document_redaction / tools /load_spacy_model_custom_recognisers.py
seanpedrickcase's picture
Fix for fuzzy matching
4c95b3c
raw
history blame
24.9 kB
from typing import List
from presidio_analyzer import AnalyzerEngine, PatternRecognizer, EntityRecognizer, Pattern, RecognizerResult
from presidio_analyzer.nlp_engine import SpacyNlpEngine, NlpArtifacts, NerModelConfiguration
import spacy
from spacy.matcher import Matcher
from spaczz.matcher import FuzzyMatcher
spacy.prefer_gpu()
from spacy.cli.download import download
import Levenshtein
import re
import os
import requests
import gradio as gr
from tools.config import DEFAULT_LANGUAGE, TESSERACT_DATA_FOLDER
score_threshold = 0.001
custom_entities = ["TITLES", "UKPOSTCODE", "STREETNAME", "CUSTOM"]
# Create a class inheriting from SpacyNlpEngine
class LoadedSpacyNlpEngine(SpacyNlpEngine):
def __init__(self, loaded_spacy_model, language_code: str):
super().__init__(ner_model_configuration=NerModelConfiguration(labels_to_ignore=["CARDINAL", "ORDINAL"])) # Ignore non-relevant labels
self.nlp = {language_code: loaded_spacy_model}
def _base_language_code(language: str) -> str:
lang = _normalize_language_input(language)
if "_" in lang:
return lang.split("_")[0]
return lang
def load_spacy_model(language: str = DEFAULT_LANGUAGE):
"""
Load a spaCy model for the requested language and return it as `nlp`.
Accepts common inputs like: "en", "en_lg", "en_sm", "de", "fr", "es", "it", "nl", "pt", "zh", "ja", "xx".
Falls back through sensible candidates and will download if missing.
"""
synonyms = {
"english": "en",
"catalan": "ca",
"danish": "da",
"german": "de",
"french": "fr",
"greek": "el",
"finnish": "fi",
"croatian": "hr",
"lithuanian": "lt",
"macedonian": "mk",
"norwegian_bokmaal": "nb",
"polish": "pl",
"russian": "ru",
"slovenian": "sl",
"swedish": "sv",
"dutch": "nl",
"portuguese": "pt",
"chinese": "zh",
"japanese": "ja",
"multilingual": "xx",
}
lang_norm = _normalize_language_input(language)
lang_norm = synonyms.get(lang_norm, lang_norm)
base_lang = _base_language_code(lang_norm)
candidates_by_lang = {
# English
"en": [
"en_core_web_lg",
"en_core_web_trf",
"en_core_web_md",
"en_core_web_sm",
],
"en_lg": ["en_core_web_lg"],
"en_trf": ["en_core_web_trf"],
"en_md": ["en_core_web_md"],
"en_sm": ["en_core_web_sm"],
# Major languages (news pipelines)
"ca": ["ca_core_news_lg", "ca_core_news_md", "ca_core_news_sm"], # Catalan
"da": ["da_core_news_lg", "da_core_news_md", "da_core_news_sm"], # Danish
"de": ["de_core_news_lg", "de_core_news_md", "de_core_news_sm"], # German
"el": ["el_core_news_lg", "el_core_news_md", "el_core_news_sm"], # Greek
"es": ["es_core_news_lg", "es_core_news_md", "es_core_news_sm"], # Spanish
"fi": ["fi_core_news_lg", "fi_core_news_md", "fi_core_news_sm"], # Finnish
"fr": ["fr_core_news_lg", "fr_core_news_md", "fr_core_news_sm"], # French
"hr": ["hr_core_news_lg", "hr_core_news_md", "hr_core_news_sm"], # Croatian
"it": ["it_core_news_lg", "it_core_news_md", "it_core_news_sm"], # Italian
"ja": ["ja_core_news_lg", "ja_core_news_md", "ja_core_news_sm"], # Japanese
"ko": ["ko_core_news_lg", "ko_core_news_md", "ko_core_news_sm"], # Korean
"lt": ["lt_core_news_lg", "lt_core_news_md", "lt_core_news_sm"], # Lithuanian
"mk": ["mk_core_news_lg", "mk_core_news_md", "mk_core_news_sm"], # Macedonian
"nb": ["nb_core_news_lg", "nb_core_news_md", "nb_core_news_sm"], # Norwegian Bokmål
"nl": ["nl_core_news_lg", "nl_core_news_md", "nl_core_news_sm"], # Dutch
"pl": ["pl_core_news_lg", "pl_core_news_md", "pl_core_news_sm"], # Polish
"pt": ["pt_core_news_lg", "pt_core_news_md", "pt_core_news_sm"], # Portuguese
"ro": ["ro_core_news_lg", "ro_core_news_md", "ro_core_news_sm"], # Romanian
"ru": ["ru_core_news_lg", "ru_core_news_md", "ru_core_news_sm"], # Russian
"sl": ["sl_core_news_lg", "sl_core_news_md", "sl_core_news_sm"], # Slovenian
"sv": ["sv_core_news_lg", "sv_core_news_md", "sv_core_news_sm"], # Swedish
"uk": ["uk_core_news_lg", "uk_core_news_md", "uk_core_news_sm"], # Ukrainian
"zh": ["zh_core_web_lg", "zh_core_web_mod", "zh_core_web_sm", "zh_core_web_trf"], # Chinese
# Multilingual NER
"xx": ["xx_ent_wiki_sm"],
}
if lang_norm in candidates_by_lang:
candidates = candidates_by_lang[lang_norm]
elif base_lang in candidates_by_lang:
candidates = candidates_by_lang[base_lang]
else:
# Fallback to multilingual if unknown
candidates = candidates_by_lang["xx"]
last_error = None
for candidate in candidates:
# Try importable package first (fast-path when installed as a package)
try:
module = __import__(candidate)
print(f"Successfully imported spaCy model: {candidate}")
return module.load()
except Exception as e:
last_error = e
# Try spacy.load if package is linked/installed
try:
nlp = spacy.load(candidate)
print(f"Successfully loaded spaCy model via spacy.load: {candidate}")
return nlp
except Exception as e:
last_error = e
# Check if model is already downloaded before attempting to download
try:
# Try to load the model to see if it's already available
nlp = spacy.load(candidate)
print(f"Model {candidate} is already available, skipping download")
return nlp
except OSError:
# Model not found, proceed with download
pass
except Exception as e:
last_error = e
continue
# Attempt to download then load
try:
print(f"Downloading spaCy model: {candidate}")
download(candidate)
nlp = spacy.load(candidate)
print(f"Successfully downloaded and loaded spaCy model: {candidate}")
return nlp
except Exception as e:
last_error = e
continue
raise RuntimeError(f"Failed to load spaCy model for language '{language}'. Last error: {last_error}")
# Language-aware spaCy model loader
def _normalize_language_input(language: str) -> str:
return language.strip().lower().replace("-", "_")
# Update the global variables to use the new function
ACTIVE_LANGUAGE_CODE = _base_language_code(DEFAULT_LANGUAGE)
nlp = None # Placeholder, will be loaded in the create_nlp_analyser function below #load_spacy_model(DEFAULT_LANGUAGE)
def get_tesseract_lang_code(short_code:str):
"""
Maps a two-letter language code to the corresponding Tesseract OCR code.
Args:
short_code (str): The two-letter language code (e.g., "en", "de").
Returns:
str or None: The Tesseract language code (e.g., "eng", "deu"),
or None if no mapping is found.
"""
# Mapping from 2-letter codes to Tesseract 3-letter codes
# Based on ISO 639-2/T codes.
lang_map = {
"en": "eng",
"de": "deu",
"fr": "fra",
"es": "spa",
"it": "ita",
"nl": "nld",
"pt": "por",
"zh": "chi_sim", # Mapping to Simplified Chinese by default
"ja": "jpn",
"ko": "kor",
"lt": "lit",
"mk": "mkd",
"nb": "nor",
"pl": "pol",
"ro": "ron",
"ru": "rus",
"sl": "slv",
"sv": "swe",
"uk": "ukr"
}
return lang_map.get(short_code)
def download_tesseract_lang_pack(short_lang_code:str, tessdata_dir=TESSERACT_DATA_FOLDER):
"""
Downloads a Tesseract language pack to a local directory.
Args:
lang_code (str): The short code for the language (e.g., "eng", "fra").
tessdata_dir (str, optional): The directory to save the language pack.
Defaults to "tessdata".
"""
# Create the directory if it doesn't exist
if not os.path.exists(tessdata_dir):
os.makedirs(tessdata_dir)
# Get the Tesseract language code
lang_code = get_tesseract_lang_code(short_lang_code)
if lang_code is None:
raise ValueError(f"Language code {short_lang_code} not found in Tesseract language map")
# Set the local file path
file_path = os.path.join(tessdata_dir, f"{lang_code}.traineddata")
# Check if the file already exists
if os.path.exists(file_path):
print(f"Language pack {lang_code}.traineddata already exists at {file_path}")
return file_path
# Construct the URL for the language pack
url = f"https://raw.githubusercontent.com/tesseract-ocr/tessdata/main/{lang_code}.traineddata"
# Download the file
try:
response = requests.get(url, stream=True)
response.raise_for_status() # Raise an exception for bad status codes
with open(file_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Successfully downloaded {lang_code}.traineddata to {file_path}")
return file_path
except requests.exceptions.RequestException as e:
print(f"Error downloading {lang_code}.traineddata: {e}")
return None
#### Custom recognisers
def custom_word_list_recogniser(custom_list:List[str]=[]):
# Create regex pattern, handling quotes carefully
quote_str = '"'
replace_str = '(?:"|"|")'
custom_regex = '|'.join(
rf'(?<!\w){re.escape(term.strip()).replace(quote_str, replace_str)}(?!\w)'
for term in custom_list
)
#print(custom_regex)
custom_pattern = Pattern(name="custom_pattern", regex=custom_regex, score = 1)
custom_recogniser = PatternRecognizer(supported_entity="CUSTOM", name="CUSTOM", patterns = [custom_pattern],
global_regex_flags=re.DOTALL | re.MULTILINE | re.IGNORECASE)
return custom_recogniser
# Initialise custom recogniser that will be overwritten later
custom_recogniser = custom_word_list_recogniser()
# Custom title recogniser
titles_list = ["Sir", "Ma'am", "Madam", "Mr", "Mr.", "Mrs", "Mrs.", "Ms", "Ms.", "Miss", "Dr", "Dr.", "Professor"]
titles_regex = '\\b' + '\\b|\\b'.join(rf"{re.escape(title)}" for title in titles_list) + '\\b'
titles_pattern = Pattern(name="titles_pattern",regex=titles_regex, score = 1)
titles_recogniser = PatternRecognizer(supported_entity="TITLES", name="TITLES", patterns = [titles_pattern],
global_regex_flags=re.DOTALL | re.MULTILINE)
# %%
# Custom postcode recogniser
# Define the regex pattern in a Presidio `Pattern` object:
ukpostcode_pattern = Pattern(
name="ukpostcode_pattern",
regex=r"\b([A-Z]{1,2}\d[A-Z\d]? ?\d[A-Z]{2}|GIR ?0AA)\b",
score=1
)
# Define the recognizer with one or more patterns
ukpostcode_recogniser = PatternRecognizer(supported_entity="UKPOSTCODE", name = "UKPOSTCODE", patterns = [ukpostcode_pattern])
### Street name
def extract_street_name(text:str) -> str:
"""
Extracts the street name and preceding word (that should contain at least one number) from the given text.
"""
street_types = [
'Street', 'St', 'Boulevard', 'Blvd', 'Highway', 'Hwy', 'Broadway', 'Freeway',
'Causeway', 'Cswy', 'Expressway', 'Way', 'Walk', 'Lane', 'Ln', 'Road', 'Rd',
'Avenue', 'Ave', 'Circle', 'Cir', 'Cove', 'Cv', 'Drive', 'Dr', 'Parkway', 'Pkwy',
'Park', 'Court', 'Ct', 'Square', 'Sq', 'Loop', 'Place', 'Pl', 'Parade', 'Estate',
'Alley', 'Arcade', 'Avenue', 'Ave', 'Bay', 'Bend', 'Brae', 'Byway', 'Close', 'Corner', 'Cove',
'Crescent', 'Cres', 'Cul-de-sac', 'Dell', 'Drive', 'Dr', 'Esplanade', 'Glen', 'Green', 'Grove', 'Heights', 'Hts',
'Mews', 'Parade', 'Path', 'Piazza', 'Promenade', 'Quay', 'Ridge', 'Row', 'Terrace', 'Ter', 'Track', 'Trail', 'View', 'Villas',
'Marsh', 'Embankment', 'Cut', 'Hill', 'Passage', 'Rise', 'Vale', 'Side'
]
# Dynamically construct the regex pattern with all possible street types
street_types_pattern = '|'.join(rf"{re.escape(street_type)}" for street_type in street_types)
# The overall regex pattern to capture the street name and preceding word(s)
pattern = rf'(?P<preceding_word>\w*\d\w*)\s*'
pattern += rf'(?P<street_name>\w+\s*\b(?:{street_types_pattern})\b)'
# Find all matches in text
matches = re.finditer(pattern, text, re.DOTALL | re.MULTILINE | re.IGNORECASE)
start_positions = []
end_positions = []
for match in matches:
preceding_word = match.group('preceding_word').strip()
street_name = match.group('street_name').strip()
start_pos = match.start()
end_pos = match.end()
#print(f"Start: {start_pos}, End: {end_pos}")
#print(f"Preceding words: {preceding_word}")
#print(f"Street name: {street_name}")
start_positions.append(start_pos)
end_positions.append(end_pos)
return start_positions, end_positions
class StreetNameRecognizer(EntityRecognizer):
def load(self) -> None:
"""No loading is required."""
pass
def analyze(self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts) -> List[RecognizerResult]:
"""
Logic for detecting a specific PII
"""
start_pos, end_pos = extract_street_name(text)
results = []
for i in range(0, len(start_pos)):
result = RecognizerResult(
entity_type="STREETNAME",
start = start_pos[i],
end = end_pos[i],
score= 1
)
results.append(result)
return results
street_recogniser = StreetNameRecognizer(supported_entities=["STREETNAME"])
## Custom fuzzy match recogniser for list of strings
def custom_fuzzy_word_list_regex(text:str, custom_list:List[str]=[]):
# Create regex pattern, handling quotes carefully
quote_str = '"'
replace_str = '(?:"|"|")'
custom_regex_pattern = '|'.join(
rf'(?<!\w){re.escape(term.strip()).replace(quote_str, replace_str)}(?!\w)'
for term in custom_list
)
# Find all matches in text
matches = re.finditer(custom_regex_pattern, text, re.DOTALL | re.MULTILINE | re.IGNORECASE)
start_positions = []
end_positions = []
for match in matches:
start_pos = match.start()
end_pos = match.end()
start_positions.append(start_pos)
end_positions.append(end_pos)
return start_positions, end_positions
class CustomWordFuzzyRecognizer(EntityRecognizer):
def __init__(self, supported_entities: List[str], custom_list: List[str] = [], spelling_mistakes_max: int = 1, search_whole_phrase: bool = True):
super().__init__(supported_entities=supported_entities)
self.custom_list = custom_list # Store the custom_list as an instance attribute
self.spelling_mistakes_max = spelling_mistakes_max # Store the max spelling mistakes
self.search_whole_phrase = search_whole_phrase # Store the search whole phrase flag
def load(self) -> None:
"""No loading is required."""
pass
def analyze(self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts) -> List[RecognizerResult]:
"""
Logic for detecting a specific PII
"""
start_pos, end_pos = spacy_fuzzy_search(text, self.custom_list, self.spelling_mistakes_max, self.search_whole_phrase) # Pass new parameters
results = []
for i in range(0, len(start_pos)):
result = RecognizerResult(
entity_type="CUSTOM_FUZZY",
start=start_pos[i],
end=end_pos[i],
score=1
)
results.append(result)
return results
custom_list_default = []
custom_word_fuzzy_recognizer = CustomWordFuzzyRecognizer(supported_entities=["CUSTOM_FUZZY"], custom_list=custom_list_default)
# Pass the loaded model to the new LoadedSpacyNlpEngine
loaded_nlp_engine = LoadedSpacyNlpEngine(loaded_spacy_model = nlp, language_code = ACTIVE_LANGUAGE_CODE)
def create_nlp_analyser(language: str = DEFAULT_LANGUAGE, custom_list: List[str] = None,
spelling_mistakes_max: int = 1, search_whole_phrase: bool = True, existing_nlp_analyser: AnalyzerEngine = None, return_also_model: bool = False):
"""
Create an nlp_analyser object based on the specified language input.
Args:
language (str): Language code (e.g., "en", "de", "fr", "es", etc.)
custom_list (List[str], optional): List of custom words to recognize. Defaults to None.
spelling_mistakes_max (int, optional): Maximum number of spelling mistakes for fuzzy matching. Defaults to 1.
search_whole_phrase (bool, optional): Whether to search for whole phrases or individual words. Defaults to True.
existing_nlp_analyser (AnalyzerEngine, optional): Existing nlp_analyser object to use. Defaults to None.
return_also_model (bool, optional): Whether to return the nlp_model object as well. Defaults to False.
Returns:
AnalyzerEngine: Configured nlp_analyser object with custom recognizers
"""
if existing_nlp_analyser is None:
pass
else:
if existing_nlp_analyser.supported_languages[0] == language:
nlp_analyser = existing_nlp_analyser
print(f"Using existing nlp_analyser for {language}")
return nlp_analyser
# Load spaCy model for the specified language
nlp_model = load_spacy_model(language)
# Get base language code
base_lang_code = _base_language_code(language)
# Create custom recognizers
if custom_list is None:
custom_list = []
custom_recogniser = custom_word_list_recogniser(custom_list)
custom_word_fuzzy_recognizer = CustomWordFuzzyRecognizer(
supported_entities=["CUSTOM_FUZZY"],
custom_list=custom_list,
spelling_mistakes_max=spelling_mistakes_max,
search_whole_phrase=search_whole_phrase
)
# Create NLP engine with loaded model
loaded_nlp_engine = LoadedSpacyNlpEngine(
loaded_spacy_model=nlp_model,
language_code=base_lang_code
)
# Create analyzer engine
nlp_analyser = AnalyzerEngine(
nlp_engine=loaded_nlp_engine,
default_score_threshold=score_threshold,
supported_languages=[base_lang_code],
log_decision_process=False,
)
# Add custom recognizers to nlp_analyser
nlp_analyser.registry.add_recognizer(custom_recogniser)
nlp_analyser.registry.add_recognizer(custom_word_fuzzy_recognizer)
# Add language-specific recognizers for English
if base_lang_code == "en":
nlp_analyser.registry.add_recognizer(street_recogniser)
nlp_analyser.registry.add_recognizer(ukpostcode_recogniser)
nlp_analyser.registry.add_recognizer(titles_recogniser)
if return_also_model:
return nlp_analyser, nlp_model
return nlp_analyser
# Create the default nlp_analyser using the new function
nlp_analyser, nlp_model = create_nlp_analyser(DEFAULT_LANGUAGE, return_also_model=True)
def spacy_fuzzy_search(text: str, custom_query_list:List[str]=[], spelling_mistakes_max:int = 1, search_whole_phrase:bool=True, nlp=nlp_model, progress=gr.Progress(track_tqdm=True)):
''' Conduct fuzzy match on a list of text data.'''
all_matches = []
all_start_positions = []
all_end_positions = []
all_ratios = []
#print("custom_query_list:", custom_query_list)
if not text:
out_message = "No text data found. Skipping page."
print(out_message)
return all_start_positions, all_end_positions
for string_query in custom_query_list:
query = nlp(string_query)
if search_whole_phrase == False:
# Keep only words that are not stop words
token_query = [token.text for token in query if not token.is_space and not token.is_stop and not token.is_punct]
spelling_mistakes_fuzzy_pattern = "FUZZY" + str(spelling_mistakes_max)
if len(token_query) > 1:
#pattern_lemma = [{"LEMMA": {"IN": query}}]
pattern_fuzz = [{"TEXT": {spelling_mistakes_fuzzy_pattern: {"IN": token_query}}}]
else:
#pattern_lemma = [{"LEMMA": query[0]}]
pattern_fuzz = [{"TEXT": {spelling_mistakes_fuzzy_pattern: token_query[0]}}]
matcher = Matcher(nlp.vocab)
matcher.add(string_query, [pattern_fuzz])
#matcher.add(string_query, [pattern_lemma])
else:
# If matching a whole phrase, use Spacy PhraseMatcher, then consider similarity after using Levenshtein distance.
#tokenised_query = [string_query.lower()]
# If you want to match the whole phrase, use phrase matcher
matcher = FuzzyMatcher(nlp.vocab)
patterns = [nlp.make_doc(string_query)] # Convert query into a Doc object
matcher.add("PHRASE", patterns, [{"ignore_case": True}])
batch_size = 256
docs = nlp.pipe([text], batch_size=batch_size)
# Get number of matches per doc
for doc in docs: #progress.tqdm(docs, desc = "Searching text", unit = "rows"):
matches = matcher(doc)
match_count = len(matches)
# If considering each sub term individually, append match. If considering together, consider weight of the relevance to that of the whole phrase.
if search_whole_phrase==False:
all_matches.append(match_count)
for match_id, start, end in matches:
span = str(doc[start:end]).strip()
query_search = str(query).strip()
#print("doc:", doc)
#print("span:", span)
#print("query_search:", query_search)
# Convert word positions to character positions
start_char = doc[start].idx # Start character position
end_char = doc[end - 1].idx + len(doc[end - 1]) # End character position
# The positions here are word position, not character position
all_matches.append(match_count)
all_start_positions.append(start_char)
all_end_positions.append(end_char)
else:
for match_id, start, end, ratio, pattern in matches:
span = str(doc[start:end]).strip()
query_search = str(query).strip()
#print("doc:", doc)
#print("span:", span)
#print("query_search:", query_search)
# Calculate Levenshtein distance. Only keep matches with less than specified number of spelling mistakes
distance = Levenshtein.distance(query_search.lower(), span.lower())
#print("Levenshtein distance:", distance)
if distance > spelling_mistakes_max:
match_count = match_count - 1
else:
# Convert word positions to character positions
start_char = doc[start].idx # Start character position
end_char = doc[end - 1].idx + len(doc[end - 1]) # End character position
#print("start_char:", start_char)
#print("end_char:", end_char)
all_matches.append(match_count)
all_start_positions.append(start_char)
all_end_positions.append(end_char)
all_ratios.append(ratio)
return all_start_positions, all_end_positions