					
						
						|  | After redaction, review suggested redactions on the 'Review redactions' tab. The original pdf can be uploaded here alongside a '...redaction_file.csv' to continue a previous redaction/review task. See the 'Redaction settings' tab to choose which pages to redact, the type of information to redact (e.g. people, places), or custom terms to always include/ exclude from redaction. | 
					
						
						|  |  | 
					
						
						|  | NOTE: The app is not 100% accurate, and it will miss some personal information. It is essential that all outputs are reviewed **by a human** before using the final outputs.""") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with gr.Tab("PDFs/images"): | 
					
						
						|  | with gr.Accordion("Redact document", open = True): | 
					
						
						|  | in_doc_files = gr.File(label="Choose a document or image file (PDF, JPG, PNG)", file_count= "single", file_types=['.pdf', '.jpg', '.png', '.json'], height=file_input_height) | 
					
						
						|  | if RUN_AWS_FUNCTIONS == "1": | 
					
						
						|  | in_redaction_method = gr.Radio(label="Choose text extraction method. AWS Textract has a cost per page.", value = default_ocr_val, choices=[text_ocr_option, tesseract_ocr_option, textract_option]) | 
					
						
						|  | pii_identification_method_drop = gr.Radio(label = "Choose PII detection method. AWS Comprehend has a cost per 100 characters.", value = default_pii_detector, choices=[local_pii_detector, aws_pii_detector]) | 
					
						
						|  | else: | 
					
						
						|  | in_redaction_method = gr.Radio(label="Choose text extraction method.", value = default_ocr_val, choices=[text_ocr_option, tesseract_ocr_option]) | 
					
						
						|  | pii_identification_method_drop = gr.Radio(label = "Choose PII detection method.", value = default_pii_detector, choices=[local_pii_detector], visible=False) | 
					
						
						|  |  | 
					
						
						|  | gr.Markdown("""If you only want to redact certain pages, or certain entities (e.g. just email addresses, or a custom list of terms), please go to the redaction settings tab.""") | 
					
						
						|  | document_redact_btn = gr.Button("Redact document", variant="primary") | 
					
						
						|  | current_loop_page_number = gr.Number(value=0,precision=0, interactive=False, label = "Last redacted page in document", visible=False) | 
					
						
						|  | page_break_return = gr.Checkbox(value = False, label="Page break reached", visible=False) | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | output_summary = gr.Textbox(label="Output summary", scale=1) | 
					
						
						|  | output_file = gr.File(label="Output files", scale = 2, height=file_input_height) | 
					
						
						|  | latest_file_completed_text = gr.Number(value=0, label="Number of documents redacted", interactive=False, visible=False) | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | convert_text_pdf_to_img_btn = gr.Button(value="Convert pdf to image-based pdf to apply redactions", variant="secondary", visible=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pdf_feedback_title = gr.Markdown(value="## Please give feedback", visible=False) | 
					
						
						|  | pdf_feedback_radio = gr.Radio(label = "Quality of results", choices=["The results were good", "The results were not good"], visible=False) | 
					
						
						|  | pdf_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False) | 
					
						
						|  | pdf_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with gr.Tab("Review redactions", id="tab_object_annotation"): | 
					
						
						|  |  | 
					
						
						|  | with gr.Accordion(label = "Review redaction file", open=False): | 
					
						
						|  | output_review_files = gr.File(label="Review output files", file_count='multiple', height=file_input_height) | 
					
						
						|  | upload_previous_review_file_btn = gr.Button("Review previously created redaction file (upload original PDF and ...review_file.csv)") | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | annotation_last_page_button = gr.Button("Previous page", scale = 3) | 
					
						
						|  | annotate_current_page = gr.Number(value=1, label="Page (press enter to change)", precision=0, scale = 2) | 
					
						
						|  | annotate_max_pages = gr.Number(value=1, label="Total pages", precision=0, interactive=False, scale = 1) | 
					
						
						|  | annotation_next_page_button = gr.Button("Next page", scale = 3) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | annotate_zoom_in = gr.Button("Zoom in") | 
					
						
						|  | annotate_zoom_out = gr.Button("Zoom out") | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | clear_all_redactions_on_page_btn = gr.Button("Clear all redactions on page", visible=False) | 
					
						
						|  | annotation_button_apply = gr.Button("Apply revised redactions", variant="primary") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  |  | 
					
						
						|  | with gr.Column(scale=4): | 
					
						
						|  |  | 
					
						
						|  | zoom_str = str(annotator_zoom_number) + '%' | 
					
						
						|  |  | 
					
						
						|  | annotator = image_annotator( | 
					
						
						|  | label="Modify redaction boxes", | 
					
						
						|  | label_list=["Redaction"], | 
					
						
						|  | label_colors=[(0, 0, 0)], | 
					
						
						|  | show_label=False, | 
					
						
						|  | height=zoom_str, | 
					
						
						|  | width=zoom_str, | 
					
						
						|  | box_min_size=1, | 
					
						
						|  | box_selected_thickness=2, | 
					
						
						|  | handle_size=4, | 
					
						
						|  | sources=None, | 
					
						
						|  | show_clear_button=False, | 
					
						
						|  | show_share_button=False, | 
					
						
						|  | show_remove_button=False, | 
					
						
						|  | handles_cursor=True, | 
					
						
						|  | interactive=False | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.Column(scale=1): | 
					
						
						|  | recogniser_entity_dropdown = gr.Dropdown(label="Redaction category", value="ALL", allow_custom_value=True) | 
					
						
						|  | recogniser_entity_dataframe = gr.Dataframe(pd.DataFrame(data={"page":[], "label":[]}), col_count=2, type="pandas", label="Search results. Click to go to page") | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | annotation_last_page_button_bottom = gr.Button("Previous page", scale = 3) | 
					
						
						|  | annotate_current_page_bottom = gr.Number(value=1, label="Page (press enter to change)", precision=0, interactive=True, scale = 2) | 
					
						
						|  | annotate_max_pages_bottom = gr.Number(value=1, label="Total pages", precision=0, interactive=False, scale = 1) | 
					
						
						|  | annotation_next_page_button_bottom = gr.Button("Next page", scale = 3) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with gr.Tab(label="Open text or Excel/csv files"): | 
					
						
						|  | gr.Markdown( | 
					
						
						|  | """ | 
					
						
						|  | ### Choose open text or a tabular data file (xlsx or csv) to redact. | 
					
						
						|  | """ | 
					
						
						|  | ) | 
					
						
						|  | with gr.Accordion("Paste open text", open = False): | 
					
						
						|  | in_text = gr.Textbox(label="Enter open text", lines=10) | 
					
						
						|  | with gr.Accordion("Upload xlsx or csv files", open = True): | 
					
						
						|  | in_data_files = gr.File(label="Choose Excel or csv files", file_count= "multiple", file_types=['.xlsx', '.xls', '.csv', '.parquet', '.csv.gz'], height=file_input_height) | 
					
						
						|  |  | 
					
						
						|  | in_excel_sheets = gr.Dropdown(choices=["Choose Excel sheets to anonymise"], multiselect = True, label="Select Excel sheets that you want to anonymise (showing sheets present across all Excel files).", visible=False, allow_custom_value=True) | 
					
						
						|  |  | 
					
						
						|  | in_colnames = gr.Dropdown(choices=["Choose columns to anonymise"], multiselect = True, label="Select columns that you want to anonymise (showing columns present across all files).") | 
					
						
						|  |  | 
					
						
						|  | tabular_data_redact_btn = gr.Button("Redact text/data files", variant="primary") | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | text_output_summary = gr.Textbox(label="Output result") | 
					
						
						|  | text_output_file = gr.File(label="Output files") | 
					
						
						|  | text_tabular_files_done = gr.Number(value=0, label="Number of tabular files redacted", interactive=False, visible=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | data_feedback_title = gr.Markdown(value="## Please give feedback", visible=False) | 
					
						
						|  | data_feedback_radio = gr.Radio(label="Please give some feedback about the results of the redaction. A reminder that the app is only expected to identify about 60% of personally identifiable information in a given (typed) document.", | 
					
						
						|  | choices=["The results were good", "The results were not good"], visible=False, show_label=True) | 
					
						
						|  | data_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False) | 
					
						
						|  | data_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with gr.Tab(label="Redaction settings"): | 
					
						
						|  | with gr.Accordion("Custom allow, deny, and full page redaction lists", open = True): | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | in_allow_list = gr.File(label="Import allow list file - csv table with one column of a different word/phrase on each row (case sensitive). Terms in this file will not be redacted.", file_count="multiple", height=file_input_height) | 
					
						
						|  | in_allow_list_text = gr.Textbox(label="Custom allow list load status") | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | in_deny_list = gr.File(label="Import custom deny list - csv table with one column of a different word/phrase on each row (case sensitive). Terms in this file will always be redacted.", file_count="multiple", height=file_input_height) | 
					
						
						|  | in_deny_list_text = gr.Textbox(label="Custom deny list load status") | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | in_fully_redacted_list = gr.File(label="Import fully redacted pages list - csv table with one column of page numbers on each row. Page numbers in this file will be fully redacted.", file_count="multiple", height=file_input_height) | 
					
						
						|  | in_fully_redacted_list_text = gr.Textbox(label="Fully redacted page list load status") | 
					
						
						|  |  | 
					
						
						|  | with gr.Accordion("Select entity types to redact", open = True): | 
					
						
						|  | in_redact_entities = gr.Dropdown(value=chosen_redact_entities, choices=full_entity_list, multiselect=True, label="Local PII identification model (click empty space in box for full list)") | 
					
						
						|  |  | 
					
						
						|  | in_redact_comprehend_entities = gr.Dropdown(value=chosen_comprehend_entities, choices=full_comprehend_entity_list, multiselect=True, label="AWS Comprehend PII identification model (click empty space in box for full list)") | 
					
						
						|  |  | 
					
						
						|  | with gr.Accordion("Redact only selected pages", open = False): | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | page_min = gr.Number(precision=0,minimum=0,maximum=9999, label="Lowest page to redact") | 
					
						
						|  | page_max = gr.Number(precision=0,minimum=0,maximum=9999, label="Highest page to redact") | 
					
						
						|  |  | 
					
						
						|  | with gr.Accordion("AWS Textract specific options", open = False): | 
					
						
						|  | handwrite_signature_checkbox = gr.CheckboxGroup(label="AWS Textract settings", choices=["Redact all identified handwriting", "Redact all identified signatures"], value=["Redact all identified handwriting", "Redact all identified signatures"]) | 
					
						
						|  |  | 
					
						
						|  | in_redact_language = gr.Dropdown(value = "en", choices = ["en"], label="Redaction language (only English currently supported)", multiselect=False, visible=False) | 
					
						
						|  |  | 
					
						
						|  | with gr.Accordion("Settings for open text or xlsx/csv files", open = False): | 
					
						
						|  | anon_strat = gr.Radio(choices=["replace with <REDACTED>", "replace with <ENTITY_NAME>", "redact", "hash", "mask", "encrypt", "fake_first_name"], label="Select an anonymisation method.", value = "replace with <REDACTED>") | 
					
						
						|  |  | 
					
						
						|  | log_files_output = gr.File(label="Log file output", interactive=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | in_doc_files.upload(fn=get_input_file_names, inputs=[in_doc_files], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list]) | 
					
						
						|  |  | 
					
						
						|  | document_redact_btn.click(fn = reset_state_vars, outputs=[pdf_doc_state, all_image_annotations_state, all_line_level_ocr_results_df_state, all_decision_process_table_state, comprehend_query_number, textract_metadata_textbox, annotator]).\ | 
					
						
						|  | then(fn = prepare_image_or_pdf, inputs=[in_doc_files, in_redaction_method, in_allow_list, latest_file_completed_text, output_summary, first_loop_state, annotate_max_pages, current_loop_page_number, all_image_annotations_state], outputs=[output_summary, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_state], api_name="prepare_doc").\ | 
					
						
						|  | then(fn = choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_language, in_redact_entities, in_redact_comprehend_entities, in_redaction_method, in_allow_list_state, in_deny_list_state, in_fully_redacted_list_state, latest_file_completed_text, output_summary, output_file_list_state, log_files_output_list_state, first_loop_state, page_min, page_max, estimated_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_line_level_ocr_results_df_state, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number], | 
					
						
						|  | outputs=[output_summary, output_file, output_file_list_state, latest_file_completed_text, log_files_output, log_files_output_list_state, estimated_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_line_level_ocr_results_df_state, all_decision_process_table_state, comprehend_query_number], api_name="redact_doc").\ | 
					
						
						|  | then(fn=update_annotator, inputs=[all_image_annotations_state, page_min, recogniser_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | current_loop_page_number.change(fn = choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_language, in_redact_entities, in_redact_comprehend_entities, in_redaction_method, in_allow_list_state, in_deny_list_state, in_fully_redacted_list_state, latest_file_completed_text, output_summary, output_file_list_state, log_files_output_list_state, second_loop_state, page_min, page_max, estimated_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_line_level_ocr_results_df_state, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number], | 
					
						
						|  | outputs=[output_summary, output_file, output_file_list_state, latest_file_completed_text, log_files_output, log_files_output_list_state, estimated_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_line_level_ocr_results_df_state, all_decision_process_table_state, comprehend_query_number]).\ | 
					
						
						|  | then(fn=update_annotator, inputs=[all_image_annotations_state, page_min, recogniser_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latest_file_completed_text.change(fn=update_annotator, inputs=[all_image_annotations_state, page_min, recogniser_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base]).\ | 
					
						
						|  | then(fn=reveal_feedback_buttons, outputs=[pdf_feedback_radio, pdf_further_details_text, pdf_submit_feedback_btn, pdf_feedback_title]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | upload_previous_review_file_btn.click(fn=get_input_file_names, inputs=[output_review_files], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list]).\ | 
					
						
						|  | then(fn = prepare_image_or_pdf, inputs=[output_review_files, in_redaction_method, in_allow_list, latest_file_completed_text, output_summary, second_loop_state, annotate_max_pages, current_loop_page_number, all_image_annotations_state, prepare_for_review_bool], outputs=[output_summary, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_state]).\ | 
					
						
						|  | then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | annotate_current_page.submit( | 
					
						
						|  | modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, recogniser_entity_dropdown, recogniser_entity_dataframe_base], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom, recogniser_entity_dropdown, recogniser_entity_dataframe_base]).\ | 
					
						
						|  | then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base]) | 
					
						
						|  |  | 
					
						
						|  | annotation_last_page_button.click(fn=decrease_page, inputs=[annotate_current_page], outputs=[annotate_current_page, annotate_current_page_bottom]).\ | 
					
						
						|  | then(modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, recogniser_entity_dropdown, recogniser_entity_dataframe_base], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom, recogniser_entity_dropdown, recogniser_entity_dataframe_base]).\ | 
					
						
						|  | then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, recogniser_entity_dataframe, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base]) | 
					
						
						|  | annotation_next_page_button.click(fn=increase_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page, annotate_current_page_bottom]).\ | 
					
						
						|  | then(modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, recogniser_entity_dropdown, recogniser_entity_dataframe_base], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom, recogniser_entity_dropdown, recogniser_entity_dataframe_base]).\ | 
					
						
						|  | then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | annotate_zoom_in.click(modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, recogniser_entity_dropdown, recogniser_entity_dataframe_base], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom, recogniser_entity_dropdown, recogniser_entity_dataframe_base]).\ | 
					
						
						|  | then(update_zoom, inputs=[annotator_zoom_number, annotate_current_page, zoom_true_bool], outputs=[annotator_zoom_number, annotate_current_page]) | 
					
						
						|  |  | 
					
						
						|  | annotate_zoom_out.click(modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, recogniser_entity_dropdown, recogniser_entity_dataframe_base], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom, recogniser_entity_dropdown, recogniser_entity_dataframe_base]).\ | 
					
						
						|  | then(update_zoom, inputs=[annotator_zoom_number, annotate_current_page, zoom_false_bool], outputs=[annotator_zoom_number, annotate_current_page]) | 
					
						
						|  |  | 
					
						
						|  | annotator_zoom_number.change(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, recogniser_entity_dataframe, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base]) | 
					
						
						|  |  | 
					
						
						|  | clear_all_redactions_on_page_btn.click(modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, recogniser_entity_dropdown, recogniser_entity_dataframe_base, clear_all_page_redactions], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom, recogniser_entity_dropdown, recogniser_entity_dataframe_base]).\ | 
					
						
						|  | then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | annotation_button_apply.click(apply_redactions, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output], scroll_to_output=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | annotate_current_page_bottom.submit( | 
					
						
						|  | modify_existing_page_redactions, inputs = [annotator, annotate_current_page_bottom, annotate_previous_page, all_image_annotations_state, recogniser_entity_dropdown, recogniser_entity_dataframe_base], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page, recogniser_entity_dropdown, recogniser_entity_dataframe_base]).\ | 
					
						
						|  | then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, recogniser_entity_dataframe, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base]) | 
					
						
						|  |  | 
					
						
						|  | annotation_last_page_button_bottom.click(fn=decrease_page, inputs=[annotate_current_page], outputs=[annotate_current_page, annotate_current_page_bottom]).\ | 
					
						
						|  | then(modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, recogniser_entity_dropdown, recogniser_entity_dataframe_base], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom, recogniser_entity_dropdown, recogniser_entity_dataframe_base]).\ | 
					
						
						|  | then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base]) | 
					
						
						|  |  | 
					
						
						|  | annotation_next_page_button_bottom.click(fn=increase_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page, annotate_current_page_bottom]).\ | 
					
						
						|  | then(modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, recogniser_entity_dropdown, recogniser_entity_dataframe_base], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom, recogniser_entity_dropdown, recogniser_entity_dataframe_base]).\ | 
					
						
						|  | then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | recogniser_entity_dropdown.select(update_entities_df, inputs=[recogniser_entity_dropdown, recogniser_entity_dataframe_base], outputs=[recogniser_entity_dataframe]) | 
					
						
						|  |  | 
					
						
						|  | recogniser_entity_dataframe.select(df_select_callback, inputs=[recogniser_entity_dataframe], outputs=annotate_current_page).\ | 
					
						
						|  | then(modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, recogniser_entity_dropdown, recogniser_entity_dataframe_base], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom, recogniser_entity_dropdown, recogniser_entity_dataframe_base]).\ | 
					
						
						|  | then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | in_data_files.upload(fn=put_columns_in_df, inputs=[in_data_files], outputs=[in_colnames, in_excel_sheets]).\ | 
					
						
						|  | then(fn=get_input_file_names, inputs=[in_data_files], outputs=[data_full_file_name_textbox, data_file_name_no_extension_textbox, data_file_name_with_extension_textbox, data_full_file_name_textbox, data_file_name_textbox_list]) | 
					
						
						|  |  | 
					
						
						|  | tabular_data_redact_btn.click(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, first_loop_state], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state], api_name="redact_data") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | text_tabular_files_done.change(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, second_loop_state], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state]).\ | 
					
						
						|  | then(fn = reveal_feedback_buttons, outputs=[data_feedback_radio, data_further_details_text, data_submit_feedback_btn, data_feedback_title]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | in_allow_list.change(fn=custom_regex_load, inputs=[in_allow_list], outputs=[in_allow_list_text, in_allow_list_state]) | 
					
						
						|  | in_deny_list.change(fn=custom_regex_load, inputs=[in_deny_list, in_deny_list_text_in], outputs=[in_deny_list_text, in_deny_list_state]) | 
					
						
						|  | in_fully_redacted_list.change(fn=custom_regex_load, inputs=[in_fully_redacted_list, in_fully_redacted_text_in], outputs=[in_fully_redacted_list_text, in_fully_redacted_list_state]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | app.load(get_connection_params, inputs=None, outputs=[session_hash_state, s3_output_folder_state, session_hash_textbox]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | access_callback = CSVLogger_custom(dataset_file_name=log_file_name) | 
					
						
						|  | access_callback.setup([session_hash_textbox], access_logs_folder) | 
					
						
						|  | session_hash_textbox.change(lambda *args: access_callback.flag(list(args)), [session_hash_textbox], None, preprocess=False).\ | 
					
						
						|  | then(fn = upload_file_to_s3, inputs=[access_logs_state, access_s3_logs_loc_state], outputs=[s3_logs_output_textbox]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pdf_callback = CSVLogger_custom(dataset_file_name=log_file_name) | 
					
						
						|  | pdf_callback.setup([pdf_feedback_radio, pdf_further_details_text, doc_file_name_no_extension_textbox], feedback_logs_folder) | 
					
						
						|  | pdf_submit_feedback_btn.click(lambda *args: pdf_callback.flag(list(args)), [pdf_feedback_radio, pdf_further_details_text, doc_file_name_no_extension_textbox], None, preprocess=False).\ | 
					
						
						|  | then(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[pdf_further_details_text]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | data_callback = CSVLogger_custom(dataset_file_name=log_file_name) | 
					
						
						|  | data_callback.setup([data_feedback_radio, data_further_details_text, data_full_file_name_textbox], feedback_logs_folder) | 
					
						
						|  | data_submit_feedback_btn.click(lambda *args: data_callback.flag(list(args)), [data_feedback_radio, data_further_details_text, data_full_file_name_textbox], None, preprocess=False).\ | 
					
						
						|  | then(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[data_further_details_text]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | usage_callback = CSVLogger_custom(dataset_file_name=log_file_name) | 
					
						
						|  | usage_callback.setup([session_hash_textbox, doc_file_name_no_extension_textbox, data_full_file_name_textbox, estimated_time_taken_number, textract_metadata_textbox, pii_identification_method_drop, comprehend_query_number], usage_logs_folder) | 
					
						
						|  | latest_file_completed_text.change(lambda *args: usage_callback.flag(list(args)), [session_hash_textbox, doc_file_name_no_extension_textbox, data_full_file_name_textbox, estimated_time_taken_number, textract_metadata_textbox, pii_identification_method_drop, comprehend_query_number], None, preprocess=False).\ | 
					
						
						|  | then(fn = upload_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | COGNITO_AUTH = get_or_create_env_var('COGNITO_AUTH', '0') | 
					
						
						|  | print(f'The value of COGNITO_AUTH is {COGNITO_AUTH}') | 
					
						
						|  | 1 | 
					
						
						|  | RUN_DIRECT_MODE = get_or_create_env_var('RUN_DIRECT_MODE', '0') | 
					
						
						|  | print(f'The value of RUN_DIRECT_MODE is {RUN_DIRECT_MODE}') | 
					
						
						|  |  | 
					
						
						|  | MAX_QUEUE_SIZE = int(get_or_create_env_var('MAX_QUEUE_SIZE', '5')) | 
					
						
						|  | print(f'The value of RUN_DIRECT_MODE is {MAX_QUEUE_SIZE}') | 
					
						
						|  |  | 
					
						
						|  | MAX_FILE_SIZE = get_or_create_env_var('MAX_FILE_SIZE', '100mb') | 
					
						
						|  | print(f'The value of MAX_FILE_SIZE is {MAX_FILE_SIZE}') | 
					
						
						|  |  | 
					
						
						|  | GRADIO_SERVER_PORT = int(get_or_create_env_var('GRADIO_SERVER_PORT', '7860')) | 
					
						
						|  | print(f'The value of GRADIO_SERVER_PORT is {GRADIO_SERVER_PORT}') | 
					
						
						|  |  | 
					
						
						|  | ROOT_PATH = get_or_create_env_var('ROOT_PATH', '') | 
					
						
						|  | print(f'The value of ROOT_PATH is {ROOT_PATH}') | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  |  | 
					
						
						|  | if RUN_DIRECT_MODE == "0": | 
					
						
						|  |  | 
					
						
						|  | if os.environ['COGNITO_AUTH'] == "1": | 
					
						
						|  | app.queue(max_size=MAX_QUEUE_SIZE).launch(show_error=True, auth=authenticate_user, max_file_size=MAX_FILE_SIZE, server_port=GRADIO_SERVER_PORT, root_path=ROOT_PATH) | 
					
						
						|  | else: | 
					
						
						|  | app.queue(max_size=MAX_QUEUE_SIZE).launch(show_error=True, inbrowser=True, max_file_size=MAX_FILE_SIZE, server_port=GRADIO_SERVER_PORT, root_path=ROOT_PATH) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | from tools.cli_redact import main | 
					
						
						|  |  | 
					
						
						|  | main(first_loop_state, latest_file_completed=0, output_summary="", output_file_list=None, | 
					
						
						|  | log_files_list=None, estimated_time=0, textract_metadata="", comprehend_query_num=0, | 
					
						
						|  | current_loop_page=0, page_break=False, pdf_doc_state = [], all_image_annotations = [], all_line_level_ocr_results = pd.DataFrame(), all_decision_process_table = pd.DataFrame(),chosen_comprehend_entities = chosen_comprehend_entities, chosen_redact_entities = chosen_redact_entities, handwrite_signature_checkbox = ["Redact all identified handwriting", "Redact all identified signatures"]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  |