|
import os
|
|
import pandas as pd
|
|
import gradio as gr
|
|
from gradio_image_annotation import image_annotator
|
|
|
|
from tools.config import OUTPUT_FOLDER, INPUT_FOLDER, RUN_DIRECT_MODE, MAX_QUEUE_SIZE, DEFAULT_CONCURRENCY_LIMIT, MAX_FILE_SIZE, GRADIO_SERVER_PORT, ROOT_PATH, GET_DEFAULT_ALLOW_LIST, ALLOW_LIST_PATH, S3_ALLOW_LIST_PATH, FEEDBACK_LOGS_FOLDER, ACCESS_LOGS_FOLDER, USAGE_LOGS_FOLDER, TESSERACT_FOLDER, POPPLER_FOLDER, REDACTION_LANGUAGE, GET_COST_CODES, COST_CODES_PATH, S3_COST_CODES_PATH, ENFORCE_COST_CODES, DISPLAY_FILE_NAMES_IN_LOGS, SHOW_COSTS, RUN_AWS_FUNCTIONS, DOCUMENT_REDACTION_BUCKET, SHOW_BULK_TEXTRACT_CALL_OPTIONS
|
|
from tools.helper_functions import ensure_output_folder_exists, add_folder_to_path, put_columns_in_df, get_connection_params, reveal_feedback_buttons, custom_regex_load, reset_state_vars, load_in_default_allow_list, tesseract_ocr_option, text_ocr_option, textract_option, local_pii_detector, aws_pii_detector, no_redaction_option, reset_review_vars, merge_csv_files, load_all_output_files, update_dataframe, check_for_existing_textract_file, load_in_default_cost_codes, enforce_cost_codes, calculate_aws_costs, calculate_time_taken
|
|
from tools.aws_functions import upload_file_to_s3, download_file_from_s3
|
|
from tools.file_redaction import choose_and_run_redactor
|
|
from tools.file_conversion import prepare_image_or_pdf, get_input_file_names, convert_review_df_to_annotation_json
|
|
from tools.redaction_review import apply_redactions_to_review_df_and_files, update_all_page_annotation_object_based_on_previous_page, decrease_page, increase_page, update_annotator_object_and_filter_df, update_entities_df_recogniser_entities, update_entities_df_page, update_entities_df_text, df_select_callback, convert_df_to_xfdf, convert_xfdf_to_dataframe, reset_dropdowns, exclude_selected_items_from_redaction, undo_last_removal, update_selected_review_df_row_colour, update_all_entity_df_dropdowns, df_select_callback_cost, update_other_annotator_number_from_current, update_annotator_page_from_review_df
|
|
from tools.data_anonymise import anonymise_data_files
|
|
from tools.auth import authenticate_user
|
|
from tools.load_spacy_model_custom_recognisers import custom_entities
|
|
from tools.custom_csvlogger import CSVLogger_custom
|
|
from tools.find_duplicate_pages import identify_similar_pages
|
|
|
|
|
|
pd.set_option('future.no_silent_downcasting', True)
|
|
|
|
add_folder_to_path(TESSERACT_FOLDER)
|
|
add_folder_to_path(POPPLER_FOLDER)
|
|
|
|
ensure_output_folder_exists(OUTPUT_FOLDER)
|
|
|
|
chosen_comprehend_entities = ['BANK_ACCOUNT_NUMBER','BANK_ROUTING','CREDIT_DEBIT_NUMBER','CREDIT_DEBIT_CVV','CREDIT_DEBIT_EXPIRY','PIN','EMAIL','ADDRESS','NAME','PHONE', 'PASSPORT_NUMBER','DRIVER_ID', 'USERNAME','PASSWORD', 'IP_ADDRESS','MAC_ADDRESS', 'LICENSE_PLATE','VEHICLE_IDENTIFICATION_NUMBER','UK_NATIONAL_INSURANCE_NUMBER', 'INTERNATIONAL_BANK_ACCOUNT_NUMBER','SWIFT_CODE','UK_NATIONAL_HEALTH_SERVICE_NUMBER']
|
|
|
|
full_comprehend_entity_list = ['BANK_ACCOUNT_NUMBER','BANK_ROUTING','CREDIT_DEBIT_NUMBER','CREDIT_DEBIT_CVV','CREDIT_DEBIT_EXPIRY','PIN','EMAIL','ADDRESS','NAME','PHONE','SSN','DATE_TIME','PASSPORT_NUMBER','DRIVER_ID','URL','AGE','USERNAME','PASSWORD','AWS_ACCESS_KEY','AWS_SECRET_KEY','IP_ADDRESS','MAC_ADDRESS','ALL','LICENSE_PLATE','VEHICLE_IDENTIFICATION_NUMBER','UK_NATIONAL_INSURANCE_NUMBER','CA_SOCIAL_INSURANCE_NUMBER','US_INDIVIDUAL_TAX_IDENTIFICATION_NUMBER','UK_UNIQUE_TAXPAYER_REFERENCE_NUMBER','IN_PERMANENT_ACCOUNT_NUMBER','IN_NREGA','INTERNATIONAL_BANK_ACCOUNT_NUMBER','SWIFT_CODE','UK_NATIONAL_HEALTH_SERVICE_NUMBER','CA_HEALTH_NUMBER','IN_AADHAAR','IN_VOTER_NUMBER', "CUSTOM_FUZZY"]
|
|
|
|
|
|
chosen_comprehend_entities.extend(custom_entities)
|
|
full_comprehend_entity_list.extend(custom_entities)
|
|
|
|
|
|
chosen_redact_entities = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE", "CUSTOM"]
|
|
|
|
full_entity_list = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE", 'CREDIT_CARD', 'CRYPTO', 'DATE_TIME', 'IBAN_CODE', 'IP_ADDRESS', 'NRP', 'LOCATION', 'MEDICAL_LICENSE', 'URL', 'UK_NHS', 'CUSTOM', 'CUSTOM_FUZZY']
|
|
|
|
log_file_name = 'log.csv'
|
|
|
|
file_input_height = 200
|
|
|
|
if RUN_AWS_FUNCTIONS == "1":
|
|
default_ocr_val = textract_option
|
|
default_pii_detector = local_pii_detector
|
|
else:
|
|
default_ocr_val = text_ocr_option
|
|
default_pii_detector = local_pii_detector
|
|
|
|
|
|
app = gr.Blocks(theme = gr.themes.Base(), fill_width=True)
|
|
|
|
with app:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pdf_doc_state = gr.State([])
|
|
all_image_annotations_state = gr.State([])
|
|
|
|
all_line_level_ocr_results_df_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="all_line_level_ocr_results_df", visible=False, type="pandas", wrap=True)
|
|
all_decision_process_table_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="all_decision_process_table", visible=False, type="pandas", wrap=True)
|
|
review_file_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="review_file_df", visible=False, type="pandas", wrap=True)
|
|
|
|
session_hash_state = gr.Textbox(label= "session_hash_state", value="", visible=False)
|
|
s3_output_folder_state = gr.Textbox(label= "s3_output_folder_state", value="", visible=False)
|
|
output_folder_textbox = gr.Textbox(value = OUTPUT_FOLDER, label="output_folder_textbox", visible=False)
|
|
input_folder_textbox = gr.Textbox(value = INPUT_FOLDER, label="input_folder_textbox", visible=False)
|
|
|
|
first_loop_state = gr.Checkbox(label="first_loop_state", value=True, visible=False)
|
|
second_loop_state = gr.Checkbox(label="second_loop_state", value=False, visible=False)
|
|
do_not_save_pdf_state = gr.Checkbox(label="do_not_save_pdf_state", value=False, visible=False)
|
|
save_pdf_state = gr.Checkbox(label="save_pdf_state", value=True, visible=False)
|
|
|
|
prepared_pdf_state = gr.Dropdown(label = "prepared_pdf_list", value="", allow_custom_value=True,visible=False)
|
|
document_cropboxes = gr.Dropdown(label = "document_cropboxes", value="", allow_custom_value=True,visible=False)
|
|
page_sizes = gr.Dropdown(label = "page_sizes", value="", allow_custom_value=True, visible=False)
|
|
images_pdf_state = gr.Dropdown(label = "images_pdf_list", value="", allow_custom_value=True,visible=False)
|
|
all_img_details_state = gr.State([])
|
|
|
|
output_image_files_state = gr.Dropdown(label = "output_image_files_list", value="", allow_custom_value=True,visible=False)
|
|
output_file_list_state = gr.Dropdown(label = "output_file_list", value="", allow_custom_value=True,visible=False)
|
|
text_output_file_list_state = gr.Dropdown(label = "text_output_file_list", value="", allow_custom_value=True,visible=False)
|
|
log_files_output_list_state = gr.Dropdown(label = "log_files_output_list", value="", allow_custom_value=True,visible=False)
|
|
duplication_file_path_outputs_list_state = gr.Dropdown(label = "duplication_file_path_outputs_list", value=[], multiselect=True, allow_custom_value=True,visible=False)
|
|
|
|
|
|
backup_review_state = gr.Dataframe(visible=False)
|
|
backup_image_annotations_state = gr.State([])
|
|
backup_recogniser_entity_dataframe_base = gr.Dataframe(visible=False)
|
|
|
|
|
|
feedback_logs_state = gr.Textbox(label= "feedback_logs_state", value=FEEDBACK_LOGS_FOLDER + log_file_name, visible=False)
|
|
feedback_s3_logs_loc_state = gr.Textbox(label= "feedback_s3_logs_loc_state", value=FEEDBACK_LOGS_FOLDER, visible=False)
|
|
access_logs_state = gr.Textbox(label= "access_logs_state", value=ACCESS_LOGS_FOLDER + log_file_name, visible=False)
|
|
access_s3_logs_loc_state = gr.Textbox(label= "access_s3_logs_loc_state", value=ACCESS_LOGS_FOLDER, visible=False)
|
|
usage_logs_state = gr.Textbox(label= "usage_logs_state", value=USAGE_LOGS_FOLDER + log_file_name, visible=False)
|
|
usage_s3_logs_loc_state = gr.Textbox(label= "usage_s3_logs_loc_state", value=USAGE_LOGS_FOLDER, visible=False)
|
|
|
|
session_hash_textbox = gr.Textbox(label= "session_hash_textbox", value="", visible=False)
|
|
textract_metadata_textbox = gr.Textbox(label = "textract_metadata_textbox", value="", visible=False)
|
|
comprehend_query_number = gr.Number(label = "comprehend_query_number", value=0, visible=False)
|
|
textract_query_number = gr.Number(label = "textract_query_number", value=0, visible=False)
|
|
|
|
doc_full_file_name_textbox = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False)
|
|
doc_file_name_no_extension_textbox = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False)
|
|
blank_doc_file_name_no_extension_textbox_for_logs = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False)
|
|
doc_file_name_with_extension_textbox = gr.Textbox(label = "doc_file_name_with_extension_textbox", value="", visible=False)
|
|
doc_file_name_textbox_list = gr.Dropdown(label = "doc_file_name_textbox_list", value="", allow_custom_value=True,visible=False)
|
|
latest_review_file_path = gr.Textbox(label = "latest_review_file_path", value="", visible=False)
|
|
|
|
data_full_file_name_textbox = gr.Textbox(label = "data_full_file_name_textbox", value="", visible=False)
|
|
data_file_name_no_extension_textbox = gr.Textbox(label = "data_full_file_name_textbox", value="", visible=False)
|
|
data_file_name_with_extension_textbox = gr.Textbox(label = "data_file_name_with_extension_textbox", value="", visible=False)
|
|
data_file_name_textbox_list = gr.Dropdown(label = "data_file_name_textbox_list", value="", allow_custom_value=True,visible=False)
|
|
|
|
|
|
label_name_const = gr.Textbox(label="label_name_const", value="label", visible=False)
|
|
text_name_const = gr.Textbox(label="text_name_const", value="text", visible=False)
|
|
page_name_const = gr.Textbox(label="page_name_const", value="page", visible=False)
|
|
|
|
actual_time_taken_number = gr.Number(label = "actual_time_taken_number", value=0.0, precision=1, visible=False)
|
|
annotate_previous_page = gr.Number(value=0, label="Previous page", precision=0, visible=False)
|
|
s3_logs_output_textbox = gr.Textbox(label="Feedback submission logs", visible=False)
|
|
|
|
|
|
annotator_zoom_number = gr.Number(label = "Current annotator zoom level", value=100, precision=0, visible=False)
|
|
zoom_true_bool = gr.Checkbox(label="zoom_true_bool", value=True, visible=False)
|
|
zoom_false_bool = gr.Checkbox(label="zoom_false_bool", value=False, visible=False)
|
|
|
|
clear_all_page_redactions = gr.Checkbox(label="clear_all_page_redactions", value=True, visible=False)
|
|
prepare_for_review_bool = gr.Checkbox(label="prepare_for_review_bool", value=True, visible=False)
|
|
prepare_images_bool_false = gr.Checkbox(label="prepare_images_bool_false", value=False, visible=False)
|
|
|
|
|
|
default_deny_list_file_name = "default_deny_list.csv"
|
|
default_deny_list_loc = OUTPUT_FOLDER + "/" + default_deny_list_file_name
|
|
in_deny_list_text_in = gr.Textbox(value="deny_list", visible=False)
|
|
|
|
fully_redacted_list_file_name = "default_fully_redacted_list.csv"
|
|
fully_redacted_list_loc = OUTPUT_FOLDER + "/" + fully_redacted_list_file_name
|
|
in_fully_redacted_text_in = gr.Textbox(value="fully_redacted_pages_list", visible=False)
|
|
|
|
|
|
s3_default_bucket = gr.Textbox(label = "Default S3 bucket", value=DOCUMENT_REDACTION_BUCKET, visible=False)
|
|
s3_default_allow_list_file = gr.Textbox(label = "Default allow list file", value=S3_ALLOW_LIST_PATH, visible=False)
|
|
default_allow_list_output_folder_location = gr.Textbox(label = "Output default allow list location", value=ALLOW_LIST_PATH, visible=False)
|
|
|
|
s3_default_cost_codes_file = gr.Textbox(label = "Default cost centre file", value=S3_COST_CODES_PATH, visible=False)
|
|
default_cost_codes_output_folder_location = gr.Textbox(label = "Output default cost centre location", value=COST_CODES_PATH, visible=False)
|
|
enforce_cost_code_textbox = gr.Textbox(label = "Enforce cost code textbox", value=ENFORCE_COST_CODES, visible=False)
|
|
|
|
|
|
recogniser_entity_dataframe_base = gr.Dataframe(pd.DataFrame(data={"page":[], "label":[], "text":[]}), col_count=3, type="pandas", visible=False, label="recogniser_entity_dataframe_base", show_search="filter", headers=["page", "label", "text"], show_fullscreen_button=True, wrap=True)
|
|
|
|
|
|
in_duplicate_pages_text = gr.Textbox(label="in_duplicate_pages_text", visible=False)
|
|
duplicate_pages_df = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="duplicate_pages_df", visible=False, type="pandas", wrap=True)
|
|
|
|
|
|
current_loop_page_number = gr.Number(value=0,precision=0, interactive=False, label = "Last redacted page in document", visible=False)
|
|
page_break_return = gr.Checkbox(value = False, label="Page break reached", visible=False)
|
|
|
|
|
|
cost_code_dataframe = gr.Dataframe(value=pd.DataFrame(), type="pandas", visible=False, wrap=True)
|
|
cost_code_choice_drop = gr.Dropdown(value="", label="Choose cost code for analysis", choices=[], allow_custom_value=True, visible=False)
|
|
|
|
textract_output_found_checkbox = gr.Checkbox(value= False, label="Existing Textract output file found", interactive=False, visible=False)
|
|
total_pdf_page_count = gr.Number(label = "Total page count", value=0, visible=False)
|
|
estimated_aws_costs_number = gr.Number(label = "Approximate AWS Textract and/or Comprehend cost ($)", value=0, visible=False, precision=2)
|
|
estimated_time_taken_number = gr.Number(label = "Approximate time taken to extract text/redact (minutes)", value=0, visible=False, precision=2)
|
|
|
|
only_extract_text_radio = gr.Checkbox(value=False, label="Only extract text (no redaction)", visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
gr.Markdown(
|
|
"""# Document redaction
|
|
|
|
Redact personally identifiable information (PII) from documents (PDF, images), open text, or tabular data (XLSX/CSV/Parquet). Please see the [User Guide](https://github.com/seanpedrick-case/doc_redaction/blob/main/README.md) for a walkthrough on how to use the app. Below is a very brief overview.
|
|
|
|
To identify text in documents, the 'Local' text/OCR image analysis uses spacy/tesseract, and works ok for documents with typed text. If available, choose 'AWS Textract' to redact more complex elements e.g. signatures or handwriting. Then, choose a method for PII identification. 'Local' is quick and gives good results if you are primarily looking for a custom list of terms to redact (see Redaction settings). If available, AWS Comprehend gives better results at a small cost.
|
|
|
|
After redaction, review suggested redactions on the 'Review redactions' tab. The original pdf can be uploaded here alongside a '...review_file.csv' to continue a previous redaction/review task. See the 'Redaction settings' tab to choose which pages to redact, the type of information to redact (e.g. people, places), or custom terms to always include/ exclude from redaction.
|
|
|
|
NOTE: The app is not 100% accurate, and it will miss some personal information. It is essential that all outputs are reviewed **by a human** before using the final outputs.""")
|
|
|
|
|
|
|
|
|
|
with gr.Tab("Redact PDFs/images"):
|
|
with gr.Accordion("Redact document", open = True):
|
|
in_doc_files = gr.File(label="Choose a document or image file (PDF, JPG, PNG)", file_count= "multiple", file_types=['.pdf', '.jpg', '.png', '.json', '.zip'], height=file_input_height)
|
|
|
|
text_extract_method_radio = gr.Radio(label="Choose text extraction method. AWS Textract has a cost per page - $3.50 per 1,000 pages with signature detection (default), $1.50 without. Go to Redaction settings - AWS Textract options to remove signature detection.", value = default_ocr_val, choices=[text_ocr_option, tesseract_ocr_option, textract_option])
|
|
|
|
with gr.Row(equal_height=True):
|
|
pii_identification_method_drop = gr.Radio(label = "Choose PII detection method. AWS Comprehend has a cost of approximately $0.01 per 10,000 characters.", value = default_pii_detector, choices=[no_redaction_option, local_pii_detector, aws_pii_detector])
|
|
|
|
with gr.Accordion("AWS Textract signature detection (default is on)", open = False):
|
|
handwrite_signature_checkbox = gr.CheckboxGroup(label="AWS Textract extraction settings", choices=["Extract handwriting", "Extract signatures"], value=["Extract handwriting", "Extract signatures"])
|
|
|
|
if SHOW_BULK_TEXTRACT_CALL_OPTIONS == "True":
|
|
with gr.Accordion("AWS Textract bulk document API call", open = False, visible=True):
|
|
with gr.Row(equal_height=True):
|
|
job_name_textbox = gr.Textbox(value="", label="Bulk Textract call", visible=True)
|
|
send_document_to_textract_api_btn = gr.Button("Analyse document with AWS Textract", variant="primary", visible=True)
|
|
with gr.Row(equal_height=True):
|
|
check_state_of_textract_api__call_btn = gr.Button("Check state of Textract job", variant="secondary", visible=True)
|
|
job_current_status = gr.Textbox(value="", label="job_current_status", visible=True)
|
|
with gr.Row(equal_height=True):
|
|
textract_job_output_file = gr.File(label="Textract job output files", height=file_input_height, visible=True)
|
|
|
|
if SHOW_COSTS == "True":
|
|
with gr.Accordion("Estimated costs and time taken", open = False, visible=True):
|
|
with gr.Row(equal_height=True):
|
|
textract_output_found_checkbox = gr.Checkbox(value= False, label="Existing Textract output file found", interactive=False, visible=True)
|
|
total_pdf_page_count = gr.Number(label = "Total page count", value=0, visible=True)
|
|
estimated_aws_costs_number = gr.Number(label = "Approximate AWS Textract and/or Comprehend cost ($)", value=0.00, precision=2, visible=True)
|
|
estimated_time_taken_number = gr.Number(label = "Approximate time taken to extract text/redact (minutes)", value=0, visible=True, precision=2)
|
|
|
|
gr.Markdown("""If you only want to redact certain pages, or certain entities (e.g. just email addresses, or a custom list of terms), please go to the Redaction Settings tab.""")
|
|
|
|
document_redact_btn = gr.Button("Extract text and redact document", variant="primary", scale = 4)
|
|
|
|
if GET_COST_CODES == "True" or ENFORCE_COST_CODES == "True":
|
|
with gr.Accordion("Apply cost code", open = True, visible=True):
|
|
with gr.Row(equal_height=True):
|
|
cost_code_dataframe = gr.Dataframe(value=pd.DataFrame(), row_count = (0, "dynamic"), label="Cost codes", type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, show_search='search', visible=True, wrap=True, max_height=200)
|
|
cost_code_choice_drop = gr.Dropdown(value="", label="Choose cost code for analysis", choices=[], allow_custom_value=True, visible=True)
|
|
|
|
with gr.Row():
|
|
output_summary = gr.Textbox(label="Output summary", scale=1)
|
|
output_file = gr.File(label="Output files", scale = 2)
|
|
latest_file_completed_text = gr.Number(value=0, label="Number of documents redacted", interactive=False, visible=False)
|
|
|
|
with gr.Row():
|
|
convert_text_pdf_to_img_btn = gr.Button(value="Convert pdf to image-based pdf to apply redactions", variant="secondary", visible=False)
|
|
|
|
|
|
pdf_feedback_title = gr.Markdown(value="## Please give feedback", visible=False)
|
|
pdf_feedback_radio = gr.Radio(label = "Quality of results", choices=["The results were good", "The results were not good"], visible=False)
|
|
pdf_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False)
|
|
pdf_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False)
|
|
|
|
|
|
|
|
|
|
with gr.Tab("Review redactions", id="tab_object_annotation"):
|
|
|
|
with gr.Accordion(label = "Review PDF redactions", open=True):
|
|
output_review_files = gr.File(label="Upload original PDF and 'review_file' csv here to review suggested redactions", file_count='multiple', height=file_input_height)
|
|
upload_previous_review_file_btn = gr.Button("Review PDF and 'review file' csv provided above", variant="secondary")
|
|
with gr.Row():
|
|
annotate_zoom_in = gr.Button("Zoom in", visible=False)
|
|
annotate_zoom_out = gr.Button("Zoom out", visible=False)
|
|
with gr.Row():
|
|
clear_all_redactions_on_page_btn = gr.Button("Clear all redactions on page", visible=False)
|
|
|
|
with gr.Row(equal_height=True):
|
|
with gr.Column(scale=2):
|
|
with gr.Row(equal_height=True):
|
|
annotation_last_page_button = gr.Button("Previous page", scale = 4)
|
|
annotate_current_page = gr.Number(value=1, label="Current page", precision=0, scale = 2, min_width=50)
|
|
annotate_max_pages = gr.Number(value=1, label="Total pages", precision=0, interactive=False, scale = 2, min_width=50)
|
|
annotation_next_page_button = gr.Button("Next page", scale = 4)
|
|
with gr.Column(scale=1):
|
|
annotation_button_apply = gr.Button("Apply revised redactions to PDF", variant="primary")
|
|
|
|
with gr.Row():
|
|
with gr.Column(scale=2):
|
|
zoom_str = str(annotator_zoom_number) + '%'
|
|
|
|
annotator = image_annotator(
|
|
label="Modify redaction boxes",
|
|
label_list=["Redaction"],
|
|
label_colors=[(0, 0, 0)],
|
|
show_label=False,
|
|
height=zoom_str,
|
|
width=zoom_str,
|
|
box_min_size=1,
|
|
box_selected_thickness=2,
|
|
handle_size=4,
|
|
sources=None,
|
|
show_clear_button=False,
|
|
show_share_button=False,
|
|
show_remove_button=False,
|
|
handles_cursor=True,
|
|
interactive=False
|
|
)
|
|
with gr.Column(scale=1):
|
|
with gr.Row(equal_height=True):
|
|
recogniser_entity_dropdown = gr.Dropdown(label="Redaction category", value="ALL", allow_custom_value=True)
|
|
page_entity_dropdown = gr.Dropdown(label="Page", value="ALL", allow_custom_value=True)
|
|
text_entity_dropdown = gr.Dropdown(label="Text", value="ALL", allow_custom_value=True)
|
|
recogniser_entity_dataframe = gr.Dataframe(pd.DataFrame(data={"page":[], "label":[], "text":[]}), col_count=(3,"fixed"), type="pandas", label="Search results. Click to go to page", headers=["page", "label", "text"], show_fullscreen_button=True, wrap=True)
|
|
|
|
with gr.Row(equal_height=True):
|
|
exclude_selected_row_btn = gr.Button(value="Exclude specific row from redactions")
|
|
exclude_selected_btn = gr.Button(value="Exclude all items in table from redactions")
|
|
with gr.Row(equal_height=True):
|
|
reset_dropdowns_btn = gr.Button(value="Reset filters")
|
|
|
|
undo_last_removal_btn = gr.Button(value="Undo last element removal")
|
|
update_current_page_redactions_btn = gr.Button(value="Save changes on current page to file", variant="primary")
|
|
selected_entity_dataframe_row = gr.Dataframe(pd.DataFrame(data={"page":[], "label":[], "text":[]}), col_count=3, type="pandas", visible=False, label="selected_entity_dataframe_row", headers=["page", "label", "text"], show_fullscreen_button=True, wrap=True)
|
|
|
|
with gr.Row():
|
|
with gr.Column(scale=2):
|
|
with gr.Row(equal_height=True):
|
|
annotation_last_page_button_bottom = gr.Button("Previous page", scale = 4)
|
|
annotate_current_page_bottom = gr.Number(value=1, label="Current page", precision=0, interactive=True, scale = 2, min_width=50)
|
|
annotate_max_pages_bottom = gr.Number(value=1, label="Total pages", precision=0, interactive=False, scale = 2, min_width=50)
|
|
annotation_next_page_button_bottom = gr.Button("Next page", scale = 4)
|
|
with gr.Column(scale=1):
|
|
blank_markdown_bot = gr.Markdown(value="", label="")
|
|
|
|
with gr.Accordion("Convert review files loaded above to Adobe format, or convert from Adobe format to review file", open = False):
|
|
convert_review_file_to_adobe_btn = gr.Button("Convert review file to Adobe comment format", variant="primary")
|
|
adobe_review_files_out = gr.File(label="Output Adobe comment files will appear here. If converting from .xfdf file to review_file.csv, upload the original pdf with the xfdf file here then click Convert below.", file_count='multiple', file_types=['.csv', '.xfdf', '.pdf'])
|
|
convert_adobe_to_review_file_btn = gr.Button("Convert Adobe .xfdf comment file to review_file.csv", variant="secondary")
|
|
|
|
|
|
|
|
|
|
with gr.Tab(label="Identify duplicate pages"):
|
|
with gr.Accordion("Identify duplicate pages to redact", open = True):
|
|
in_duplicate_pages = gr.File(label="Upload multiple 'ocr_output.csv' data files from redaction jobs here to compare", file_count="multiple", height=file_input_height, file_types=['.csv'])
|
|
with gr.Row():
|
|
duplicate_threshold_value = gr.Number(value=0.9, label="Minimum similarity to be considered a duplicate (maximum = 1)", scale =1)
|
|
find_duplicate_pages_btn = gr.Button(value="Identify duplicate pages", variant="primary", scale = 5)
|
|
|
|
duplicate_pages_out = gr.File(label="Duplicate pages analysis output", file_count="multiple", height=file_input_height, file_types=['.csv'])
|
|
|
|
|
|
|
|
|
|
with gr.Tab(label="Open text or Excel/csv files"):
|
|
gr.Markdown("""### Choose open text or a tabular data file (xlsx or csv) to redact.""")
|
|
with gr.Accordion("Paste open text", open = False):
|
|
in_text = gr.Textbox(label="Enter open text", lines=10)
|
|
with gr.Accordion("Upload xlsx or csv files", open = True):
|
|
in_data_files = gr.File(label="Choose Excel or csv files", file_count= "multiple", file_types=['.xlsx', '.xls', '.csv', '.parquet', '.csv.gz'], height=file_input_height)
|
|
|
|
in_excel_sheets = gr.Dropdown(choices=["Choose Excel sheets to anonymise"], multiselect = True, label="Select Excel sheets that you want to anonymise (showing sheets present across all Excel files).", visible=False, allow_custom_value=True)
|
|
|
|
in_colnames = gr.Dropdown(choices=["Choose columns to anonymise"], multiselect = True, label="Select columns that you want to anonymise (showing columns present across all files).")
|
|
|
|
pii_identification_method_drop_tabular = gr.Radio(label = "Choose PII detection method. AWS Comprehend has a cost of approximately $0.01 per 10,000 characters.", value = default_pii_detector, choices=[local_pii_detector, aws_pii_detector])
|
|
|
|
tabular_data_redact_btn = gr.Button("Redact text/data files", variant="primary")
|
|
|
|
with gr.Row():
|
|
text_output_summary = gr.Textbox(label="Output result")
|
|
text_output_file = gr.File(label="Output files")
|
|
text_tabular_files_done = gr.Number(value=0, label="Number of tabular files redacted", interactive=False, visible=False)
|
|
|
|
|
|
data_feedback_title = gr.Markdown(value="## Please give feedback", visible=False)
|
|
data_feedback_radio = gr.Radio(label="Please give some feedback about the results of the redaction. A reminder that the app is only expected to identify about 60% of personally identifiable information in a given (typed) document.",
|
|
choices=["The results were good", "The results were not good"], visible=False, show_label=True)
|
|
data_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False)
|
|
data_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False)
|
|
|
|
|
|
|
|
|
|
with gr.Tab(label="Redaction settings"):
|
|
with gr.Accordion("Custom allow, deny, and full page redaction lists", open = True):
|
|
with gr.Row():
|
|
with gr.Column():
|
|
in_allow_list = gr.File(label="Import allow list file - csv table with one column of a different word/phrase on each row (case insensitive). Terms in this file will not be redacted.", file_count="multiple", height=file_input_height)
|
|
in_allow_list_text = gr.Textbox(label="Custom allow list load status")
|
|
with gr.Column():
|
|
in_deny_list = gr.File(label="Import custom deny list - csv table with one column of a different word/phrase on each row (case insensitive). Terms in this file will always be redacted.", file_count="multiple", height=file_input_height)
|
|
in_deny_list_text = gr.Textbox(label="Custom deny list load status")
|
|
with gr.Column():
|
|
in_fully_redacted_list = gr.File(label="Import fully redacted pages list - csv table with one column of page numbers on each row. Page numbers in this file will be fully redacted.", file_count="multiple", height=file_input_height)
|
|
in_fully_redacted_list_text = gr.Textbox(label="Fully redacted page list load status")
|
|
with gr.Accordion("Manually modify custom allow, deny, and full page redaction lists (NOTE: you need to press Enter after modifying/adding an entry to the lists to apply them)", open = False):
|
|
with gr.Row():
|
|
in_allow_list_state = gr.Dataframe(value=pd.DataFrame(), headers=["allow_list"], col_count=(1, "fixed"), row_count = (0, "dynamic"), label="Allow list", visible=True, type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, wrap=True)
|
|
in_deny_list_state = gr.Dataframe(value=pd.DataFrame(), headers=["deny_list"], col_count=(1, "fixed"), row_count = (0, "dynamic"), label="Deny list", visible=True, type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, wrap=True)
|
|
in_fully_redacted_list_state = gr.Dataframe(value=pd.DataFrame(), headers=["fully_redacted_pages_list"], col_count=(1, "fixed"), row_count = (0, "dynamic"), label="Fully redacted pages", visible=True, type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, datatype='number', wrap=True)
|
|
|
|
with gr.Accordion("Select entity types to redact", open = True):
|
|
in_redact_entities = gr.Dropdown(value=chosen_redact_entities, choices=full_entity_list, multiselect=True, label="Local PII identification model (click empty space in box for full list)")
|
|
in_redact_comprehend_entities = gr.Dropdown(value=chosen_comprehend_entities, choices=full_comprehend_entity_list, multiselect=True, label="AWS Comprehend PII identification model (click empty space in box for full list)")
|
|
|
|
with gr.Row():
|
|
max_fuzzy_spelling_mistakes_num = gr.Number(label="Maximum number of spelling mistakes allowed for fuzzy matching (CUSTOM_FUZZY entity).", value=1, minimum=0, maximum=9, precision=0)
|
|
match_fuzzy_whole_phrase_bool = gr.Checkbox(label="Should fuzzy search match on entire phrases in deny list (as opposed to each word individually)?", value=True)
|
|
|
|
with gr.Accordion("Redact only selected pages", open = False):
|
|
with gr.Row():
|
|
page_min = gr.Number(precision=0,minimum=0,maximum=9999, label="Lowest page to redact")
|
|
page_max = gr.Number(precision=0,minimum=0,maximum=9999, label="Highest page to redact")
|
|
|
|
with gr.Accordion("AWS options", open = False):
|
|
|
|
in_redact_language = gr.Dropdown(value = REDACTION_LANGUAGE, choices = [REDACTION_LANGUAGE], label="Redaction language", multiselect=False, visible=False)
|
|
|
|
with gr.Row():
|
|
aws_access_key_textbox = gr.Textbox(value='', label="AWS access key for account with permissions for AWS Textract and Comprehend", visible=True, type="password")
|
|
aws_secret_key_textbox = gr.Textbox(value='', label="AWS secret key for account with permissions for AWS Textract and Comprehend", visible=True, type="password")
|
|
|
|
with gr.Accordion("Settings for open text or xlsx/csv files", open = False):
|
|
anon_strat = gr.Radio(choices=["replace with 'REDACTED'", "replace with <ENTITY_NAME>", "redact completely", "hash", "mask", "encrypt", "fake_first_name"], label="Select an anonymisation method.", value = "replace with 'REDACTED'")
|
|
|
|
log_files_output = gr.File(label="Log file output", interactive=False)
|
|
|
|
with gr.Accordion("Combine multiple review files", open = False):
|
|
multiple_review_files_in_out = gr.File(label="Combine multiple review_file.csv files together here.", file_count='multiple', file_types=['.csv'])
|
|
merge_multiple_review_files_btn = gr.Button("Merge multiple review files into one", variant="primary")
|
|
|
|
with gr.Accordion("View all output files from this session", open = False):
|
|
all_output_files_btn = gr.Button("Click here to view all output files", variant="secondary")
|
|
all_output_files = gr.File(label="All files in output folder", file_count='multiple', file_types=['.csv'], interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if SHOW_COSTS == 'True':
|
|
|
|
total_pdf_page_count.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
|
|
text_extract_method_radio.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
|
|
pii_identification_method_drop.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
|
|
handwrite_signature_checkbox.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
|
|
textract_output_found_checkbox.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
|
|
only_extract_text_radio.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
|
|
|
|
|
|
total_pdf_page_count.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_time_taken_number])
|
|
text_extract_method_radio.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_time_taken_number])
|
|
pii_identification_method_drop.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_time_taken_number])
|
|
handwrite_signature_checkbox.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_time_taken_number])
|
|
textract_output_found_checkbox.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_time_taken_number])
|
|
only_extract_text_radio.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_time_taken_number])
|
|
|
|
|
|
if SHOW_COSTS=="True" and (GET_COST_CODES == "True" or ENFORCE_COST_CODES == "True"):
|
|
cost_code_dataframe.select(df_select_callback_cost, inputs=[cost_code_dataframe], outputs=[cost_code_choice_drop])
|
|
|
|
in_doc_files.upload(fn=get_input_file_names, inputs=[in_doc_files], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\
|
|
success(fn = prepare_image_or_pdf, inputs=[in_doc_files, text_extract_method_radio, latest_file_completed_text, output_summary, first_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false], outputs=[output_summary, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_state, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state]).\
|
|
success(fn=check_for_existing_textract_file, inputs=[doc_file_name_no_extension_textbox, output_folder_textbox], outputs=[textract_output_found_checkbox])
|
|
|
|
|
|
document_redact_btn.click(fn = reset_state_vars, outputs=[all_image_annotations_state, all_line_level_ocr_results_df_state, all_decision_process_table_state, comprehend_query_number, textract_metadata_textbox, annotator, output_file_list_state, log_files_output_list_state, recogniser_entity_dataframe, recogniser_entity_dataframe_base, pdf_doc_state, duplication_file_path_outputs_list_state, output_summary]).\
|
|
success(fn= enforce_cost_codes, inputs=[enforce_cost_code_textbox, cost_code_choice_drop]).\
|
|
success(fn= choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_language, in_redact_entities, in_redact_comprehend_entities, text_extract_method_radio, in_allow_list_state, in_deny_list_state, in_fully_redacted_list_state, latest_file_completed_text, output_summary, output_file_list_state, log_files_output_list_state, first_loop_state, page_min, page_max, actual_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_line_level_ocr_results_df_state, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number, max_fuzzy_spelling_mistakes_num, match_fuzzy_whole_phrase_bool, aws_access_key_textbox, aws_secret_key_textbox, annotate_max_pages, review_file_state, output_folder_textbox, document_cropboxes, page_sizes, textract_output_found_checkbox, only_extract_text_radio, duplication_file_path_outputs_list_state, latest_review_file_path, input_folder_textbox, textract_query_number],
|
|
outputs=[output_summary, output_file, output_file_list_state, latest_file_completed_text, log_files_output, log_files_output_list_state, actual_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_line_level_ocr_results_df_state, all_decision_process_table_state, comprehend_query_number, output_review_files, annotate_max_pages, annotate_max_pages_bottom, prepared_pdf_state, images_pdf_state, review_file_state, page_sizes, duplication_file_path_outputs_list_state, in_duplicate_pages, latest_review_file_path, textract_query_number], api_name="redact_doc").\
|
|
success(fn=update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, page_min, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state])
|
|
|
|
|
|
current_loop_page_number.change(fn = choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_language, in_redact_entities, in_redact_comprehend_entities, text_extract_method_radio, in_allow_list_state, in_deny_list_state, in_fully_redacted_list_state, latest_file_completed_text, output_summary, output_file_list_state, log_files_output_list_state, second_loop_state, page_min, page_max, actual_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_line_level_ocr_results_df_state, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number, max_fuzzy_spelling_mistakes_num, match_fuzzy_whole_phrase_bool, aws_access_key_textbox, aws_secret_key_textbox, annotate_max_pages, review_file_state, output_folder_textbox, document_cropboxes, page_sizes, textract_output_found_checkbox, only_extract_text_radio, duplication_file_path_outputs_list_state, latest_review_file_path, input_folder_textbox, textract_query_number],
|
|
outputs=[output_summary, output_file, output_file_list_state, latest_file_completed_text, log_files_output, log_files_output_list_state, actual_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_line_level_ocr_results_df_state, all_decision_process_table_state, comprehend_query_number, output_review_files, annotate_max_pages, annotate_max_pages_bottom, prepared_pdf_state, images_pdf_state, review_file_state, page_sizes, duplication_file_path_outputs_list_state, in_duplicate_pages, latest_review_file_path, textract_query_number]).\
|
|
success(fn=update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, page_min, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state])
|
|
|
|
|
|
latest_file_completed_text.change(fn = choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_language, in_redact_entities, in_redact_comprehend_entities, text_extract_method_radio, in_allow_list_state, in_deny_list_state, in_fully_redacted_list_state, latest_file_completed_text, output_summary, output_file_list_state, log_files_output_list_state, second_loop_state, page_min, page_max, actual_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_line_level_ocr_results_df_state, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number, max_fuzzy_spelling_mistakes_num, match_fuzzy_whole_phrase_bool, aws_access_key_textbox, aws_secret_key_textbox, annotate_max_pages, review_file_state, output_folder_textbox, document_cropboxes, page_sizes, textract_output_found_checkbox, only_extract_text_radio, duplication_file_path_outputs_list_state, latest_review_file_path, input_folder_textbox, textract_query_number],
|
|
outputs=[output_summary, output_file, output_file_list_state, latest_file_completed_text, log_files_output, log_files_output_list_state, actual_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_line_level_ocr_results_df_state, all_decision_process_table_state, comprehend_query_number, output_review_files, annotate_max_pages, annotate_max_pages_bottom, prepared_pdf_state, images_pdf_state, review_file_state, page_sizes, duplication_file_path_outputs_list_state, in_duplicate_pages, latest_review_file_path, textract_query_number]).\
|
|
success(fn=update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, page_min, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]).\
|
|
success(fn=check_for_existing_textract_file, inputs=[doc_file_name_no_extension_textbox, output_folder_textbox], outputs=[textract_output_found_checkbox]).\
|
|
success(fn=reveal_feedback_buttons, outputs=[pdf_feedback_radio, pdf_further_details_text, pdf_submit_feedback_btn, pdf_feedback_title])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
upload_previous_review_file_btn.click(fn=reset_review_vars, inputs=None, outputs=[recogniser_entity_dataframe, recogniser_entity_dataframe_base]).\
|
|
success(fn=get_input_file_names, inputs=[output_review_files], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\
|
|
success(fn = prepare_image_or_pdf, inputs=[output_review_files, text_extract_method_radio, latest_file_completed_text, output_summary, second_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false], outputs=[output_summary, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_state, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state], api_name="prepare_doc").\
|
|
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state])
|
|
|
|
|
|
annotate_current_page.change(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
|
|
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]).\
|
|
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output, review_file_state])
|
|
|
|
annotation_last_page_button.click(fn=decrease_page, inputs=[annotate_current_page], outputs=[annotate_current_page, annotate_current_page])
|
|
annotation_next_page_button.click(fn=increase_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page, annotate_current_page])
|
|
|
|
annotation_last_page_button_bottom.click(fn=decrease_page, inputs=[annotate_current_page], outputs=[annotate_current_page_bottom, annotate_current_page_bottom])
|
|
annotation_next_page_button_bottom.click(fn=increase_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page_bottom, annotate_current_page_bottom])
|
|
|
|
annotate_current_page_bottom.submit(update_other_annotator_number_from_current, inputs=[annotate_current_page_bottom], outputs=[annotate_current_page])
|
|
|
|
|
|
annotation_button_apply.click(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, output_folder_textbox, save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output, review_file_state], scroll_to_output=True)
|
|
|
|
|
|
recogniser_entity_dropdown.select(update_entities_df_recogniser_entities, inputs=[recogniser_entity_dropdown, recogniser_entity_dataframe_base, page_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dataframe, text_entity_dropdown, page_entity_dropdown])
|
|
page_entity_dropdown.select(update_entities_df_page, inputs=[page_entity_dropdown, recogniser_entity_dataframe_base, recogniser_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dataframe, recogniser_entity_dropdown, text_entity_dropdown])
|
|
text_entity_dropdown.select(update_entities_df_text, inputs=[text_entity_dropdown, recogniser_entity_dataframe_base, recogniser_entity_dropdown, page_entity_dropdown], outputs=[recogniser_entity_dataframe, recogniser_entity_dropdown, page_entity_dropdown])
|
|
|
|
recogniser_entity_dataframe.select(df_select_callback, inputs=[recogniser_entity_dataframe], outputs=[annotate_current_page, selected_entity_dataframe_row])
|
|
|
|
|
|
|
|
|
|
reset_dropdowns_btn.click(reset_dropdowns, inputs=[recogniser_entity_dataframe_base], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown]).\
|
|
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state])
|
|
|
|
|
|
|
|
exclude_selected_row_btn.click(exclude_selected_items_from_redaction, inputs=[review_file_state, selected_entity_dataframe_row, images_pdf_state, page_sizes, all_image_annotations_state, recogniser_entity_dataframe_base], outputs=[review_file_state, all_image_annotations_state, recogniser_entity_dataframe_base, backup_review_state, backup_image_annotations_state, backup_recogniser_entity_dataframe_base]).\
|
|
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]).\
|
|
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output, review_file_state]).\
|
|
success(update_all_entity_df_dropdowns, inputs=[recogniser_entity_dataframe_base, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown])
|
|
|
|
|
|
exclude_selected_btn.click(exclude_selected_items_from_redaction, inputs=[review_file_state, recogniser_entity_dataframe, images_pdf_state, page_sizes, all_image_annotations_state, recogniser_entity_dataframe_base], outputs=[review_file_state, all_image_annotations_state, recogniser_entity_dataframe_base, backup_review_state, backup_image_annotations_state, backup_recogniser_entity_dataframe_base]).\
|
|
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]).\
|
|
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output, review_file_state]).\
|
|
success(update_all_entity_df_dropdowns, inputs=[recogniser_entity_dataframe_base, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown])
|
|
|
|
undo_last_removal_btn.click(undo_last_removal, inputs=[backup_review_state, backup_image_annotations_state, backup_recogniser_entity_dataframe_base], outputs=[review_file_state, all_image_annotations_state, recogniser_entity_dataframe_base]).\
|
|
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]).\
|
|
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output, review_file_state])
|
|
|
|
update_current_page_redactions_btn.click(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_current_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
|
|
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]).\
|
|
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output, review_file_state])
|
|
|
|
|
|
convert_review_file_to_adobe_btn.click(fn=get_input_file_names, inputs=[output_review_files], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\
|
|
success(fn = prepare_image_or_pdf, inputs=[output_review_files, text_extract_method_radio, latest_file_completed_text, output_summary, second_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false], outputs=[output_summary, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_state, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state]).\
|
|
success(convert_df_to_xfdf, inputs=[output_review_files, pdf_doc_state, images_pdf_state, output_folder_textbox, document_cropboxes, page_sizes], outputs=[adobe_review_files_out])
|
|
|
|
|
|
convert_adobe_to_review_file_btn.click(fn=get_input_file_names, inputs=[adobe_review_files_out], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\
|
|
success(fn = prepare_image_or_pdf, inputs=[adobe_review_files_out, text_extract_method_radio, latest_file_completed_text, output_summary, second_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false], outputs=[output_summary, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_state, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state]).\
|
|
success(fn=convert_xfdf_to_dataframe, inputs=[adobe_review_files_out, pdf_doc_state, images_pdf_state, output_folder_textbox], outputs=[output_review_files], scroll_to_output=True)
|
|
|
|
|
|
|
|
|
|
in_data_files.upload(fn=put_columns_in_df, inputs=[in_data_files], outputs=[in_colnames, in_excel_sheets]).\
|
|
success(fn=get_input_file_names, inputs=[in_data_files], outputs=[data_file_name_no_extension_textbox, data_file_name_with_extension_textbox, data_full_file_name_textbox, data_file_name_textbox_list, total_pdf_page_count])
|
|
|
|
tabular_data_redact_btn.click(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list_state, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, first_loop_state, output_folder_textbox, in_deny_list_state, max_fuzzy_spelling_mistakes_num, pii_identification_method_drop_tabular, in_redact_comprehend_entities, comprehend_query_number, aws_access_key_textbox, aws_secret_key_textbox], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state], api_name="redact_data")
|
|
|
|
|
|
text_tabular_files_done.change(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list_state, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, second_loop_state, output_folder_textbox, in_deny_list_state, max_fuzzy_spelling_mistakes_num, pii_identification_method_drop_tabular, in_redact_comprehend_entities, comprehend_query_number, aws_access_key_textbox, aws_secret_key_textbox], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state]).\
|
|
success(fn = reveal_feedback_buttons, outputs=[data_feedback_radio, data_further_details_text, data_submit_feedback_btn, data_feedback_title])
|
|
|
|
|
|
|
|
|
|
find_duplicate_pages_btn.click(fn=identify_similar_pages, inputs=[in_duplicate_pages, duplicate_threshold_value, output_folder_textbox], outputs=[duplicate_pages_df, duplicate_pages_out])
|
|
|
|
|
|
|
|
|
|
|
|
in_allow_list.change(fn=custom_regex_load, inputs=[in_allow_list], outputs=[in_allow_list_text, in_allow_list_state])
|
|
in_deny_list.change(fn=custom_regex_load, inputs=[in_deny_list, in_deny_list_text_in], outputs=[in_deny_list_text, in_deny_list_state])
|
|
in_fully_redacted_list.change(fn=custom_regex_load, inputs=[in_fully_redacted_list, in_fully_redacted_text_in], outputs=[in_fully_redacted_list_text, in_fully_redacted_list_state])
|
|
|
|
|
|
in_allow_list_state.input(update_dataframe, inputs=[in_allow_list_state], outputs=[in_allow_list_state])
|
|
in_deny_list_state.input(update_dataframe, inputs=[in_deny_list_state], outputs=[in_deny_list_state])
|
|
in_fully_redacted_list_state.input(update_dataframe, inputs=[in_fully_redacted_list_state], outputs=[in_fully_redacted_list_state])
|
|
|
|
|
|
merge_multiple_review_files_btn.click(fn=merge_csv_files, inputs=multiple_review_files_in_out, outputs=multiple_review_files_in_out)
|
|
|
|
|
|
all_output_files_btn.click(fn=load_all_output_files, inputs=output_folder_textbox, outputs=all_output_files)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.load(get_connection_params, inputs=[output_folder_textbox, input_folder_textbox], outputs=[session_hash_state, output_folder_textbox, session_hash_textbox, input_folder_textbox])
|
|
|
|
|
|
if GET_DEFAULT_ALLOW_LIST == "True" and ALLOW_LIST_PATH:
|
|
if not os.path.exists(ALLOW_LIST_PATH) and S3_ALLOW_LIST_PATH:
|
|
app.load(download_file_from_s3, inputs=[s3_default_bucket, s3_default_allow_list_file, default_allow_list_output_folder_location]).\
|
|
success(load_in_default_allow_list, inputs = [default_allow_list_output_folder_location], outputs=[in_allow_list])
|
|
print("Successfully loaded allow list from S3")
|
|
elif os.path.exists(ALLOW_LIST_PATH):
|
|
print("Loading allow list from default allow list output path location:", ALLOW_LIST_PATH)
|
|
app.load(load_in_default_allow_list, inputs = [default_allow_list_output_folder_location], outputs=[in_allow_list])
|
|
else: print("Could not load in default allow list")
|
|
|
|
|
|
if GET_COST_CODES == "True" and COST_CODES_PATH:
|
|
if not os.path.exists(COST_CODES_PATH) and S3_COST_CODES_PATH:
|
|
app.load(download_file_from_s3, inputs=[s3_default_bucket, s3_default_cost_codes_file, default_cost_codes_output_folder_location]).\
|
|
success(load_in_default_cost_codes, inputs = [default_cost_codes_output_folder_location], outputs=[cost_code_dataframe, cost_code_choice_drop])
|
|
print("Successfully loaded cost codes from S3")
|
|
elif os.path.exists(COST_CODES_PATH):
|
|
print("Loading cost codes from default cost codes path location:", COST_CODES_PATH)
|
|
app.load(load_in_default_cost_codes, inputs = [default_cost_codes_output_folder_location], outputs=[cost_code_dataframe, cost_code_choice_drop])
|
|
else: print("Could not load in cost code data")
|
|
|
|
|
|
access_callback = CSVLogger_custom(dataset_file_name=log_file_name)
|
|
access_callback.setup([session_hash_textbox], ACCESS_LOGS_FOLDER)
|
|
session_hash_textbox.change(lambda *args: access_callback.flag(list(args)), [session_hash_textbox], None, preprocess=False).\
|
|
success(fn = upload_file_to_s3, inputs=[access_logs_state, access_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
|
|
|
|
|
|
pdf_callback = CSVLogger_custom(dataset_file_name=log_file_name)
|
|
pdf_callback.setup([pdf_feedback_radio, pdf_further_details_text, doc_file_name_no_extension_textbox], FEEDBACK_LOGS_FOLDER)
|
|
pdf_submit_feedback_btn.click(lambda *args: pdf_callback.flag(list(args)), [pdf_feedback_radio, pdf_further_details_text, doc_file_name_no_extension_textbox], None, preprocess=False).\
|
|
success(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[pdf_further_details_text])
|
|
|
|
|
|
data_callback = CSVLogger_custom(dataset_file_name=log_file_name)
|
|
data_callback.setup([data_feedback_radio, data_further_details_text, data_full_file_name_textbox], FEEDBACK_LOGS_FOLDER)
|
|
data_submit_feedback_btn.click(lambda *args: data_callback.flag(list(args)), [data_feedback_radio, data_further_details_text, data_full_file_name_textbox], None, preprocess=False).\
|
|
success(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[data_further_details_text])
|
|
|
|
|
|
usage_callback = CSVLogger_custom(dataset_file_name=log_file_name)
|
|
|
|
if DISPLAY_FILE_NAMES_IN_LOGS == 'True':
|
|
usage_callback.setup([session_hash_textbox, doc_file_name_no_extension_textbox, data_full_file_name_textbox, total_pdf_page_count, actual_time_taken_number, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop], USAGE_LOGS_FOLDER)
|
|
latest_file_completed_text.change(lambda *args: usage_callback.flag(list(args)), [session_hash_textbox, doc_file_name_no_extension_textbox, data_full_file_name_textbox, total_pdf_page_count, actual_time_taken_number, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop], None, preprocess=False).\
|
|
success(fn = upload_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
|
|
else:
|
|
usage_callback.setup([session_hash_textbox, blank_doc_file_name_no_extension_textbox_for_logs, data_full_file_name_textbox, actual_time_taken_number, total_pdf_page_count, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop], USAGE_LOGS_FOLDER)
|
|
latest_file_completed_text.change(lambda *args: usage_callback.flag(list(args)), [session_hash_textbox, blank_doc_file_name_no_extension_textbox_for_logs, data_full_file_name_textbox, actual_time_taken_number, total_pdf_page_count, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop], None, preprocess=False).\
|
|
success(fn = upload_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
|
|
|
|
if __name__ == "__main__":
|
|
|
|
if RUN_DIRECT_MODE == "0":
|
|
|
|
if os.environ['COGNITO_AUTH'] == "1":
|
|
app.queue(max_size=int(MAX_QUEUE_SIZE), default_concurrency_limit=int(DEFAULT_CONCURRENCY_LIMIT)).launch(show_error=True, auth=authenticate_user, max_file_size=MAX_FILE_SIZE, server_port=GRADIO_SERVER_PORT, root_path=ROOT_PATH)
|
|
else:
|
|
app.queue(max_size=int(MAX_QUEUE_SIZE), default_concurrency_limit=int(DEFAULT_CONCURRENCY_LIMIT)).launch(show_error=True, inbrowser=True, max_file_size=MAX_FILE_SIZE, server_port=GRADIO_SERVER_PORT, root_path=ROOT_PATH)
|
|
|
|
else:
|
|
from tools.cli_redact import main
|
|
|
|
main(first_loop_state, latest_file_completed=0, output_summary="", output_file_list=None,
|
|
log_files_list=None, estimated_time=0, textract_metadata="", comprehend_query_num=0,
|
|
current_loop_page=0, page_break=False, pdf_doc_state = [], all_image_annotations = [], all_line_level_ocr_results = pd.DataFrame(), all_decision_process_table = pd.DataFrame(),chosen_comprehend_entities = chosen_comprehend_entities, chosen_redact_entities = chosen_redact_entities, handwrite_signature_checkbox = ["Extract handwriting", "Extract signatures"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|