Added logging, anonymising all Excel sheets, simple redaction tags, some Dockerfile optimisation
01c88c0
from pdf2image import convert_from_path, pdfinfo_from_path | |
from tools.helper_functions import get_file_path_end, output_folder | |
from PIL import Image | |
import os | |
from gradio import Progress | |
from typing import List | |
def is_pdf_or_image(filename): | |
""" | |
Check if a file name is a PDF or an image file. | |
Args: | |
filename (str): The name of the file. | |
Returns: | |
bool: True if the file name ends with ".pdf", ".jpg", or ".png", False otherwise. | |
""" | |
if filename.lower().endswith(".pdf") or filename.lower().endswith(".jpg") or filename.lower().endswith(".jpeg") or filename.lower().endswith(".png"): | |
output = True | |
else: | |
output = False | |
return output | |
def is_pdf(filename): | |
""" | |
Check if a file name is a PDF. | |
Args: | |
filename (str): The name of the file. | |
Returns: | |
bool: True if the file name ends with ".pdf", False otherwise. | |
""" | |
return filename.lower().endswith(".pdf") | |
# %% | |
## Convert pdf to image if necessary | |
def convert_pdf_to_images(pdf_path:str, progress=Progress(track_tqdm=True)): | |
# Get the number of pages in the PDF | |
page_count = pdfinfo_from_path(pdf_path)['Pages'] | |
print("Number of pages in PDF: ", str(page_count)) | |
images = [] | |
# Open the PDF file | |
#for page_num in progress.tqdm(range(0,page_count), total=page_count, unit="pages", desc="Converting pages"): | |
for page_num in range(0,page_count): #progress.tqdm(range(0,page_count), total=page_count, unit="pages", desc="Converting pages"): | |
# print("Current page: ", str(page_num + 1)) | |
# Convert one page to image | |
image = convert_from_path(pdf_path, first_page=page_num+1, last_page=page_num+1, dpi=300, use_cropbox=True, use_pdftocairo=False) | |
# If no images are returned, break the loop | |
if not image: | |
break | |
images.extend(image) | |
print("PDF has been converted to images.") | |
return images | |
# %% Function to take in a file path, decide if it is an image or pdf, then process appropriately. | |
def process_file(file_path): | |
# Get the file extension | |
file_extension = os.path.splitext(file_path)[1].lower() | |
# Check if the file is an image type | |
if file_extension in ['.jpg', '.jpeg', '.png']: | |
print(f"{file_path} is an image file.") | |
# Perform image processing here | |
img_object = [Image.open(file_path)] | |
# Check if the file is a PDF | |
elif file_extension == '.pdf': | |
print(f"{file_path} is a PDF file. Converting to image set") | |
# Run your function for processing PDF files here | |
img_object = convert_pdf_to_images(file_path) | |
else: | |
print(f"{file_path} is not an image or PDF file.") | |
img_object = [''] | |
# print('Image object is:', img_object) | |
return img_object | |
def prepare_image_or_text_pdf(file_paths:List[str], in_redact_method:str, in_allow_list:List[List[str]]=None, latest_file_completed:int=0, out_message:list=[], progress=Progress(track_tqdm=True)): | |
# If out message or out_file_paths are blank, change to a list so it can be appended to | |
#if isinstance(out_message, str): | |
# out_message = [out_message] | |
if not file_paths: | |
file_paths = [] | |
out_file_paths = file_paths | |
latest_file_completed = int(latest_file_completed) | |
# If we have already redacted the last file, return the input out_message and file list to the relevant components | |
if latest_file_completed == len(out_file_paths): | |
print("Last file reached, returning files:", str(latest_file_completed)) | |
#final_out_message = '\n'.join(out_message) | |
return out_message, out_file_paths | |
#in_allow_list_flat = [item for sublist in in_allow_list for item in sublist] | |
file_paths_loop = [out_file_paths[int(latest_file_completed)]] | |
#for file in progress.tqdm(file_paths, desc="Preparing files"): | |
for file in file_paths_loop: | |
file_path = file.name | |
#if file_path: | |
# file_path_without_ext = get_file_path_end(file_path) | |
if not file_path: | |
out_message = "No file selected" | |
print(out_message) | |
return out_message, out_file_paths | |
if in_redact_method == "Image analysis": | |
# Analyse and redact image-based pdf or image | |
if is_pdf_or_image(file_path) == False: | |
out_message = "Please upload a PDF file or image file (JPG, PNG) for image analysis." | |
print(out_message) | |
return out_message, out_file_paths | |
out_file_path = process_file(file_path) | |
print("Out file path at image conversion step:", out_file_path) | |
elif in_redact_method == "Text analysis": | |
if is_pdf(file_path) == False: | |
out_message = "Please upload a PDF file for text analysis." | |
print(out_message) | |
return out_message, out_file_paths | |
out_file_path = file_path | |
out_file_paths.append(out_file_path) | |
return out_message, out_file_paths | |
def convert_text_pdf_to_img_pdf(in_file_path:str, out_text_file_path:List[str]): | |
file_path_without_ext = get_file_path_end(in_file_path) | |
out_file_paths = out_text_file_path | |
# Convert annotated text pdf back to image to give genuine redactions | |
print("Creating image version of redacted PDF to embed redactions.") | |
pdf_text_image_paths = process_file(out_text_file_path[0]) | |
out_text_image_file_path = output_folder + file_path_without_ext + "_text_redacted_as_img.pdf" | |
pdf_text_image_paths[0].save(out_text_image_file_path, "PDF" ,resolution=300.0, save_all=True, append_images=pdf_text_image_paths[1:]) | |
# out_file_paths.append(out_text_image_file_path) | |
out_file_paths = [out_text_image_file_path] | |
out_message = "PDF " + file_path_without_ext + " converted to image-based file." | |
print(out_message) | |
print("Out file paths:", out_file_paths) | |
return out_message, out_file_paths |