document_redaction / tools /file_conversion.py
seanpedrickcase's picture
Enhanced logging of usage. Small buffer added to redaction rectangles as it seems to miss the tops of text often.
34addbf
raw
history blame
8.53 kB
from pdf2image import convert_from_path, pdfinfo_from_path
from tools.helper_functions import get_file_path_end, output_folder, detect_file_type
from PIL import Image
import os
import time
from gradio import Progress
from typing import List, Optional
def is_pdf_or_image(filename):
"""
Check if a file name is a PDF or an image file.
Args:
filename (str): The name of the file.
Returns:
bool: True if the file name ends with ".pdf", ".jpg", or ".png", False otherwise.
"""
if filename.lower().endswith(".pdf") or filename.lower().endswith(".jpg") or filename.lower().endswith(".jpeg") or filename.lower().endswith(".png"):
output = True
else:
output = False
return output
def is_pdf(filename):
"""
Check if a file name is a PDF.
Args:
filename (str): The name of the file.
Returns:
bool: True if the file name ends with ".pdf", False otherwise.
"""
return filename.lower().endswith(".pdf")
# %%
## Convert pdf to image if necessary
def convert_pdf_to_images(pdf_path:str, page_min:int = 0, progress=Progress(track_tqdm=True)):
# Get the number of pages in the PDF
page_count = pdfinfo_from_path(pdf_path)['Pages']
print("Number of pages in PDF: ", str(page_count))
images = []
# Open the PDF file
#for page_num in progress.tqdm(range(0,page_count), total=page_count, unit="pages", desc="Converting pages"):
for page_num in range(page_min,page_count): #progress.tqdm(range(0,page_count), total=page_count, unit="pages", desc="Converting pages"):
# print("Current page: ", str(page_num + 1))
# Convert one page to image
image = convert_from_path(pdf_path, first_page=page_num+1, last_page=page_num+1, dpi=300, use_cropbox=True, use_pdftocairo=False)
# If no images are returned, break the loop
if not image:
print("Conversion of page", str(page_num), "to file failed.")
break
# print("Conversion of page", str(page_num), "to file succeeded.")
# print("image:", image)
#image[0].save(pdf_path + "_" + str(page_num) + ".png", format="PNG")
images.extend(image)
print("PDF has been converted to images.")
# print("Images:", images)
return images
# %% Function to take in a file path, decide if it is an image or pdf, then process appropriately.
def process_file(file_path):
# Get the file extension
file_extension = os.path.splitext(file_path)[1].lower()
# Check if the file is an image type
if file_extension in ['.jpg', '.jpeg', '.png']:
print(f"{file_path} is an image file.")
# Perform image processing here
img_object = [Image.open(file_path)]
# Load images from the file paths
# Check if the file is a PDF
elif file_extension == '.pdf':
print(f"{file_path} is a PDF file. Converting to image set")
# Run your function for processing PDF files here
img_object = convert_pdf_to_images(file_path)
else:
print(f"{file_path} is not an image or PDF file.")
img_object = ['']
return img_object
def prepare_image_or_text_pdf(
file_paths: List[str],
in_redact_method: str,
in_allow_list: Optional[List[List[str]]] = None,
latest_file_completed: int = 0,
out_message: List[str] = [],
first_loop_state: bool = False,
progress: Progress = Progress(track_tqdm=True)
) -> tuple[List[str], List[str]]:
"""
Prepare and process image or text PDF files for redaction.
This function takes a list of file paths, processes each file based on the specified redaction method,
and returns the output messages and processed file paths.
Args:
file_paths (List[str]): List of file paths to process.
in_redact_method (str): The redaction method to use.
in_allow_list (Optional[List[List[str]]]): List of allowed terms for redaction.
latest_file_completed (int): Index of the last completed file.
out_message (List[str]): List to store output messages.
first_loop_state (bool): Flag indicating if this is the first iteration.
progress (Progress): Progress tracker for the operation.
Returns:
tuple[List[str], List[str]]: A tuple containing the output messages and processed file paths.
"""
tic = time.perf_counter()
# If out message or out_file_paths are blank, change to a list so it can be appended to
#if isinstance(out_message, str):
# out_message = [out_message]
# If this is the first time around, set variables to 0/blank
if first_loop_state==True:
latest_file_completed = 0
out_message = []
out_file_paths = []
else:
print("Now attempting file:", str(latest_file_completed))
out_file_paths = []
if not file_paths:
file_paths = []
#out_file_paths = file_paths
latest_file_completed = int(latest_file_completed)
# If we have already redacted the last file, return the input out_message and file list to the relevant components
if latest_file_completed >= len(file_paths):
print("Last file reached, returning files:", str(latest_file_completed))
#final_out_message = '\n'.join(out_message)
return out_message, out_file_paths
#in_allow_list_flat = [item for sublist in in_allow_list for item in sublist]
file_paths_loop = [file_paths[int(latest_file_completed)]]
#print("file_paths_loop:", str(file_paths_loop))
#for file in progress.tqdm(file_paths, desc="Preparing files"):
for file in file_paths_loop:
file_path = file.name
file_path_without_ext = get_file_path_end(file_path)
#print("file:", file_path)
file_extension = os.path.splitext(file_path)[1].lower()
# Check if the file is an image type
if file_extension in ['.jpg', '.jpeg', '.png']:
in_redact_method = "Image analysis"
#if file_path:
# file_path_without_ext = get_file_path_end(file_path)
if not file_path:
out_message = "No file selected"
print(out_message)
return out_message, out_file_paths
if in_redact_method == "Image analysis":
# Analyse and redact image-based pdf or image
if is_pdf_or_image(file_path) == False:
out_message = "Please upload a PDF file or image file (JPG, PNG) for image analysis."
print(out_message)
return out_message, out_file_paths
out_file_path = process_file(file_path)
#print("Out file path at image conversion step:", out_file_path)
elif in_redact_method == "Text analysis":
if is_pdf(file_path) == False:
out_message = "Please upload a PDF file for text analysis."
print(out_message)
return out_message, out_file_paths
out_file_path = file_path
out_file_paths.append(out_file_path)
toc = time.perf_counter()
out_time = f"File '{file_path_without_ext}' prepared in {toc - tic:0.1f} seconds."
print(out_time)
out_message.append(out_time)
out_message_out = '\n'.join(out_message)
return out_message_out, out_file_paths
def convert_text_pdf_to_img_pdf(in_file_path:str, out_text_file_path:List[str]):
file_path_without_ext = get_file_path_end(in_file_path)
out_file_paths = out_text_file_path
# Convert annotated text pdf back to image to give genuine redactions
print("Creating image version of redacted PDF to embed redactions.")
pdf_text_image_paths = process_file(out_text_file_path[0])
out_text_image_file_path = output_folder + file_path_without_ext + "_text_redacted_as_img.pdf"
pdf_text_image_paths[0].save(out_text_image_file_path, "PDF" ,resolution=300.0, save_all=True, append_images=pdf_text_image_paths[1:])
# out_file_paths.append(out_text_image_file_path)
out_file_paths = [out_text_image_file_path]
out_message = "PDF " + file_path_without_ext + " converted to image-based file."
print(out_message)
#print("Out file paths:", out_file_paths)
return out_message, out_file_paths