|
|
from typing import List
|
|
|
from presidio_analyzer import AnalyzerEngine, PatternRecognizer, EntityRecognizer, Pattern, RecognizerResult
|
|
|
from presidio_analyzer.nlp_engine import SpacyNlpEngine, NlpArtifacts, NerModelConfiguration
|
|
|
import spacy
|
|
|
from spacy.matcher import Matcher
|
|
|
from spaczz.matcher import FuzzyMatcher
|
|
|
spacy.prefer_gpu()
|
|
|
from spacy.cli.download import download
|
|
|
import Levenshtein
|
|
|
import re
|
|
|
import os
|
|
|
import requests
|
|
|
import gradio as gr
|
|
|
from tools.config import DEFAULT_LANGUAGE, TESSERACT_DATA_FOLDER
|
|
|
|
|
|
score_threshold = 0.001
|
|
|
custom_entities = ["TITLES", "UKPOSTCODE", "STREETNAME", "CUSTOM"]
|
|
|
|
|
|
|
|
|
class LoadedSpacyNlpEngine(SpacyNlpEngine):
|
|
|
def __init__(self, loaded_spacy_model, language_code: str):
|
|
|
super().__init__(ner_model_configuration=NerModelConfiguration(labels_to_ignore=["CARDINAL", "ORDINAL"]))
|
|
|
self.nlp = {language_code: loaded_spacy_model}
|
|
|
|
|
|
def _base_language_code(language: str) -> str:
|
|
|
lang = _normalize_language_input(language)
|
|
|
if "_" in lang:
|
|
|
return lang.split("_")[0]
|
|
|
return lang
|
|
|
|
|
|
def load_spacy_model(language: str = DEFAULT_LANGUAGE):
|
|
|
"""
|
|
|
Load a spaCy model for the requested language and return it as `nlp`.
|
|
|
|
|
|
Accepts common inputs like: "en", "en_lg", "en_sm", "de", "fr", "es", "it", "nl", "pt", "zh", "ja", "xx".
|
|
|
Falls back through sensible candidates and will download if missing.
|
|
|
"""
|
|
|
|
|
|
synonyms = {
|
|
|
"english": "en",
|
|
|
"catalan": "ca",
|
|
|
"danish": "da",
|
|
|
"german": "de",
|
|
|
"french": "fr",
|
|
|
"greek": "el",
|
|
|
"finnish": "fi",
|
|
|
"croatian": "hr",
|
|
|
"lithuanian": "lt",
|
|
|
"macedonian": "mk",
|
|
|
"norwegian_bokmaal": "nb",
|
|
|
"polish": "pl",
|
|
|
"russian": "ru",
|
|
|
"slovenian": "sl",
|
|
|
"swedish": "sv",
|
|
|
"dutch": "nl",
|
|
|
"portuguese": "pt",
|
|
|
"chinese": "zh",
|
|
|
"japanese": "ja",
|
|
|
"multilingual": "xx",
|
|
|
}
|
|
|
|
|
|
lang_norm = _normalize_language_input(language)
|
|
|
lang_norm = synonyms.get(lang_norm, lang_norm)
|
|
|
base_lang = _base_language_code(lang_norm)
|
|
|
|
|
|
candidates_by_lang = {
|
|
|
|
|
|
"en": [
|
|
|
"en_core_web_lg",
|
|
|
"en_core_web_trf",
|
|
|
"en_core_web_md",
|
|
|
"en_core_web_sm",
|
|
|
],
|
|
|
"en_lg": ["en_core_web_lg"],
|
|
|
"en_trf": ["en_core_web_trf"],
|
|
|
"en_md": ["en_core_web_md"],
|
|
|
"en_sm": ["en_core_web_sm"],
|
|
|
|
|
|
|
|
|
"ca": ["ca_core_news_lg", "ca_core_news_md", "ca_core_news_sm"],
|
|
|
"da": ["da_core_news_lg", "da_core_news_md", "da_core_news_sm"],
|
|
|
"de": ["de_core_news_lg", "de_core_news_md", "de_core_news_sm"],
|
|
|
"el": ["el_core_news_lg", "el_core_news_md", "el_core_news_sm"],
|
|
|
"es": ["es_core_news_lg", "es_core_news_md", "es_core_news_sm"],
|
|
|
"fi": ["fi_core_news_lg", "fi_core_news_md", "fi_core_news_sm"],
|
|
|
"fr": ["fr_core_news_lg", "fr_core_news_md", "fr_core_news_sm"],
|
|
|
"hr": ["hr_core_news_lg", "hr_core_news_md", "hr_core_news_sm"],
|
|
|
"it": ["it_core_news_lg", "it_core_news_md", "it_core_news_sm"],
|
|
|
"ja": ["ja_core_news_lg", "ja_core_news_md", "ja_core_news_sm"],
|
|
|
"ko": ["ko_core_news_lg", "ko_core_news_md", "ko_core_news_sm"],
|
|
|
"lt": ["lt_core_news_lg", "lt_core_news_md", "lt_core_news_sm"],
|
|
|
"mk": ["mk_core_news_lg", "mk_core_news_md", "mk_core_news_sm"],
|
|
|
"nb": ["nb_core_news_lg", "nb_core_news_md", "nb_core_news_sm"],
|
|
|
"nl": ["nl_core_news_lg", "nl_core_news_md", "nl_core_news_sm"],
|
|
|
"pl": ["pl_core_news_lg", "pl_core_news_md", "pl_core_news_sm"],
|
|
|
"pt": ["pt_core_news_lg", "pt_core_news_md", "pt_core_news_sm"],
|
|
|
"ro": ["ro_core_news_lg", "ro_core_news_md", "ro_core_news_sm"],
|
|
|
"ru": ["ru_core_news_lg", "ru_core_news_md", "ru_core_news_sm"],
|
|
|
"sl": ["sl_core_news_lg", "sl_core_news_md", "sl_core_news_sm"],
|
|
|
"sv": ["sv_core_news_lg", "sv_core_news_md", "sv_core_news_sm"],
|
|
|
"uk": ["uk_core_news_lg", "uk_core_news_md", "uk_core_news_sm"],
|
|
|
"zh": ["zh_core_web_lg", "zh_core_web_mod", "zh_core_web_sm", "zh_core_web_trf"],
|
|
|
|
|
|
|
|
|
"xx": ["xx_ent_wiki_sm"],
|
|
|
}
|
|
|
|
|
|
if lang_norm in candidates_by_lang:
|
|
|
candidates = candidates_by_lang[lang_norm]
|
|
|
elif base_lang in candidates_by_lang:
|
|
|
candidates = candidates_by_lang[base_lang]
|
|
|
else:
|
|
|
|
|
|
candidates = candidates_by_lang["xx"]
|
|
|
|
|
|
last_error = None
|
|
|
for candidate in candidates:
|
|
|
|
|
|
try:
|
|
|
module = __import__(candidate)
|
|
|
print(f"Successfully imported spaCy model: {candidate}")
|
|
|
return module.load()
|
|
|
except Exception as e:
|
|
|
last_error = e
|
|
|
|
|
|
|
|
|
try:
|
|
|
nlp = spacy.load(candidate)
|
|
|
print(f"Successfully loaded spaCy model via spacy.load: {candidate}")
|
|
|
return nlp
|
|
|
except Exception as e:
|
|
|
last_error = e
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
|
nlp = spacy.load(candidate)
|
|
|
print(f"Model {candidate} is already available, skipping download")
|
|
|
return nlp
|
|
|
except OSError:
|
|
|
|
|
|
pass
|
|
|
except Exception as e:
|
|
|
last_error = e
|
|
|
continue
|
|
|
|
|
|
|
|
|
try:
|
|
|
print(f"Downloading spaCy model: {candidate}")
|
|
|
download(candidate)
|
|
|
nlp = spacy.load(candidate)
|
|
|
print(f"Successfully downloaded and loaded spaCy model: {candidate}")
|
|
|
return nlp
|
|
|
except Exception as e:
|
|
|
last_error = e
|
|
|
continue
|
|
|
|
|
|
raise RuntimeError(f"Failed to load spaCy model for language '{language}'. Last error: {last_error}")
|
|
|
|
|
|
|
|
|
def _normalize_language_input(language: str) -> str:
|
|
|
return language.strip().lower().replace("-", "_")
|
|
|
|
|
|
|
|
|
ACTIVE_LANGUAGE_CODE = _base_language_code(DEFAULT_LANGUAGE)
|
|
|
nlp = None
|
|
|
|
|
|
def get_tesseract_lang_code(short_code:str):
|
|
|
"""
|
|
|
Maps a two-letter language code to the corresponding Tesseract OCR code.
|
|
|
|
|
|
Args:
|
|
|
short_code (str): The two-letter language code (e.g., "en", "de").
|
|
|
|
|
|
Returns:
|
|
|
str or None: The Tesseract language code (e.g., "eng", "deu"),
|
|
|
or None if no mapping is found.
|
|
|
"""
|
|
|
|
|
|
|
|
|
lang_map = {
|
|
|
"en": "eng",
|
|
|
"de": "deu",
|
|
|
"fr": "fra",
|
|
|
"es": "spa",
|
|
|
"it": "ita",
|
|
|
"nl": "nld",
|
|
|
"pt": "por",
|
|
|
"zh": "chi_sim",
|
|
|
"ja": "jpn",
|
|
|
"ko": "kor",
|
|
|
"lt": "lit",
|
|
|
"mk": "mkd",
|
|
|
"nb": "nor",
|
|
|
"pl": "pol",
|
|
|
"ro": "ron",
|
|
|
"ru": "rus",
|
|
|
"sl": "slv",
|
|
|
"sv": "swe",
|
|
|
"uk": "ukr"
|
|
|
}
|
|
|
|
|
|
return lang_map.get(short_code)
|
|
|
|
|
|
def download_tesseract_lang_pack(short_lang_code:str, tessdata_dir=TESSERACT_DATA_FOLDER):
|
|
|
"""
|
|
|
Downloads a Tesseract language pack to a local directory.
|
|
|
|
|
|
Args:
|
|
|
lang_code (str): The short code for the language (e.g., "eng", "fra").
|
|
|
tessdata_dir (str, optional): The directory to save the language pack.
|
|
|
Defaults to "tessdata".
|
|
|
"""
|
|
|
|
|
|
|
|
|
if not os.path.exists(tessdata_dir):
|
|
|
os.makedirs(tessdata_dir)
|
|
|
|
|
|
|
|
|
lang_code = get_tesseract_lang_code(short_lang_code)
|
|
|
|
|
|
if lang_code is None:
|
|
|
raise ValueError(f"Language code {short_lang_code} not found in Tesseract language map")
|
|
|
|
|
|
|
|
|
file_path = os.path.join(tessdata_dir, f"{lang_code}.traineddata")
|
|
|
|
|
|
|
|
|
if os.path.exists(file_path):
|
|
|
print(f"Language pack {lang_code}.traineddata already exists at {file_path}")
|
|
|
return file_path
|
|
|
|
|
|
|
|
|
url = f"https://raw.githubusercontent.com/tesseract-ocr/tessdata/main/{lang_code}.traineddata"
|
|
|
|
|
|
|
|
|
try:
|
|
|
response = requests.get(url, stream=True)
|
|
|
response.raise_for_status()
|
|
|
|
|
|
with open(file_path, "wb") as f:
|
|
|
for chunk in response.iter_content(chunk_size=8192):
|
|
|
f.write(chunk)
|
|
|
|
|
|
print(f"Successfully downloaded {lang_code}.traineddata to {file_path}")
|
|
|
return file_path
|
|
|
|
|
|
except requests.exceptions.RequestException as e:
|
|
|
print(f"Error downloading {lang_code}.traineddata: {e}")
|
|
|
return None
|
|
|
|
|
|
|
|
|
def custom_word_list_recogniser(custom_list:List[str]=[]):
|
|
|
|
|
|
|
|
|
quote_str = '"'
|
|
|
replace_str = '(?:"|"|")'
|
|
|
|
|
|
custom_regex = '|'.join(
|
|
|
rf'(?<!\w){re.escape(term.strip()).replace(quote_str, replace_str)}(?!\w)'
|
|
|
for term in custom_list
|
|
|
)
|
|
|
|
|
|
|
|
|
custom_pattern = Pattern(name="custom_pattern", regex=custom_regex, score = 1)
|
|
|
|
|
|
custom_recogniser = PatternRecognizer(supported_entity="CUSTOM", name="CUSTOM", patterns = [custom_pattern],
|
|
|
global_regex_flags=re.DOTALL | re.MULTILINE | re.IGNORECASE)
|
|
|
|
|
|
return custom_recogniser
|
|
|
|
|
|
|
|
|
custom_recogniser = custom_word_list_recogniser()
|
|
|
|
|
|
|
|
|
titles_list = ["Sir", "Ma'am", "Madam", "Mr", "Mr.", "Mrs", "Mrs.", "Ms", "Ms.", "Miss", "Dr", "Dr.", "Professor"]
|
|
|
titles_regex = '\\b' + '\\b|\\b'.join(rf"{re.escape(title)}" for title in titles_list) + '\\b'
|
|
|
titles_pattern = Pattern(name="titles_pattern",regex=titles_regex, score = 1)
|
|
|
titles_recogniser = PatternRecognizer(supported_entity="TITLES", name="TITLES", patterns = [titles_pattern],
|
|
|
global_regex_flags=re.DOTALL | re.MULTILINE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ukpostcode_pattern = Pattern(
|
|
|
name="ukpostcode_pattern",
|
|
|
regex=r"\b([A-Z]{1,2}\d[A-Z\d]? ?\d[A-Z]{2}|GIR ?0AA)\b",
|
|
|
score=1
|
|
|
)
|
|
|
|
|
|
|
|
|
ukpostcode_recogniser = PatternRecognizer(supported_entity="UKPOSTCODE", name = "UKPOSTCODE", patterns = [ukpostcode_pattern])
|
|
|
|
|
|
|
|
|
|
|
|
def extract_street_name(text:str) -> str:
|
|
|
"""
|
|
|
Extracts the street name and preceding word (that should contain at least one number) from the given text.
|
|
|
|
|
|
"""
|
|
|
|
|
|
street_types = [
|
|
|
'Street', 'St', 'Boulevard', 'Blvd', 'Highway', 'Hwy', 'Broadway', 'Freeway',
|
|
|
'Causeway', 'Cswy', 'Expressway', 'Way', 'Walk', 'Lane', 'Ln', 'Road', 'Rd',
|
|
|
'Avenue', 'Ave', 'Circle', 'Cir', 'Cove', 'Cv', 'Drive', 'Dr', 'Parkway', 'Pkwy',
|
|
|
'Park', 'Court', 'Ct', 'Square', 'Sq', 'Loop', 'Place', 'Pl', 'Parade', 'Estate',
|
|
|
'Alley', 'Arcade', 'Avenue', 'Ave', 'Bay', 'Bend', 'Brae', 'Byway', 'Close', 'Corner', 'Cove',
|
|
|
'Crescent', 'Cres', 'Cul-de-sac', 'Dell', 'Drive', 'Dr', 'Esplanade', 'Glen', 'Green', 'Grove', 'Heights', 'Hts',
|
|
|
'Mews', 'Parade', 'Path', 'Piazza', 'Promenade', 'Quay', 'Ridge', 'Row', 'Terrace', 'Ter', 'Track', 'Trail', 'View', 'Villas',
|
|
|
'Marsh', 'Embankment', 'Cut', 'Hill', 'Passage', 'Rise', 'Vale', 'Side'
|
|
|
]
|
|
|
|
|
|
|
|
|
street_types_pattern = '|'.join(rf"{re.escape(street_type)}" for street_type in street_types)
|
|
|
|
|
|
|
|
|
|
|
|
pattern = rf'(?P<preceding_word>\w*\d\w*)\s*'
|
|
|
pattern += rf'(?P<street_name>\w+\s*\b(?:{street_types_pattern})\b)'
|
|
|
|
|
|
|
|
|
matches = re.finditer(pattern, text, re.DOTALL | re.MULTILINE | re.IGNORECASE)
|
|
|
|
|
|
start_positions = []
|
|
|
end_positions = []
|
|
|
|
|
|
for match in matches:
|
|
|
preceding_word = match.group('preceding_word').strip()
|
|
|
street_name = match.group('street_name').strip()
|
|
|
start_pos = match.start()
|
|
|
end_pos = match.end()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
start_positions.append(start_pos)
|
|
|
end_positions.append(end_pos)
|
|
|
|
|
|
return start_positions, end_positions
|
|
|
|
|
|
class StreetNameRecognizer(EntityRecognizer):
|
|
|
|
|
|
def load(self) -> None:
|
|
|
"""No loading is required."""
|
|
|
pass
|
|
|
|
|
|
def analyze(self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts) -> List[RecognizerResult]:
|
|
|
"""
|
|
|
Logic for detecting a specific PII
|
|
|
"""
|
|
|
|
|
|
start_pos, end_pos = extract_street_name(text)
|
|
|
|
|
|
results = []
|
|
|
|
|
|
for i in range(0, len(start_pos)):
|
|
|
|
|
|
result = RecognizerResult(
|
|
|
entity_type="STREETNAME",
|
|
|
start = start_pos[i],
|
|
|
end = end_pos[i],
|
|
|
score= 1
|
|
|
)
|
|
|
|
|
|
results.append(result)
|
|
|
|
|
|
return results
|
|
|
|
|
|
street_recogniser = StreetNameRecognizer(supported_entities=["STREETNAME"])
|
|
|
|
|
|
|
|
|
def custom_fuzzy_word_list_regex(text:str, custom_list:List[str]=[]):
|
|
|
|
|
|
|
|
|
quote_str = '"'
|
|
|
replace_str = '(?:"|"|")'
|
|
|
|
|
|
custom_regex_pattern = '|'.join(
|
|
|
rf'(?<!\w){re.escape(term.strip()).replace(quote_str, replace_str)}(?!\w)'
|
|
|
for term in custom_list
|
|
|
)
|
|
|
|
|
|
|
|
|
matches = re.finditer(custom_regex_pattern, text, re.DOTALL | re.MULTILINE | re.IGNORECASE)
|
|
|
|
|
|
start_positions = []
|
|
|
end_positions = []
|
|
|
|
|
|
for match in matches:
|
|
|
start_pos = match.start()
|
|
|
end_pos = match.end()
|
|
|
|
|
|
start_positions.append(start_pos)
|
|
|
end_positions.append(end_pos)
|
|
|
|
|
|
return start_positions, end_positions
|
|
|
|
|
|
|
|
|
class CustomWordFuzzyRecognizer(EntityRecognizer):
|
|
|
def __init__(self, supported_entities: List[str], custom_list: List[str] = [], spelling_mistakes_max: int = 1, search_whole_phrase: bool = True):
|
|
|
super().__init__(supported_entities=supported_entities)
|
|
|
self.custom_list = custom_list
|
|
|
self.spelling_mistakes_max = spelling_mistakes_max
|
|
|
self.search_whole_phrase = search_whole_phrase
|
|
|
|
|
|
def load(self) -> None:
|
|
|
"""No loading is required."""
|
|
|
pass
|
|
|
|
|
|
def analyze(self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts) -> List[RecognizerResult]:
|
|
|
"""
|
|
|
Logic for detecting a specific PII
|
|
|
"""
|
|
|
start_pos, end_pos = spacy_fuzzy_search(text, self.custom_list, self.spelling_mistakes_max, self.search_whole_phrase)
|
|
|
|
|
|
results = []
|
|
|
|
|
|
for i in range(0, len(start_pos)):
|
|
|
result = RecognizerResult(
|
|
|
entity_type="CUSTOM_FUZZY",
|
|
|
start=start_pos[i],
|
|
|
end=end_pos[i],
|
|
|
score=1
|
|
|
)
|
|
|
results.append(result)
|
|
|
|
|
|
return results
|
|
|
|
|
|
custom_list_default = []
|
|
|
custom_word_fuzzy_recognizer = CustomWordFuzzyRecognizer(supported_entities=["CUSTOM_FUZZY"], custom_list=custom_list_default)
|
|
|
|
|
|
|
|
|
loaded_nlp_engine = LoadedSpacyNlpEngine(loaded_spacy_model = nlp, language_code = ACTIVE_LANGUAGE_CODE)
|
|
|
|
|
|
def create_nlp_analyser(language: str = DEFAULT_LANGUAGE, custom_list: List[str] = None,
|
|
|
spelling_mistakes_max: int = 1, search_whole_phrase: bool = True, existing_nlp_analyser: AnalyzerEngine = None, return_also_model: bool = False):
|
|
|
"""
|
|
|
Create an nlp_analyser object based on the specified language input.
|
|
|
|
|
|
Args:
|
|
|
language (str): Language code (e.g., "en", "de", "fr", "es", etc.)
|
|
|
custom_list (List[str], optional): List of custom words to recognize. Defaults to None.
|
|
|
spelling_mistakes_max (int, optional): Maximum number of spelling mistakes for fuzzy matching. Defaults to 1.
|
|
|
search_whole_phrase (bool, optional): Whether to search for whole phrases or individual words. Defaults to True.
|
|
|
existing_nlp_analyser (AnalyzerEngine, optional): Existing nlp_analyser object to use. Defaults to None.
|
|
|
return_also_model (bool, optional): Whether to return the nlp_model object as well. Defaults to False.
|
|
|
|
|
|
Returns:
|
|
|
AnalyzerEngine: Configured nlp_analyser object with custom recognizers
|
|
|
"""
|
|
|
|
|
|
if existing_nlp_analyser is None:
|
|
|
pass
|
|
|
else:
|
|
|
if existing_nlp_analyser.supported_languages[0] == language:
|
|
|
nlp_analyser = existing_nlp_analyser
|
|
|
print(f"Using existing nlp_analyser for {language}")
|
|
|
return nlp_analyser
|
|
|
|
|
|
|
|
|
nlp_model = load_spacy_model(language)
|
|
|
|
|
|
|
|
|
base_lang_code = _base_language_code(language)
|
|
|
|
|
|
|
|
|
if custom_list is None:
|
|
|
custom_list = []
|
|
|
|
|
|
custom_recogniser = custom_word_list_recogniser(custom_list)
|
|
|
custom_word_fuzzy_recognizer = CustomWordFuzzyRecognizer(
|
|
|
supported_entities=["CUSTOM_FUZZY"],
|
|
|
custom_list=custom_list,
|
|
|
spelling_mistakes_max=spelling_mistakes_max,
|
|
|
search_whole_phrase=search_whole_phrase
|
|
|
)
|
|
|
|
|
|
|
|
|
loaded_nlp_engine = LoadedSpacyNlpEngine(
|
|
|
loaded_spacy_model=nlp_model,
|
|
|
language_code=base_lang_code
|
|
|
)
|
|
|
|
|
|
|
|
|
nlp_analyser = AnalyzerEngine(
|
|
|
nlp_engine=loaded_nlp_engine,
|
|
|
default_score_threshold=score_threshold,
|
|
|
supported_languages=[base_lang_code],
|
|
|
log_decision_process=False,
|
|
|
)
|
|
|
|
|
|
|
|
|
nlp_analyser.registry.add_recognizer(custom_recogniser)
|
|
|
nlp_analyser.registry.add_recognizer(custom_word_fuzzy_recognizer)
|
|
|
|
|
|
|
|
|
if base_lang_code == "en":
|
|
|
nlp_analyser.registry.add_recognizer(street_recogniser)
|
|
|
nlp_analyser.registry.add_recognizer(ukpostcode_recogniser)
|
|
|
nlp_analyser.registry.add_recognizer(titles_recogniser)
|
|
|
|
|
|
if return_also_model:
|
|
|
return nlp_analyser, nlp_model
|
|
|
|
|
|
return nlp_analyser
|
|
|
|
|
|
|
|
|
nlp_analyser, nlp_model = create_nlp_analyser(DEFAULT_LANGUAGE, return_also_model=True)
|
|
|
|
|
|
def spacy_fuzzy_search(text: str, custom_query_list:List[str]=[], spelling_mistakes_max:int = 1, search_whole_phrase:bool=True, nlp=nlp_model, progress=gr.Progress(track_tqdm=True)):
|
|
|
''' Conduct fuzzy match on a list of text data.'''
|
|
|
|
|
|
all_matches = []
|
|
|
all_start_positions = []
|
|
|
all_end_positions = []
|
|
|
all_ratios = []
|
|
|
|
|
|
|
|
|
|
|
|
if not text:
|
|
|
out_message = "No text data found. Skipping page."
|
|
|
print(out_message)
|
|
|
return all_start_positions, all_end_positions
|
|
|
|
|
|
for string_query in custom_query_list:
|
|
|
|
|
|
query = nlp(string_query)
|
|
|
|
|
|
if search_whole_phrase == False:
|
|
|
|
|
|
token_query = [token.text for token in query if not token.is_space and not token.is_stop and not token.is_punct]
|
|
|
|
|
|
spelling_mistakes_fuzzy_pattern = "FUZZY" + str(spelling_mistakes_max)
|
|
|
|
|
|
if len(token_query) > 1:
|
|
|
|
|
|
pattern_fuzz = [{"TEXT": {spelling_mistakes_fuzzy_pattern: {"IN": token_query}}}]
|
|
|
else:
|
|
|
|
|
|
pattern_fuzz = [{"TEXT": {spelling_mistakes_fuzzy_pattern: token_query[0]}}]
|
|
|
|
|
|
matcher = Matcher(nlp.vocab)
|
|
|
matcher.add(string_query, [pattern_fuzz])
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
|
|
|
|
matcher = FuzzyMatcher(nlp.vocab)
|
|
|
patterns = [nlp.make_doc(string_query)]
|
|
|
matcher.add("PHRASE", patterns, [{"ignore_case": True}])
|
|
|
|
|
|
batch_size = 256
|
|
|
docs = nlp.pipe([text], batch_size=batch_size)
|
|
|
|
|
|
|
|
|
for doc in docs:
|
|
|
matches = matcher(doc)
|
|
|
match_count = len(matches)
|
|
|
|
|
|
|
|
|
if search_whole_phrase==False:
|
|
|
all_matches.append(match_count)
|
|
|
|
|
|
for match_id, start, end in matches:
|
|
|
span = str(doc[start:end]).strip()
|
|
|
query_search = str(query).strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
start_char = doc[start].idx
|
|
|
end_char = doc[end - 1].idx + len(doc[end - 1])
|
|
|
|
|
|
|
|
|
all_matches.append(match_count)
|
|
|
all_start_positions.append(start_char)
|
|
|
all_end_positions.append(end_char)
|
|
|
|
|
|
else:
|
|
|
for match_id, start, end, ratio, pattern in matches:
|
|
|
span = str(doc[start:end]).strip()
|
|
|
query_search = str(query).strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
distance = Levenshtein.distance(query_search.lower(), span.lower())
|
|
|
|
|
|
|
|
|
|
|
|
if distance > spelling_mistakes_max:
|
|
|
match_count = match_count - 1
|
|
|
else:
|
|
|
|
|
|
start_char = doc[start].idx
|
|
|
end_char = doc[end - 1].idx + len(doc[end - 1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
all_matches.append(match_count)
|
|
|
all_start_positions.append(start_char)
|
|
|
all_end_positions.append(end_char)
|
|
|
all_ratios.append(ratio)
|
|
|
|
|
|
|
|
|
return all_start_positions, all_end_positions
|
|
|
|
|
|
|
|
|
|
|
|
|