Fuzzy match implementation for deny list. Added option to merge multiple review files. Review files from redaction step should now include text.
bde6e5b
import pytesseract | |
import numpy as np | |
from presidio_analyzer import AnalyzerEngine, RecognizerResult | |
from typing import List, Dict, Optional, Union, Tuple | |
from dataclasses import dataclass | |
import time | |
import cv2 | |
import copy | |
from copy import deepcopy | |
from pdfminer.layout import LTChar | |
import PIL | |
from PIL import Image | |
from typing import Optional, Tuple, Union | |
from tools.helper_functions import clean_unicode_text | |
from tools.presidio_analyzer_custom import recognizer_result_from_dict | |
from tools.load_spacy_model_custom_recognisers import custom_entities | |
class OCRResult: | |
text: str | |
left: int | |
top: int | |
width: int | |
height: int | |
class CustomImageRecognizerResult: | |
entity_type: str | |
start: int | |
end: int | |
score: float | |
left: int | |
top: int | |
width: int | |
height: int | |
text: str | |
class ImagePreprocessor: | |
"""ImagePreprocessor class. | |
Parent class for image preprocessing objects. | |
""" | |
def __init__(self, use_greyscale: bool = True) -> None: | |
"""Initialize the ImagePreprocessor class. | |
:param use_greyscale: Whether to convert the image to greyscale. | |
""" | |
self.use_greyscale = use_greyscale | |
def preprocess_image(self, image: Image.Image) -> Tuple[Image.Image, dict]: | |
"""Preprocess the image to be analyzed. | |
:param image: Loaded PIL image. | |
:return: The processed image and any metadata regarding the | |
preprocessing approach. | |
""" | |
return image, {} | |
def convert_image_to_array(self, image: Image.Image) -> np.ndarray: | |
"""Convert PIL image to numpy array. | |
:param image: Loaded PIL image. | |
:param convert_to_greyscale: Whether to convert the image to greyscale. | |
:return: image pixels as a numpy array. | |
""" | |
if isinstance(image, np.ndarray): | |
img = image | |
else: | |
if self.use_greyscale: | |
image = image.convert("L") | |
img = np.asarray(image) | |
return img | |
def _get_bg_color( | |
image: Image.Image, is_greyscale: bool, invert: bool = False | |
) -> Union[int, Tuple[int, int, int]]: | |
"""Select most common color as background color. | |
:param image: Loaded PIL image. | |
:param is_greyscale: Whether the image is greyscale. | |
:param invert: TRUE if you want to get the inverse of the bg color. | |
:return: Background color. | |
""" | |
# Invert colors if invert flag is True | |
if invert: | |
if image.mode == "RGBA": | |
# Handle transparency as needed | |
r, g, b, a = image.split() | |
rgb_image = Image.merge("RGB", (r, g, b)) | |
inverted_image = PIL.ImageOps.invert(rgb_image) | |
r2, g2, b2 = inverted_image.split() | |
image = Image.merge("RGBA", (r2, g2, b2, a)) | |
else: | |
image = PIL.ImageOps.invert(image) | |
# Get background color | |
if is_greyscale: | |
# Select most common color as color | |
bg_color = int(np.bincount(image.flatten()).argmax()) | |
else: | |
# Reduce size of image to 1 pixel to get dominant color | |
tmp_image = image.copy() | |
tmp_image = tmp_image.resize((1, 1), resample=0) | |
bg_color = tmp_image.getpixel((0, 0)) | |
return bg_color | |
def _get_image_contrast(image: np.ndarray) -> Tuple[float, float]: | |
"""Compute the contrast level and mean intensity of an image. | |
:param image: Input image pixels (as a numpy array). | |
:return: A tuple containing the contrast level and mean intensity of the image. | |
""" | |
contrast = np.std(image) | |
mean_intensity = np.mean(image) | |
return contrast, mean_intensity | |
class BilateralFilter(ImagePreprocessor): | |
"""BilateralFilter class. | |
The class applies bilateral filtering to an image. and returns the filtered | |
image and metadata. | |
""" | |
def __init__( | |
self, diameter: int = 3, sigma_color: int = 40, sigma_space: int = 40 | |
) -> None: | |
"""Initialize the BilateralFilter class. | |
:param diameter: Diameter of each pixel neighborhood. | |
:param sigma_color: value of sigma in the color space. | |
:param sigma_space: value of sigma in the coordinate space. | |
""" | |
super().__init__(use_greyscale=True) | |
self.diameter = diameter | |
self.sigma_color = sigma_color | |
self.sigma_space = sigma_space | |
def preprocess_image(self, image: Image.Image) -> Tuple[Image.Image, dict]: | |
"""Preprocess the image to be analyzed. | |
:param image: Loaded PIL image. | |
:return: The processed image and metadata (diameter, sigma_color, sigma_space). | |
""" | |
image = self.convert_image_to_array(image) | |
# Apply bilateral filtering | |
filtered_image = cv2.bilateralFilter( | |
image, | |
self.diameter, | |
self.sigma_color, | |
self.sigma_space, | |
) | |
metadata = { | |
"diameter": self.diameter, | |
"sigma_color": self.sigma_color, | |
"sigma_space": self.sigma_space, | |
} | |
return Image.fromarray(filtered_image), metadata | |
class SegmentedAdaptiveThreshold(ImagePreprocessor): | |
"""SegmentedAdaptiveThreshold class. | |
The class applies adaptive thresholding to an image | |
and returns the thresholded image and metadata. | |
The parameters used to run the adaptivethresholding are selected based on | |
the contrast level of the image. | |
""" | |
def __init__( | |
self, | |
block_size: int = 5, | |
contrast_threshold: int = 40, | |
c_low_contrast: int = 10, | |
c_high_contrast: int = 40, | |
bg_threshold: int = 122, | |
) -> None: | |
"""Initialize the SegmentedAdaptiveThreshold class. | |
:param block_size: Size of the neighborhood area for threshold calculation. | |
:param contrast_threshold: Threshold for low contrast images. | |
:param C_low_contrast: Constant added to the mean for low contrast images. | |
:param C_high_contrast: Constant added to the mean for high contrast images. | |
:param bg_threshold: Threshold for background color. | |
""" | |
super().__init__(use_greyscale=True) | |
self.block_size = block_size | |
self.c_low_contrast = c_low_contrast | |
self.c_high_contrast = c_high_contrast | |
self.bg_threshold = bg_threshold | |
self.contrast_threshold = contrast_threshold | |
def preprocess_image( | |
self, image: Union[Image.Image, np.ndarray] | |
) -> Tuple[Image.Image, dict]: | |
"""Preprocess the image. | |
:param image: Loaded PIL image. | |
:return: The processed image and metadata (C, background_color, contrast). | |
""" | |
if not isinstance(image, np.ndarray): | |
image = self.convert_image_to_array(image) | |
# Determine background color | |
background_color = self._get_bg_color(image, True) | |
contrast, _ = self._get_image_contrast(image) | |
c = ( | |
self.c_low_contrast | |
if contrast <= self.contrast_threshold | |
else self.c_high_contrast | |
) | |
if background_color < self.bg_threshold: | |
adaptive_threshold_image = cv2.adaptiveThreshold( | |
image, | |
255, | |
cv2.ADAPTIVE_THRESH_MEAN_C, | |
cv2.THRESH_BINARY_INV, | |
self.block_size, | |
-c, | |
) | |
else: | |
adaptive_threshold_image = cv2.adaptiveThreshold( | |
image, | |
255, | |
cv2.ADAPTIVE_THRESH_MEAN_C, | |
cv2.THRESH_BINARY, | |
self.block_size, | |
c, | |
) | |
metadata = {"C": c, "background_color": background_color, "contrast": contrast} | |
return Image.fromarray(adaptive_threshold_image), metadata | |
class ImageRescaling(ImagePreprocessor): | |
"""ImageRescaling class. Rescales images based on their size.""" | |
def __init__( | |
self, | |
small_size: int = 1048576, | |
large_size: int = 4000000, | |
factor: int = 2, | |
interpolation: int = cv2.INTER_AREA, | |
) -> None: | |
"""Initialize the ImageRescaling class. | |
:param small_size: Threshold for small image size. | |
:param large_size: Threshold for large image size. | |
:param factor: Scaling factor for resizing. | |
:param interpolation: Interpolation method for resizing. | |
""" | |
super().__init__(use_greyscale=True) | |
self.small_size = small_size | |
self.large_size = large_size | |
self.factor = factor | |
self.interpolation = interpolation | |
def preprocess_image(self, image: Image.Image) -> Tuple[Image.Image, dict]: | |
"""Preprocess the image to be analyzed. | |
:param image: Loaded PIL image. | |
:return: The processed image and metadata (scale_factor). | |
""" | |
scale_factor = 1 | |
if image.size < self.small_size: | |
scale_factor = self.factor | |
elif image.size > self.large_size: | |
scale_factor = 1 / self.factor | |
width = int(image.shape[1] * scale_factor) | |
height = int(image.shape[0] * scale_factor) | |
dimensions = (width, height) | |
# resize image | |
rescaled_image = cv2.resize(image, dimensions, interpolation=self.interpolation) | |
metadata = {"scale_factor": scale_factor} | |
return Image.fromarray(rescaled_image), metadata | |
class ContrastSegmentedImageEnhancer(ImagePreprocessor): | |
"""Class containing all logic to perform contrastive segmentation. | |
Contrastive segmentation is a preprocessing step that aims to enhance the | |
text in an image by increasing the contrast between the text and the | |
background. The parameters used to run the preprocessing are selected based | |
on the contrast level of the image. | |
""" | |
def __init__( | |
self, | |
bilateral_filter: Optional[BilateralFilter] = None, | |
adaptive_threshold: Optional[SegmentedAdaptiveThreshold] = None, | |
image_rescaling: Optional[ImageRescaling] = None, | |
low_contrast_threshold: int = 40, | |
) -> None: | |
"""Initialize the class. | |
:param bilateral_filter: Optional BilateralFilter instance. | |
:param adaptive_threshold: Optional AdaptiveThreshold instance. | |
:param image_rescaling: Optional ImageRescaling instance. | |
:param low_contrast_threshold: Threshold for low contrast images. | |
""" | |
super().__init__(use_greyscale=True) | |
if not bilateral_filter: | |
self.bilateral_filter = BilateralFilter() | |
else: | |
self.bilateral_filter = bilateral_filter | |
if not adaptive_threshold: | |
self.adaptive_threshold = SegmentedAdaptiveThreshold() | |
else: | |
self.adaptive_threshold = adaptive_threshold | |
if not image_rescaling: | |
self.image_rescaling = ImageRescaling() | |
else: | |
self.image_rescaling = image_rescaling | |
self.low_contrast_threshold = low_contrast_threshold | |
def preprocess_image(self, image: Image.Image) -> Tuple[Image.Image, dict]: | |
"""Preprocess the image to be analyzed. | |
:param image: Loaded PIL image. | |
:return: The processed image and metadata (background color, scale percentage, | |
contrast level, and C value). | |
""" | |
image = self.convert_image_to_array(image) | |
# Apply bilateral filtering | |
filtered_image, _ = self.bilateral_filter.preprocess_image(image) | |
# Convert to grayscale | |
pil_filtered_image = Image.fromarray(np.uint8(filtered_image)) | |
pil_grayscale_image = pil_filtered_image.convert("L") | |
grayscale_image = np.asarray(pil_grayscale_image) | |
# Improve contrast | |
adjusted_image, _, adjusted_contrast = self._improve_contrast(grayscale_image) | |
# Adaptive Thresholding | |
adaptive_threshold_image, _ = self.adaptive_threshold.preprocess_image( | |
adjusted_image | |
) | |
# Increase contrast | |
_, threshold_image = cv2.threshold( | |
np.asarray(adaptive_threshold_image), | |
0, | |
255, | |
cv2.THRESH_BINARY | cv2.THRESH_OTSU, | |
) | |
# Rescale image | |
rescaled_image, scale_metadata = self.image_rescaling.preprocess_image( | |
threshold_image | |
) | |
return rescaled_image, scale_metadata | |
def _improve_contrast(self, image: np.ndarray) -> Tuple[np.ndarray, str, str]: | |
"""Improve the contrast of an image based on its initial contrast level. | |
:param image: Input image. | |
:return: A tuple containing the improved image, the initial contrast level, | |
and the adjusted contrast level. | |
""" | |
contrast, mean_intensity = self._get_image_contrast(image) | |
if contrast <= self.low_contrast_threshold: | |
alpha = 1.5 | |
beta = -mean_intensity * alpha | |
adjusted_image = cv2.convertScaleAbs(image, alpha=alpha, beta=beta) | |
adjusted_contrast, _ = self._get_image_contrast(adjusted_image) | |
else: | |
adjusted_image = image | |
adjusted_contrast = contrast | |
return adjusted_image, contrast, adjusted_contrast | |
def bounding_boxes_overlap(box1, box2): | |
"""Check if two bounding boxes overlap.""" | |
return (box1[0] < box2[2] and box2[0] < box1[2] and | |
box1[1] < box2[3] and box2[1] < box1[3]) | |
def map_back_entity_results(page_analyser_result, page_text_mapping, all_text_line_results): | |
for entity in page_analyser_result: | |
entity_start = entity.start | |
entity_end = entity.end | |
# Track if the entity has been added to any line | |
added_to_line = False | |
for batch_start, line_idx, original_line, chars in page_text_mapping: | |
batch_end = batch_start + len(original_line.text) | |
# Check if the entity overlaps with the current line | |
if batch_start < entity_end and batch_end > entity_start: # Overlap condition | |
relative_start = max(0, entity_start - batch_start) # Adjust start relative to the line | |
relative_end = min(entity_end - batch_start, len(original_line.text)) # Adjust end relative to the line | |
# Create a new adjusted entity | |
adjusted_entity = copy.deepcopy(entity) | |
adjusted_entity.start = relative_start | |
adjusted_entity.end = relative_end | |
# Check if this line already has an entry | |
existing_entry = next((entry for idx, entry in all_text_line_results if idx == line_idx), None) | |
if existing_entry is None: | |
all_text_line_results.append((line_idx, [adjusted_entity])) | |
else: | |
existing_entry.append(adjusted_entity) # Append to the existing list of entities | |
added_to_line = True | |
# If the entity spans multiple lines, you may want to handle that here | |
if not added_to_line: | |
# Handle cases where the entity does not fit in any line (optional) | |
print(f"Entity '{entity}' does not fit in any line.") | |
return all_text_line_results | |
def map_back_comprehend_entity_results(response, current_batch_mapping, allow_list, chosen_redact_comprehend_entities, all_text_line_results): | |
if not response or "Entities" not in response: | |
return all_text_line_results | |
for entity in response["Entities"]: | |
if entity.get("Type") not in chosen_redact_comprehend_entities: | |
continue | |
entity_start = entity["BeginOffset"] | |
entity_end = entity["EndOffset"] | |
# Track if the entity has been added to any line | |
added_to_line = False | |
# Find the correct line and offset within that line | |
for batch_start, line_idx, original_line, chars, line_offset in current_batch_mapping: | |
batch_end = batch_start + len(original_line.text[line_offset:]) | |
# Check if the entity overlaps with the current line | |
if batch_start < entity_end and batch_end > entity_start: # Overlap condition | |
# Calculate the absolute position within the line | |
relative_start = max(0, entity_start - batch_start + line_offset) | |
relative_end = min(entity_end - batch_start + line_offset, len(original_line.text)) | |
result_text = original_line.text[relative_start:relative_end] | |
if result_text not in allow_list: | |
adjusted_entity = entity.copy() | |
adjusted_entity["BeginOffset"] = relative_start # Now relative to the full line | |
adjusted_entity["EndOffset"] = relative_end | |
recogniser_entity = recognizer_result_from_dict(adjusted_entity) | |
existing_entry = next((entry for idx, entry in all_text_line_results if idx == line_idx), None) | |
if existing_entry is None: | |
all_text_line_results.append((line_idx, [recogniser_entity])) | |
else: | |
existing_entry.append(recogniser_entity) # Append to the existing list of entities | |
added_to_line = True | |
# Optional: Handle cases where the entity does not fit in any line | |
if not added_to_line: | |
print(f"Entity '{entity}' does not fit in any line.") | |
return all_text_line_results | |
def do_aws_comprehend_call(current_batch, current_batch_mapping, comprehend_client, language, allow_list, chosen_redact_comprehend_entities, all_text_line_results): | |
if not current_batch: | |
return all_text_line_results | |
max_retries = 3 | |
retry_delay = 3 | |
for attempt in range(max_retries): | |
try: | |
response = comprehend_client.detect_pii_entities( | |
Text=current_batch.strip(), | |
LanguageCode=language | |
) | |
all_text_line_results = map_back_comprehend_entity_results( | |
response, | |
current_batch_mapping, | |
allow_list, | |
chosen_redact_comprehend_entities, | |
all_text_line_results | |
) | |
return all_text_line_results | |
except Exception as e: | |
if attempt == max_retries - 1: | |
raise | |
time.sleep(retry_delay) | |
def run_page_text_redaction( | |
language: str, | |
chosen_redact_entities: List[str], | |
chosen_redact_comprehend_entities: List[str], | |
line_level_text_results_list: List[str], | |
line_characters: List, | |
page_analyser_results: List = [], | |
page_analysed_bounding_boxes: List = [], | |
comprehend_client = None, | |
allow_list: List[str] = None, | |
pii_identification_method: str = "Local", | |
nlp_analyser = None, | |
score_threshold: float = 0.0, | |
custom_entities: List[str] = None, | |
comprehend_query_number:int = 0#, | |
#merge_text_bounding_boxes_fn = merge_text_bounding_boxes | |
): | |
#if not merge_text_bounding_boxes_fn: | |
# raise ValueError("merge_text_bounding_boxes_fn is required") | |
page_text = "" | |
page_text_mapping = [] | |
all_text_line_results = [] | |
comprehend_query_number = 0 | |
# Collect all text from the page | |
for i, text_line in enumerate(line_level_text_results_list): | |
#print("line_level_text_results_list:", line_level_text_results_list) | |
if chosen_redact_entities: | |
if page_text: | |
#page_text += " | " | |
page_text += " " | |
start_pos = len(page_text) | |
page_text += text_line.text | |
page_text_mapping.append((start_pos, i, text_line, line_characters[i])) | |
# Process based on identification method | |
if pii_identification_method == "Local": | |
if not nlp_analyser: | |
raise ValueError("nlp_analyser is required for Local identification method") | |
#print("page text:", page_text) | |
page_analyser_result = nlp_analyser.analyze( | |
text=page_text, | |
language=language, | |
entities=chosen_redact_entities, | |
score_threshold=score_threshold, | |
return_decision_process=True, | |
allow_list=allow_list | |
) | |
#print("page_analyser_result:", page_analyser_result) | |
all_text_line_results = map_back_entity_results( | |
page_analyser_result, | |
page_text_mapping, | |
all_text_line_results | |
) | |
#print("all_text_line_results:", all_text_line_results) | |
elif pii_identification_method == "AWS Comprehend": | |
#print("page text:", page_text) | |
# Process custom entities if any | |
if custom_entities: | |
custom_redact_entities = [ | |
entity for entity in chosen_redact_comprehend_entities | |
if entity in custom_entities | |
] | |
if custom_redact_entities: | |
page_analyser_result = nlp_analyser.analyze( | |
text=page_text, | |
language=language, | |
entities=custom_redact_entities, | |
score_threshold=score_threshold, | |
return_decision_process=True, | |
allow_list=allow_list | |
) | |
print("page_analyser_result:", page_analyser_result) | |
all_text_line_results = map_back_entity_results( | |
page_analyser_result, | |
page_text_mapping, | |
all_text_line_results | |
) | |
current_batch = "" | |
current_batch_mapping = [] | |
batch_char_count = 0 | |
batch_word_count = 0 | |
for i, text_line in enumerate(line_level_text_results_list): | |
words = text_line.text.split() | |
word_start_positions = [] | |
# Calculate word start positions within the line | |
current_pos = 0 | |
for word in words: | |
word_start_positions.append(current_pos) | |
current_pos += len(word) + 1 # +1 for space | |
for word_idx, word in enumerate(words): | |
new_batch_char_count = len(current_batch) + len(word) + 1 | |
if batch_word_count >= 50 or new_batch_char_count >= 200: | |
# Process current batch | |
all_text_line_results = do_aws_comprehend_call( | |
current_batch, | |
current_batch_mapping, | |
comprehend_client, | |
language, | |
allow_list, | |
chosen_redact_comprehend_entities, | |
all_text_line_results | |
) | |
comprehend_query_number += 1 | |
# Start new batch | |
current_batch = word | |
batch_word_count = 1 | |
batch_char_count = len(word) | |
current_batch_mapping = [(0, i, text_line, line_characters[i], word_start_positions[word_idx])] | |
else: | |
if current_batch: | |
current_batch += " " | |
batch_char_count += 1 | |
current_batch += word | |
batch_char_count += len(word) | |
batch_word_count += 1 | |
if not current_batch_mapping or current_batch_mapping[-1][1] != i: | |
current_batch_mapping.append(( | |
batch_char_count - len(word), | |
i, | |
text_line, | |
line_characters[i], | |
word_start_positions[word_idx] # Add the word's start position within its line | |
)) | |
# Process final batch | |
if current_batch: | |
all_text_line_results = do_aws_comprehend_call( | |
current_batch, | |
current_batch_mapping, | |
comprehend_client, | |
language, | |
allow_list, | |
chosen_redact_comprehend_entities, | |
all_text_line_results | |
) | |
comprehend_query_number += 1 | |
# Process results for each line | |
for i, text_line in enumerate(line_level_text_results_list): | |
line_results = next((results for idx, results in all_text_line_results if idx == i), []) | |
if line_results: | |
text_line_bounding_boxes = merge_text_bounding_boxes( | |
line_results, | |
line_characters[i] | |
) | |
page_analyser_results.extend(line_results) | |
page_analysed_bounding_boxes.extend(text_line_bounding_boxes) | |
return page_analysed_bounding_boxes | |
def merge_text_bounding_boxes(analyser_results, characters: List[LTChar], combine_pixel_dist: int = 20, vertical_padding: int = 0): | |
''' | |
Merge identified bounding boxes containing PII that are very close to one another | |
''' | |
analysed_bounding_boxes = [] | |
original_bounding_boxes = [] # List to hold original bounding boxes | |
if len(analyser_results) > 0 and len(characters) > 0: | |
# Extract bounding box coordinates for sorting | |
bounding_boxes = [] | |
for result in analyser_results: | |
#print("Result:", result) | |
char_boxes = [char.bbox for char in characters[result.start:result.end] if isinstance(char, LTChar)] | |
char_text = [char._text for char in characters[result.start:result.end] if isinstance(char, LTChar)] | |
if char_boxes: | |
# Calculate the bounding box that encompasses all characters | |
left = min(box[0] for box in char_boxes) | |
bottom = min(box[1] for box in char_boxes) | |
right = max(box[2] for box in char_boxes) | |
top = max(box[3] for box in char_boxes) + vertical_padding | |
bbox = [left, bottom, right, top] | |
bounding_boxes.append((bottom, left, result, bbox, char_text)) # (y, x, result, bbox, text) | |
# Store original bounding boxes | |
original_bounding_boxes.append({"text": "".join(char_text), "boundingBox": bbox, "result": copy.deepcopy(result)}) | |
#print("Original bounding boxes:", original_bounding_boxes) | |
# Sort the results by y-coordinate and then by x-coordinate | |
bounding_boxes.sort() | |
merged_bounding_boxes = [] | |
current_box = None | |
current_y = None | |
current_result = None | |
current_text = [] | |
for y, x, result, next_box, text in bounding_boxes: | |
if current_y is None or current_box is None: | |
# Initialize the first bounding box | |
current_box = next_box | |
current_y = next_box[1] | |
current_result = result | |
current_text = list(text) | |
else: | |
vertical_diff_bboxes = abs(next_box[1] - current_y) | |
horizontal_diff_bboxes = abs(next_box[0] - current_box[2]) | |
if vertical_diff_bboxes <= 5 and horizontal_diff_bboxes <= combine_pixel_dist: | |
# Merge bounding boxes | |
#print("Merging boxes") | |
merged_box = current_box.copy() | |
merged_result = current_result | |
merged_text = current_text.copy() | |
merged_box[2] = next_box[2] # Extend horizontally | |
merged_box[3] = max(current_box[3], next_box[3]) # Adjust the top | |
merged_result.end = max(current_result.end, result.end) # Extend text range | |
try: | |
if current_result.entity_type != result.entity_type: | |
merged_result.entity_type = current_result.entity_type + " - " + result.entity_type | |
else: | |
merged_result.entity_type = current_result.entity_type | |
except Exception as e: | |
print("Unable to combine result entity types:", e) | |
if current_text: | |
merged_text.append(" ") # Add space between texts | |
merged_text.extend(text) | |
merged_bounding_boxes.append({ | |
"text": "".join(merged_text), | |
"boundingBox": merged_box, | |
"result": merged_result | |
}) | |
else: | |
# Start a new bounding box | |
current_box = next_box | |
current_y = next_box[1] | |
current_result = result | |
current_text = list(text) | |
# Combine original and merged bounding boxes | |
analysed_bounding_boxes.extend(original_bounding_boxes) | |
analysed_bounding_boxes.extend(merged_bounding_boxes) | |
#print("Analysed bounding boxes:", analysed_bounding_boxes) | |
return analysed_bounding_boxes | |
# Function to combine OCR results into line-level results | |
def combine_ocr_results(ocr_results, x_threshold=50, y_threshold=12): | |
# Group OCR results into lines based on y_threshold | |
lines = [] | |
current_line = [] | |
for result in sorted(ocr_results, key=lambda x: x.top): | |
if not current_line or abs(result.top - current_line[0].top) <= y_threshold: | |
current_line.append(result) | |
else: | |
lines.append(current_line) | |
current_line = [result] | |
if current_line: | |
lines.append(current_line) | |
# Sort each line by left position | |
for line in lines: | |
line.sort(key=lambda x: x.left) | |
# Flatten the sorted lines back into a single list | |
sorted_results = [result for line in lines for result in line] | |
combined_results = [] | |
new_format_results = {} | |
current_line = [] | |
current_bbox = None | |
line_counter = 1 | |
def create_ocr_result_with_children(combined_results, i, current_bbox, current_line): | |
combined_results["text_line_" + str(i)] = { | |
"line": i, | |
'text': current_bbox.text, | |
'bounding_box': (current_bbox.left, current_bbox.top, | |
current_bbox.left + current_bbox.width, | |
current_bbox.top + current_bbox.height), | |
'words': [{'text': word.text, | |
'bounding_box': (word.left, word.top, | |
word.left + word.width, | |
word.top + word.height)} | |
for word in current_line] | |
} | |
return combined_results["text_line_" + str(i)] | |
for result in sorted_results: | |
if not current_line: | |
# Start a new line | |
current_line.append(result) | |
current_bbox = result | |
else: | |
# Check if the result is on the same line (y-axis) and close horizontally (x-axis) | |
last_result = current_line[-1] | |
if abs(result.top - last_result.top) <= y_threshold and \ | |
(result.left - (last_result.left + last_result.width)) <= x_threshold: | |
# Update the bounding box to include the new word | |
new_right = max(current_bbox.left + current_bbox.width, result.left + result.width) | |
current_bbox = OCRResult( | |
text=f"{current_bbox.text} {result.text}", | |
left=current_bbox.left, | |
top=current_bbox.top, | |
width=new_right - current_bbox.left, | |
height=max(current_bbox.height, result.height) | |
) | |
current_line.append(result) | |
else: | |
# Commit the current line and start a new one | |
combined_results.append(current_bbox) | |
new_format_results["text_line_" + str(line_counter)] = create_ocr_result_with_children(new_format_results, line_counter, current_bbox, current_line) | |
line_counter += 1 | |
current_line = [result] | |
current_bbox = result | |
# Append the last line | |
if current_bbox: | |
combined_results.append(current_bbox) | |
new_format_results["text_line_" + str(line_counter)] = create_ocr_result_with_children(new_format_results, line_counter, current_bbox, current_line) | |
return combined_results, new_format_results | |
class CustomImageAnalyzerEngine: | |
def __init__( | |
self, | |
analyzer_engine: Optional[AnalyzerEngine] = None, | |
tesseract_config: Optional[str] = None, | |
image_preprocessor: Optional[ImagePreprocessor] = None | |
): | |
if not analyzer_engine: | |
analyzer_engine = AnalyzerEngine() | |
self.analyzer_engine = analyzer_engine | |
self.tesseract_config = tesseract_config or '--oem 3 --psm 11' | |
if not image_preprocessor: | |
image_preprocessor = ContrastSegmentedImageEnhancer() | |
#print(image_preprocessor) | |
self.image_preprocessor = image_preprocessor | |
def perform_ocr(self, image: Union[str, Image.Image, np.ndarray]) -> List[OCRResult]: | |
# Ensure image is a PIL Image | |
if isinstance(image, str): | |
image = Image.open(image) | |
elif isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
image_processed, preprocessing_metadata = self.image_preprocessor.preprocess_image(image) | |
ocr_data = pytesseract.image_to_data(image_processed, output_type=pytesseract.Output.DICT, config=self.tesseract_config) | |
if preprocessing_metadata and ("scale_factor" in preprocessing_metadata): | |
ocr_result = self._scale_bbox_results( | |
ocr_data, preprocessing_metadata["scale_factor"] | |
) | |
ocr_result = self.remove_space_boxes(ocr_result) | |
# Filter out empty strings and low confidence results | |
valid_indices = [i for i, text in enumerate(ocr_result['text']) if text.strip() and int(ocr_result['conf'][i]) > 0] | |
return [ | |
OCRResult( | |
text=clean_unicode_text(ocr_result['text'][i]), | |
left=ocr_result['left'][i], | |
top=ocr_result['top'][i], | |
width=ocr_result['width'][i], | |
height=ocr_result['height'][i] | |
) | |
for i in valid_indices | |
] | |
def analyze_text( | |
self, | |
line_level_ocr_results: List[OCRResult], | |
ocr_results_with_children: Dict[str, Dict], | |
chosen_redact_comprehend_entities: List[str], | |
pii_identification_method: str = "Local", | |
comprehend_client = "", | |
**text_analyzer_kwargs | |
) -> List[CustomImageRecognizerResult]: | |
page_text = "" | |
page_text_mapping = [] | |
all_text_line_results = [] | |
comprehend_query_number = 0 | |
# Collect all text and create mapping | |
for i, line_level_ocr_result in enumerate(line_level_ocr_results): | |
if page_text: | |
page_text += " " | |
start_pos = len(page_text) | |
page_text += line_level_ocr_result.text | |
# Note: We're not passing line_characters here since it's not needed for this use case | |
page_text_mapping.append((start_pos, i, line_level_ocr_result, None)) | |
# Process using either Local or AWS Comprehend | |
if pii_identification_method == "Local": | |
analyzer_result = self.analyzer_engine.analyze( | |
text=page_text, | |
**text_analyzer_kwargs | |
) | |
all_text_line_results = map_back_entity_results( | |
analyzer_result, | |
page_text_mapping, | |
all_text_line_results | |
) | |
elif pii_identification_method == "AWS Comprehend": | |
# Handle custom entities first | |
if custom_entities: | |
custom_redact_entities = [ | |
entity for entity in chosen_redact_comprehend_entities | |
if entity in custom_entities | |
] | |
if custom_redact_entities: | |
text_analyzer_kwargs["entities"] = custom_redact_entities | |
page_analyser_result = self.analyzer_engine.analyze( | |
text=page_text, | |
**text_analyzer_kwargs | |
) | |
all_text_line_results = map_back_entity_results( | |
page_analyser_result, | |
page_text_mapping, | |
all_text_line_results | |
) | |
# Process text in batches for AWS Comprehend | |
current_batch = "" | |
current_batch_mapping = [] | |
batch_char_count = 0 | |
batch_word_count = 0 | |
for i, text_line in enumerate(line_level_ocr_results): | |
words = text_line.text.split() | |
word_start_positions = [] | |
current_pos = 0 | |
for word in words: | |
word_start_positions.append(current_pos) | |
current_pos += len(word) + 1 | |
for word_idx, word in enumerate(words): | |
new_batch_char_count = len(current_batch) + len(word) + 1 | |
if batch_word_count >= 50 or new_batch_char_count >= 200: | |
# Process current batch | |
all_text_line_results = do_aws_comprehend_call( | |
current_batch, | |
current_batch_mapping, | |
comprehend_client, | |
text_analyzer_kwargs["language"], | |
text_analyzer_kwargs.get('allow_list', []), | |
chosen_redact_comprehend_entities, | |
all_text_line_results | |
) | |
comprehend_query_number += 1 | |
# Reset batch | |
current_batch = word | |
batch_word_count = 1 | |
batch_char_count = len(word) | |
current_batch_mapping = [(0, i, text_line, None, word_start_positions[word_idx])] | |
else: | |
if current_batch: | |
current_batch += " " | |
batch_char_count += 1 | |
current_batch += word | |
batch_char_count += len(word) | |
batch_word_count += 1 | |
if not current_batch_mapping or current_batch_mapping[-1][1] != i: | |
current_batch_mapping.append(( | |
batch_char_count - len(word), | |
i, | |
text_line, | |
None, | |
word_start_positions[word_idx] | |
)) | |
# Process final batch if any | |
if current_batch: | |
all_text_line_results = do_aws_comprehend_call( | |
current_batch, | |
current_batch_mapping, | |
comprehend_client, | |
text_analyzer_kwargs["language"], | |
text_analyzer_kwargs.get('allow_list', []), | |
chosen_redact_comprehend_entities, | |
all_text_line_results | |
) | |
comprehend_query_number += 1 | |
# Process results and create bounding boxes | |
combined_results = [] | |
for i, text_line in enumerate(line_level_ocr_results): | |
line_results = next((results for idx, results in all_text_line_results if idx == i), []) | |
if line_results and i < len(ocr_results_with_children): | |
child_level_key = list(ocr_results_with_children.keys())[i] | |
ocr_results_with_children_line_level = ocr_results_with_children[child_level_key] | |
for result in line_results: | |
bbox_results = self.map_analyzer_results_to_bounding_boxes( | |
[result], | |
[OCRResult( | |
text=text_line.text[result.start:result.end], | |
left=text_line.left, | |
top=text_line.top, | |
width=text_line.width, | |
height=text_line.height | |
)], | |
text_line.text, | |
text_analyzer_kwargs.get('allow_list', []), | |
ocr_results_with_children_line_level | |
) | |
combined_results.extend(bbox_results) | |
return combined_results, comprehend_query_number | |
def map_analyzer_results_to_bounding_boxes( | |
text_analyzer_results: List[RecognizerResult], | |
redaction_relevant_ocr_results: List[OCRResult], | |
full_text: str, | |
allow_list: List[str], | |
ocr_results_with_children_child_info: Dict[str, Dict] | |
) -> List[CustomImageRecognizerResult]: | |
redaction_bboxes = [] | |
for redaction_relevant_ocr_result in redaction_relevant_ocr_results: | |
#print("ocr_results_with_children_child_info:", ocr_results_with_children_child_info) | |
line_text = ocr_results_with_children_child_info['text'] | |
line_length = len(line_text) | |
redaction_text = redaction_relevant_ocr_result.text | |
#print(f"Processing line: '{line_text}'") | |
for redaction_result in text_analyzer_results: | |
#print(f"Checking redaction result: {redaction_result}") | |
#print("redaction_text:", redaction_text) | |
#print("line_length:", line_length) | |
#print("line_text:", line_text) | |
# Check if the redaction text is not in the allow list | |
if redaction_text not in allow_list: | |
# Adjust start and end to be within line bounds | |
start_in_line = max(0, redaction_result.start) | |
end_in_line = min(line_length, redaction_result.end) | |
# Get the matched text from this line | |
matched_text = line_text[start_in_line:end_in_line] | |
matched_words = matched_text.split() | |
# print(f"Found match: '{matched_text}' in line") | |
# for word_info in ocr_results_with_children_child_info.get('words', []): | |
# # Check if this word is part of our match | |
# if any(word.lower() in word_info['text'].lower() for word in matched_words): | |
# matching_word_boxes.append(word_info['bounding_box']) | |
# print(f"Matched word: {word_info['text']}") | |
# Find the corresponding words in the OCR results | |
matching_word_boxes = [] | |
#print("ocr_results_with_children_child_info:", ocr_results_with_children_child_info) | |
current_position = 0 | |
for word_info in ocr_results_with_children_child_info.get('words', []): | |
word_text = word_info['text'] | |
word_length = len(word_text) | |
# Assign start and end character positions | |
#word_info['start_position'] = current_position | |
#word_info['end_position'] = current_position + word_length | |
word_start = current_position | |
word_end = current_position + word_length | |
# Update current position for the next word | |
current_position += word_length + 1 # +1 for the space after the word | |
#print("word_info['bounding_box']:", word_info['bounding_box']) | |
#print("word_start:", word_start) | |
#print("start_in_line:", start_in_line) | |
#print("word_end:", word_end) | |
#print("end_in_line:", end_in_line) | |
# Check if the word's bounding box is within the start and end bounds | |
if word_start >= start_in_line and word_end <= (end_in_line + 1): | |
matching_word_boxes.append(word_info['bounding_box']) | |
#print(f"Matched word: {word_info['text']}") | |
if matching_word_boxes: | |
# Calculate the combined bounding box for all matching words | |
left = min(box[0] for box in matching_word_boxes) | |
top = min(box[1] for box in matching_word_boxes) | |
right = max(box[2] for box in matching_word_boxes) | |
bottom = max(box[3] for box in matching_word_boxes) | |
redaction_bboxes.append( | |
CustomImageRecognizerResult( | |
entity_type=redaction_result.entity_type, | |
start=start_in_line, | |
end=end_in_line, | |
score=redaction_result.score, | |
left=left, | |
top=top, | |
width=right - left, | |
height=bottom - top, | |
text=matched_text | |
) | |
) | |
#print(f"Added bounding box for: '{matched_text}'") | |
return redaction_bboxes | |
def remove_space_boxes(ocr_result: dict) -> dict: | |
"""Remove OCR bboxes that are for spaces. | |
:param ocr_result: OCR results (raw or thresholded). | |
:return: OCR results with empty words removed. | |
""" | |
# Get indices of items with no text | |
idx = list() | |
for i, text in enumerate(ocr_result["text"]): | |
is_not_space = text.isspace() is False | |
if text != "" and is_not_space: | |
idx.append(i) | |
# Only retain items with text | |
filtered_ocr_result = {} | |
for key in list(ocr_result.keys()): | |
filtered_ocr_result[key] = [ocr_result[key][i] for i in idx] | |
return filtered_ocr_result | |
def _scale_bbox_results( | |
ocr_result: Dict[str, List[Union[int, str]]], scale_factor: float | |
) -> Dict[str, float]: | |
"""Scale down the bounding box results based on a scale percentage. | |
:param ocr_result: OCR results (raw). | |
:param scale_percent: Scale percentage for resizing the bounding box. | |
:return: OCR results (scaled). | |
""" | |
scaled_results = deepcopy(ocr_result) | |
coordinate_keys = ["left", "top"] | |
dimension_keys = ["width", "height"] | |
for coord_key in coordinate_keys: | |
scaled_results[coord_key] = [ | |
int(np.ceil((x) / (scale_factor))) for x in scaled_results[coord_key] | |
] | |
for dim_key in dimension_keys: | |
scaled_results[dim_key] = [ | |
max(1, int(np.ceil(x / (scale_factor)))) | |
for x in scaled_results[dim_key] | |
] | |
return scaled_results | |
def estimate_x_offset(full_text: str, start: int) -> int: | |
# Estimate the x-offset based on character position | |
# This is a simple estimation and might need refinement for variable-width fonts | |
return int(start / len(full_text) * len(full_text)) | |
def estimate_width(self, ocr_result: OCRResult, start: int, end: int) -> int: | |
# Extract the relevant text portion | |
relevant_text = ocr_result.text[start:end] | |
# If the relevant text is the same as the full text, return the full width | |
if relevant_text == ocr_result.text: | |
return ocr_result.width | |
# Estimate width based on the proportion of the relevant text length to the total text length | |
total_text_length = len(ocr_result.text) | |
relevant_text_length = len(relevant_text) | |
if total_text_length == 0: | |
return 0 # Avoid division by zero | |
# Proportion of the relevant text to the total text | |
proportion = relevant_text_length / total_text_length | |
# Estimate the width based on the proportion | |
estimated_width = int(proportion * ocr_result.width) | |
return estimated_width | |