Spaces:
Sleeping
Sleeping
File size: 58,480 Bytes
a265560 066af71 a265560 87e1451 c8ffcd4 ab04c92 0ea8b9e ab04c92 066af71 c8ffcd4 9ae09da a265560 ab04c92 87e1451 066af71 87e1451 a265560 003292d 87e1451 a265560 87e1451 003292d 87e1451 003292d 87e1451 066af71 87e1451 066af71 87e1451 066af71 a265560 87e1451 a265560 87e1451 066af71 87e1451 a265560 87e1451 a265560 87e1451 a265560 87e1451 003292d 87e1451 003292d 87e1451 066af71 003292d 066af71 87e1451 003292d 87e1451 a265560 066af71 87e1451 a265560 87e1451 a265560 87e1451 a265560 87e1451 a265560 7907ad4 87e1451 7907ad4 87e1451 e424038 87e1451 e424038 a265560 87e1451 a265560 87e1451 a265560 87e1451 a265560 87e1451 a265560 87e1451 a265560 87e1451 a265560 0ea8b9e f47b137 0ea8b9e a265560 0ea8b9e a265560 f47b137 ab04c92 f47b137 ab04c92 f47b137 ab04c92 f47b137 ab04c92 e424038 f47b137 e424038 f47b137 003292d f47b137 80268bb f47b137 e424038 f47b137 e424038 f47b137 003292d 87e1451 066af71 87e1451 066af71 87e1451 066af71 87e1451 066af71 80268bb 87e1451 066af71 87e1451 066af71 87e1451 066af71 87e1451 066af71 87e1451 066af71 87e1451 066af71 003292d 80268bb 87e1451 066af71 87e1451 066af71 87e1451 ab04c92 87e1451 ab04c92 87e1451 066af71 87e1451 ab04c92 87e1451 ab04c92 87e1451 066af71 87e1451 ab04c92 066af71 87e1451 ab04c92 066af71 ab04c92 a265560 003292d 0ea8b9e 87e1451 066af71 87e1451 003292d ab04c92 87e1451 003292d 87e1451 ab04c92 87e1451 ab04c92 87e1451 ab04c92 87e1451 ab04c92 87e1451 066af71 ab04c92 87e1451 80268bb 87e1451 ab04c92 87e1451 ab04c92 87e1451 ab04c92 87e1451 ab04c92 87e1451 ab04c92 87e1451 ab04c92 a265560 87e1451 ab04c92 87e1451 ab04c92 066af71 87e1451 066af71 87e1451 ab04c92 066af71 ab04c92 e424038 0ea8b9e 066af71 ab04c92 ee6b7fb f47b137 c8ffcd4 ab04c92 87e1451 ab04c92 87e1451 ab04c92 87e1451 ab04c92 87e1451 ab04c92 f47b137 c8ffcd4 ab04c92 f47b137 ab04c92 87e1451 0ea8b9e f47b137 ab04c92 f47b137 ab04c92 f47b137 a265560 ab04c92 f47b137 ab04c92 0ea8b9e f47b137 0ea8b9e f47b137 a265560 f47b137 a265560 c8ffcd4 87e1451 f47b137 87e1451 f47b137 87e1451 f47b137 a265560 c8ffcd4 066af71 c8ffcd4 a265560 c8ffcd4 f47b137 c8ffcd4 f47b137 c8ffcd4 f47b137 c8ffcd4 f47b137 c8ffcd4 f47b137 c8ffcd4 f47b137 c8ffcd4 f47b137 c8ffcd4 f47b137 c8ffcd4 f47b137 c8ffcd4 f47b137 c8ffcd4 87e1451 c8ffcd4 f47b137 c8ffcd4 87e1451 c8ffcd4 87e1451 c8ffcd4 a265560 c8ffcd4 87e1451 af187f0 87e1451 c8ffcd4 ee6b7fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 |
import pandas as pd
import os
import re
import itertools
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from typing import List, Tuple, Optional, Dict, Union
from collections import defaultdict
import gradio as gr
from gradio import Progress
from pathlib import Path
from typing import List
from tools.helper_functions import OUTPUT_FOLDER
from tools.file_conversion import redact_whole_pymupdf_page, convert_annotation_data_to_dataframe, fill_missing_box_ids_each_box
from tools.load_spacy_model_custom_recognisers import nlp
similarity_threshold = 0.95
number_of_zeros_to_add_to_index = 7 # Number of zeroes to add between page number and line numbers to get a unique page/line index value
ID_MULTIPLIER = 100000
def split_text_with_punctuation(text: str) -> List[str]:
"""
A more concise version of the tokenization function using a single
powerful regex with re.findall.
"""
# This single regex pattern finds either:
# 1. A sequence of one or more punctuation marks `[.,?!:;]+`
# 2. OR a sequence of one or more characters that are NOT punctuation or whitespace `[^.,?!:;\s]+`
pattern = re.compile(r"([.,?!:;]+|[^.,?!:;\s]+)")
final_list = []
# We first split by whitespace to handle sentences correctly
for word in text.split():
# Then, for each whitespace-separated word, we tokenize it further
final_list.extend(pattern.findall(word))
return final_list
def extract_indices_from_page_ranges(
results_df: pd.DataFrame,
start_col: str = 'Page2_Start_Page',
end_col: str = 'Page2_End_Page',
modulo_divisor_number_of_zeros: int = number_of_zeros_to_add_to_index, # Search for number of added
converted_index: bool = False # Has the index been converted to the page_no + 0000 + line number format that needs the modulo divisor to convert back?
) -> List[int]:
all_indices = set()
modulo_divisor = int("1" + modulo_divisor_number_of_zeros*"0")
for _, row in results_df.iterrows():
start_page = row[start_col]
end_page = row[end_col]
for encoded_page_id in range(start_page, end_page + 1):
if converted_index == True:
original_page, original_index = _parse_page_line_id(encoded_page_id)#(encoded_page_id % modulo_divisor) - 1
else:
original_index = encoded_page_id
all_indices.add(original_index)
return sorted(list(all_indices))
def punctuation_at_word_text_end(word_level_df_orig: pd.DataFrame) -> bool:
"""
Check the first 1000 rows of word_level_df_orig to see if any of the strings
in 'word_text' end with a full stop '.', exclamation mark '!', or question mark '?',
for strings that do not contain these characters alone.
Args:
word_level_df_orig (pd.DataFrame): DataFrame containing word-level OCR data with 'word_text' column
Returns:
bool: True if any strings end with punctuation marks, False otherwise
"""
# Get the first 1000 rows or all rows if less than 1000
sample_df = word_level_df_orig.head(1000)
# Check if 'word_text' column exists
if 'word_text' not in sample_df.columns:
return False
# Define punctuation marks to check for
punctuation_marks = ['.', '!', '?']
# Check each word_text string
for word_text in sample_df['word_text']:
if pd.isna(word_text) or not isinstance(word_text, str):
continue
# Skip strings that contain only punctuation marks
if word_text.strip() in punctuation_marks:
continue
# Check if the string ends with any of the punctuation marks
if any(word_text.rstrip().endswith(punct) for punct in punctuation_marks):
return True
return False
def run_full_search_and_analysis(
search_query_text: str,
word_level_df_orig: pd.DataFrame,
similarity_threshold: float = 1,
combine_pages: bool = False,
min_word_count: int = 1,
min_consecutive_pages: int = 1,
greedy_match: bool = True,
remake_index: bool = False,
progress=gr.Progress(track_tqdm=True)
):
"""
This function orchestrates the entire pipeline for finding duplicate pages based on a user's search query. It takes in the search query text, the original word-level OCR data, and various parameters to control the analysis. The function then:
1. Converts the user's search query into a DataFrame format suitable for analysis.
2. Prepares the main word-level OCR data for processing by converting it into the required format.
3. Combines the search query DataFrame with the prepared OCR data DataFrame.
4. Executes the similarity analysis on the combined data using the specified parameters such as similarity threshold, minimum word count, minimum consecutive pages, and greedy match strategy.
Parameters:
- search_query_text (str): The text entered by the user to search for in the OCR data.
- word_level_df_orig (pd.DataFrame): The original DataFrame containing word-level OCR data.
- similarity_threshold (float, optional): The minimum similarity score required for two pages to be considered duplicates. Defaults to 1.
- combine_pages (bool, optional): A flag indicating whether to combine text from the same page number within a file. Defaults to False.
- min_word_count (int, optional): The minimum number of words required for a page to be considered in the analysis. Defaults to 1.
- min_consecutive_pages (int, optional): The minimum number of consecutive pages required to be considered a match. Defaults to 1.
- greedy_match (bool, optional): A flag indicating whether to use a greedy strategy for matching consecutive pages. Defaults to True.
- remake_index (bool, optional): A flag indicating whether to remake the index of the DataFrame during processing. Defaults to False.
- progress (gr.Progress, optional): A Progress object to track the progress of the operation. Defaults to a Progress object with track_tqdm set to True.
"""
if len(search_query_text) < 3:
raise Warning("Please use a search query with at least three letters.")
if len(search_query_text) > 100:
raise Warning("Please use a search query with at less than 100 characters.")
if punctuation_at_word_text_end(word_level_df_orig) == True: do_punctuation_split = False
else: do_punctuation_split = True
# Step 1: Process the user's search query string
search_query_data, query_word_length = create_dataframe_from_string(search_query_text, file_name="user_search_query", split_words=True, split_punctuation=do_punctuation_split)
if not search_query_data:
# Handle case where user submits an empty search string
raise Warning("Could not convert search string to required format")
if query_word_length > 25:
# Handle case where user submits an empty search string
raise Warning("Please use a query with less than 25 words")
# Overwrite min_consecutive_pages with the search string length
min_consecutive_pages = query_word_length
# Create word index from reference table
word_level_df_orig["index"] = word_level_df_orig.index
word_level_df = word_level_df_orig.copy()
# Step 2: Process the main word-level OCR DataFrame
word_level_data = convert_word_level_df(word_level_df, file_name="source_document")
# Step 3: Combine both data sources into one list
all_data_to_process = search_query_data + word_level_data
if not all_data_to_process:
raise gr.Error("No data to process. Please check your inputs.")
# Step 4: Run the combination logic
combined_df, _, full_out_ocr_df = combine_ocr_dataframes(
input_data=all_data_to_process,
combine_pages=combine_pages,
output_folder=None, # No need to save this intermediate file
remake_index=remake_index
)
# Step 5: Run the final similarity analysis on the combined data
results_df, duplicate_files, full_data = identify_similar_text_sequences(
df_combined=combined_df,
similarity_threshold=similarity_threshold,
min_word_count=min_word_count,
min_consecutive_pages=min_consecutive_pages,
greedy_match=greedy_match,
combine_pages=combine_pages,
inter_file_only=True,
do_text_clean=False,
file1_name="user_search_query",
file2_name="source_document",
progress=progress
)
print("Finished text search")
# Map the results back to the reference data file
if remake_index == True:
results_df_index_list = extract_indices_from_page_ranges(results_df, converted_index=True)
else:
results_df_index_list = extract_indices_from_page_ranges(results_df, converted_index=False)
word_level_df_out = word_level_df_orig.loc[word_level_df_orig["index"].isin(results_df_index_list)]
return word_level_df_out, duplicate_files, full_data
def create_all_data_to_process(converted_data:pd.DataFrame, other_data_list:List[Tuple]):
all_data_to_process = converted_data + other_data_list
return all_data_to_process
def convert_word_level_df(
word_level_df: pd.DataFrame,
file_name: str = "converted_dataframe"
) -> List[Tuple[str, pd.DataFrame]]:
"""
Converts a word-level OCR DataFrame to the format for
combine_ocr_dataframes.
A simple renaming and selection of relevant columns
Args:
word_level_df (pd.DataFrame):
A DataFrame containing detailed OCR output. Must include at least
the columns: 'page', 'line', and 'word_text'.
file_name (str, optional):
A unique identifier or "dummy" filename to assign to the resulting
data. Defaults to "converted_dataframe".
Returns:
List[Tuple[str, pd.DataFrame]]:
A list containing a single tuple of (file_name, DataFrame), ready
to be used as input for the combine_ocr_dataframes function. The
DataFrame will have 'page' and 'text' columns.
"""
# --- 1. Validate Input ---
required_columns = ['page', 'line', 'word_text']
if not all(col in word_level_df.columns for col in required_columns):
raise ValueError(f"Input DataFrame must contain all of the following columns: {required_columns}")
df = word_level_df.copy()
# --- 2. Process the DataFrame ---
# Ensure word_text is a string to allow for joining
df['word_text'] = df['word_text'].astype(str)
# Group by page and line number, then join the words with a space (not needed for word level search)
# The result is a Series with a MultiIndex (page, line)
#line_text_series = df.groupby(['page', 'line'])['word_text'].apply(' '.join)
# Convert the Series back to a DataFrame and reset the index
#line_level_df = line_text_series.reset_index()
# Rename the aggregated column from 'word_text' to the required 'text'
df = df.rename(columns={'word_text': 'text'})
# --- 3. Finalise the structure ---
# We now have a DataFrame with columns [page, line, text].
final_df = df[['page', 'text']]
# --- 4. Package for output ---
# Return in the required List[Tuple[str, DataFrame]] format
return [(file_name, final_df)]
def create_dataframe_from_string(
text_string: str,
file_name: str = "user_search_query",
page_number: int = 1,
split_words: bool = False,
split_punctuation: bool = True,
) -> Tuple[List[Tuple[str, pd.DataFrame]], int]:
"""
Converts a string into a DataFrame compatible with combine_ocr_dataframes.
Can operate in two modes:
1. As a single-line document (default).
2. As a multi-line document where each word from the string is a separate line.
Args:
text_string (str): The input text to be placed in the DataFrame.
file_name (str, optional): A dummy filename to assign to this text.
Defaults to "user_search_query".
page_number (int, optional): A dummy page number to assign. Defaults to 1.
split_words (bool, optional): If True, splits the input string by
whitespace and creates a row for each word.
If False (default), the entire string is
treated as a single text entry.
split_punctuation (bool, optional): If True, splits the 'end of sentence' punctuation off the end
of the search query to match the reference data.
Returns:
Tuple[List[Tuple[str, pd.DataFrame]], int]:
A list containing a single tuple: (file_name, DataFrame).
The DataFrame has 'page' and 'text' columns. Also, an integer value indicating the number of words in the search string.
Returns an empty list if the input string is empty or whitespace.
"""
# Handle empty input gracefully, this works for both modes.
if not text_string or not text_string.strip():
print("Warning: Input string is empty. Returning an empty list.")
return [], 0
if split_words:
# --- Split string into words, one per row, based on similar punctuation split technique used to create ocr_results_with_words objects ---
if split_punctuation == True:
words = split_text_with_punctuation(text_string)
else:
words = text_string.split()
#words = text_string.split()
len_words = len(words)
data = {
'page': [page_number] * len_words, # Assign the same page number to every word
'text': words # The list of words becomes the text column
}
else:
# --- Entire string in one row ---
len_words = 1
data = {
'page': [page_number],
'text': [text_string]
}
# Create the DataFrame from the prepared data
df = pd.DataFrame(data)
df["line"] = df.index + 1
# Return it in the required format: a list containing one (name, df) tuple
return [(file_name, df)], len_words
def combine_ocr_dataframes(
input_data: List[Tuple[str, pd.DataFrame]],
combine_pages: bool = True,
output_folder: str = OUTPUT_FOLDER,
output_filename: str = "combined_ocr_output.csv",
number_of_added_zeros: int = number_of_zeros_to_add_to_index,
remake_index:bool = True
) -> Tuple[pd.DataFrame, List[str]]:
"""
Combines text from multiple pandas DataFrames containing page and text columns.
This function takes a list of (name, DataFrame) tuples, processes each DataFrame
by grouping and concatenating text, and then combines them into a single DataFrame.
Args:
input_data (List[Tuple[str, pd.DataFrame]]):
A list of tuples, where each tuple contains a unique identifier (like a filename)
and a pandas DataFrame. Each DataFrame must have 'page' and 'text' columns.
combine_pages (bool, optional):
If True, text from the same page number within a file is joined into a
single row. If False, each line of text gets its own row with a unique
page identifier. Defaults to True.
output_folder (str, optional):
The folder where the combined CSV file will be saved. Defaults to OUTPUT_FOLDER.
output_filename (str, optional):
The name of the output CSV file. Defaults to "combined_ocr_output.csv".
Returns:
Tuple[pd.DataFrame, List[str]]:
A tuple containing:
- The final combined and processed DataFrame.
- A list containing the path to the saved output CSV file.
"""
all_data = []
for file_identifier, df_initial in input_data:
df = df_initial.copy() # Work on a copy to avoid side effects
# --- Validation ---
if 'page' not in df.columns or 'text' not in df.columns:
print(f"Warning: Skipping data for '{file_identifier}' - missing required columns 'page' and 'text'.")
continue
# --- Processing ---
df['text'] = df['text'].fillna('').astype(str)
if combine_pages:
# Group by page and concatenate text into a single string
processed_df = df.groupby('page')['text'].apply(' '.join).reset_index()
else:
if remake_index == True:
# # Create a unique, sortable page ID for each line without combining
# df['line_number_by_page'] = df.groupby('page').cumcount() + 1
# df['original_page'] = df['page']
# # Create a new page ID that combines page and line number for uniqueness
# df['page'] = (
# df['page'].astype(str).str.zfill(number_of_added_zeros) +
# df['line_number_by_page'].astype(str).str.zfill(number_of_added_zeros)
# ).astype(int)
# Define the multiplier based on the max expected lines per page.
# If you expect up to 99,999 lines, use 100,000.
df['line_number_by_page'] = df.groupby('page').cumcount() + 1
df['original_page'] = df['page']
# Create the new combined ID using arithmetic
df['page'] = (df['original_page'] * ID_MULTIPLIER) + df['line_number_by_page']
else:
if not 'index' in df.columns:
df['index'] = df.index
df['page'] = df['index']
processed_df = df
# Add the file identifier column
processed_df['file'] = file_identifier
all_data.append(processed_df)
if not all_data:
raise ValueError("No valid DataFrames were processed. Ensure input data is not empty and DataFrames have 'page' and 'text' columns.")
# --- Final Combination ---
combined_df = pd.concat(all_data, ignore_index=True)
# Reorder columns to a standard format, dropping intermediate columns
final_columns = ['file', 'page', 'text']
if 'original_page' in combined_df.columns:
final_columns.append('original_page') # Keep for context if created
# Ensure all final columns exist before trying to select them
existing_final_columns = [col for col in final_columns if col in combined_df.columns]
full_out_ocr_df = combined_df
combined_df = combined_df.copy()[existing_final_columns]
# --- Save Output ---
output_files = []
if output_folder and output_filename:
os.makedirs(output_folder, exist_ok=True)
output_path = os.path.join(output_folder, output_filename)
combined_df.to_csv(output_path, index=False)
output_files.append(output_path)
print(f"Successfully combined data and saved to: {output_path}")
return combined_df, output_files, full_out_ocr_df
def combine_ocr_output_text(
input_files: Union[str, List[str]],
combine_pages: bool = True,
remake_index: bool = True,
output_folder: str = OUTPUT_FOLDER
) -> Tuple[pd.DataFrame, List[str]]:
"""
Reads multiple OCR CSV files, combines them, and saves the result.
This function serves as a wrapper that reads CSV files from paths and then
uses the `combine_ocr_dataframes` function to perform the combination logic.
Args:
input_files (Union[str, List[str]]): A single file path or a list of file paths.
combine_pages (bool, optional): See `combine_ocr_dataframes`. Defaults to True.
output_folder (str, optional): See `combine_ocr_dataframes`. Defaults to OUTPUT_FOLDER.
Returns:
Tuple[pd.DataFrame, List[str]]: The combined DataFrame and the path to the output file.
"""
if isinstance(input_files, str):
file_paths_list = [input_files]
else:
file_paths_list = input_files
data_to_process = []
for file_path in file_paths_list:
try:
df = pd.read_csv(file_path)
# Use the base filename as the identifier
file_identifier = os.path.basename(file_path)
data_to_process.append((file_identifier, df))
except FileNotFoundError:
print(f"Warning: File not found, skipping: {file_path}")
except Exception as e:
print(f"Warning: Failed to read or process {file_path}. Error: {e}")
if not data_to_process:
raise ValueError("No valid CSV files could be read or processed.")
# Call the core function with the loaded data
return combine_ocr_dataframes(
input_data=data_to_process,
combine_pages=combine_pages,
output_folder=output_folder,
output_filename="combined_ocr_from_files.csv", # Specific name for this path
remake_index=remake_index
)
def clean_and_stem_text_series(df:pd.DataFrame, column:str):
'''
Clean and stem text columns in a data frame
'''
def _clean_text(raw_text):
# Remove HTML tags
clean = re.sub(r'<.*?>', '', raw_text)
clean = ' '.join(clean.split())
# Join the cleaned words back into a string
return clean
# Function to apply lemmatisation and remove stopwords
def _apply_lemmatization(text):
doc = nlp(text)
# Keep only alphabetic tokens and remove stopwords
lemmatized_words = [token.lemma_ for token in doc if token.is_alpha and not token.is_stop]
return ' '.join(lemmatized_words)
df['text_clean'] = df[column].apply(_clean_text)
df['text_clean'] = df['text_clean'].apply(_apply_lemmatization)
return df
def map_metadata_single_page(similarity_df:pd.DataFrame, metadata_source_df:pd.DataFrame, preview_length:int=200):
"""Helper to map metadata for single page results."""
metadata_df = metadata_source_df[['file', 'page', 'text']]
results_df = similarity_df.merge(metadata_df, left_on='Page1_Index', right_index=True)\
.rename(columns={'file': 'Page1_File', 'page': 'Page1_Page', 'text': 'Page1_Text'})
results_df = results_df.merge(metadata_df, left_on='Page2_Index', right_index=True, suffixes=('_1', '_2'))\
.rename(columns={'file': 'Page2_File', 'page': 'Page2_Page', 'text': 'Page2_Text'})
results_df["Similarity_Score"] = results_df["Similarity_Score"].round(3)
final_df = results_df[['Page1_File', 'Page1_Page', 'Page2_File', 'Page2_Page', 'Similarity_Score', 'Page1_Text', 'Page2_Text']]
final_df = final_df.sort_values(["Page1_File", "Page1_Page", "Page2_File", "Page2_Page"])
final_df['Page1_Text'] = final_df['Page1_Text'].str[:preview_length]
final_df['Page2_Text'] = final_df['Page2_Text'].str[:preview_length]
return final_df
def map_metadata_subdocument(subdocument_df:pd.DataFrame, metadata_source_df:pd.DataFrame, preview_length:int=200):
"""Helper to map metadata for subdocument results."""
metadata_df = metadata_source_df[['file', 'page', 'text']]
subdocument_df = subdocument_df.merge(metadata_df, left_on='Page1_Start_Index', right_index=True)\
.rename(columns={'file': 'Page1_File', 'page': 'Page1_Start_Page', 'text': 'Page1_Text'})
subdocument_df = subdocument_df.merge(metadata_df[['page']], left_on='Page1_End_Index', right_index=True)\
.rename(columns={'page': 'Page1_End_Page'})
subdocument_df = subdocument_df.merge(metadata_df, left_on='Page2_Start_Index', right_index=True)\
.rename(columns={'file': 'Page2_File', 'page': 'Page2_Start_Page', 'text': 'Page2_Text'})
subdocument_df = subdocument_df.merge(metadata_df[['page']], left_on='Page2_End_Index', right_index=True)\
.rename(columns={'page': 'Page2_End_Page'})
cols = ['Page1_File', 'Page1_Start_Page', 'Page1_End_Page',
'Page2_File', 'Page2_Start_Page', 'Page2_End_Page',
'Match_Length', 'Page1_Text', 'Page2_Text']
# Add Avg_Similarity if it exists (it won't for greedy match unless we add it)
if 'Avg_Similarity' in subdocument_df.columns:
subdocument_df['Avg_Similarity'] = subdocument_df['Avg_Similarity'].round(3)
cols.insert(7, 'Avg_Similarity')
final_df = subdocument_df[cols]
final_df = final_df.sort_values(['Page1_File', 'Page1_Start_Page', 'Page2_File', 'Page2_Start_Page'])
final_df['Page1_Text'] = final_df['Page1_Text'].str[:preview_length]
final_df['Page2_Text'] = final_df['Page2_Text'].str[:preview_length]
return final_df
def save_results_and_redaction_lists(final_df: pd.DataFrame, output_folder: str, combine_pages:bool = True) -> list:
"""
Saves the main results DataFrame and generates per-file redaction lists.
This function is extracted to be reusable.
Args:
final_df (pd.DataFrame): The DataFrame containing the final match results.
output_folder (str): The folder to save the output files.
combine_pages (bool, optional): Boolean to check whether the text from pages have been combined into one, or if instead the duplicate match has been conducted line by line.
Returns:
list: A list of paths to all generated files.
"""
output_paths = []
output_folder_path = Path(output_folder)
output_folder_path.mkdir(exist_ok=True)
if final_df.empty:
print("No matches to save.")
return []
# 1. Save the main results DataFrame
similarity_file_output_path = output_folder_path / 'page_similarity_results.csv'
final_df.to_csv(similarity_file_output_path, index=False, encoding="utf-8-sig")
output_paths.append(str(similarity_file_output_path))
#print(f"Main results saved to {similarity_file_output_path}")
# 2. Save per-file redaction lists
# Use 'Page2_File' as the source of duplicate content
if combine_pages == True:
grouping_col = 'Page2_File'
if grouping_col not in final_df.columns:
print("Warning: 'Page2_File' column not found. Cannot generate redaction lists.")
return output_paths
for redact_file, group in final_df.groupby(grouping_col):
output_file_name_stem = Path(redact_file).stem
output_file_path = output_folder_path / f"{output_file_name_stem}_pages_to_redact.csv"
all_pages_to_redact = set()
is_subdocument_match = 'Page2_Start_Page' in group.columns
if is_subdocument_match:
for _, row in group.iterrows():
pages_in_range = range(int(row['Page2_Start_Page']), int(row['Page2_End_Page']) + 1)
all_pages_to_redact.update(pages_in_range)
else:
pages = group['Page2_Page'].unique()
all_pages_to_redact.update(pages)
if all_pages_to_redact:
redaction_df = pd.DataFrame(sorted(list(all_pages_to_redact)), columns=['Page_to_Redact'])
redaction_df.to_csv(output_file_path, header=False, index=False)
output_paths.append(str(output_file_path))
print(f"Redaction list for {redact_file} saved to {output_file_path}")
return output_paths
# Define the set of punctuation characters for efficient lookup
PUNCTUATION_TO_STRIP = {'.', ',', '?', '!', ':', ';'}
def _sequences_match(query_seq: List[str], ref_seq: List[str]) -> bool:
"""
Helper function to compare two sequences of tokens with punctuation flexibility.
Returns True if the sequences match according to the rules:
1. An exact match is a match.
2. A reference token also matches a query token if it is the query token
followed by a single character from PUNCTUATION_TO_STRIP. This rule does not
apply if the reference token consists only of punctuation.
"""
if len(query_seq) != len(ref_seq):
return False
for query_token, ref_token in zip(query_seq, ref_seq):
# Rule 1: Check for a direct, exact match first (most common case)
if query_token == ref_token:
continue
# Rule 2: Check for the flexible punctuation match
# - The reference token must be longer than 1 character
# - Its last character must be in our punctuation set
# - The token without its last character must match the query token
if (
len(ref_token) > 1 and
ref_token[-1] in PUNCTUATION_TO_STRIP and
ref_token[:-1] == query_token
):
continue
# If neither rule applies, the tokens don't match, so the sequence doesn't match.
return False
# If the loop completes, every token has matched.
return True
def find_consecutive_sequence_matches(
df_filtered: pd.DataFrame,
search_file_name: str,
reference_file_name: str
) -> pd.DataFrame:
"""
Finds all occurrences of a consecutive sequence of tokens from a search file
within a larger reference file.
This function is designed for order-dependent matching, not "bag-of-words" similarity.
Args:
df_filtered: The DataFrame containing all tokens, with 'file' and 'text_clean' columns.
search_file_name: The name of the file containing the search query sequence.
reference_file_name: The name of the file to search within.
Returns:
A DataFrame with two columns ('Page1_Index', 'Page2_Index') mapping the
consecutive match, or an empty DataFrame if no match is found.
"""
#print(f"Starting sequence search for '{search_file_name}' in '{reference_file_name}'...")
# Step 1: Isolate the data for each file
search_df = df_filtered[df_filtered['file'] == search_file_name]
reference_df = df_filtered[df_filtered['file'] == reference_file_name]
if search_df.empty or reference_df.empty:
print("Error: One or both files not found or are empty.")
return pd.DataFrame(columns=['Page1_Index', 'Page2_Index'])
# Step 2: Convert the token data into lists for easy comparison.
# We need both the text tokens and their original global indices.
query_tokens = search_df['text_clean'].tolist()
query_indices = search_df.index.tolist()
reference_tokens = reference_df['text_clean'].tolist()
reference_indices = reference_df.index.tolist()
query_len = len(query_tokens)
all_found_matches = []
print(f"Searching for a sequence of {query_len} tokens...")
# Step 3: Use a "sliding window" to search for the query sequence in the reference list.
for i in range(len(reference_tokens) - query_len + 1):
# The "window" is a slice of the reference list that is the same size as the query
window = reference_tokens[i : i + query_len]
# Step 4: If the window matches the query with or without punctuation on end
if _sequences_match(query_tokens, window):
#print(f"Found a consecutive match starting at reference index: {reference_indices[i]}")
# Get the global indices for this entire matching block
matching_reference_indices = reference_indices[i : i + query_len]
# Create the mapping between query indices and the found reference indices
for j in range(query_len):
all_found_matches.append(
(query_indices[j], matching_reference_indices[j], 1)
)
# If you only want the *first* match, you can uncomment the next line:
# break
if not all_found_matches:
print("No matches found")
gr.Info("No matches found")
return pd.DataFrame(columns=['Page1_Index', 'Page2_Index', 'Similarity_Score'])
# Step 5: Create the final DataFrame in the desired format
result_df = pd.DataFrame(all_found_matches, columns=['Page1_Index', 'Page2_Index', 'Similarity_Score'])
return result_df
def identify_similar_text_sequences(
df_combined: pd.DataFrame,
similarity_threshold: float = 1,
min_word_count: int = 1,
min_consecutive_pages: int = 1,
greedy_match: bool = True,
combine_pages: bool = False,
inter_file_only: bool = False,
do_text_clean:bool = True,
file1_name: str = '',
file2_name: str = '',
output_folder: str = "output/",
progress=Progress(track_tqdm=True)
) -> Tuple[pd.DataFrame, List[str], pd.DataFrame]:
"""
Identifies similar pages. Uses a highly optimized path for inter_file_only=True.
"""
progress(0.1, desc="Processing and filtering text")
if do_text_clean:
df = clean_and_stem_text_series(df_combined, 'text') # Will produce the column 'text_clean'
else:
df = df_combined.copy()
df['text_clean'] = df['text'].str.lower()#.str.replace(r'[^\w\s]', '', regex=True)
df['word_count'] = df['text_clean'].str.split().str.len().fillna(0)
#df['word_count'] = pd.to_numeric(df['word_count'], errors='coerce').fillna(0).astype('int64')
# ensure min_word_count is an int (e.g., from Gradio/text input)
try:
min_word_count = int(min_word_count)
except (TypeError, ValueError):
min_word_count = 0 # or raise/log, depending on your preference
original_row_count = len(df)
df_filtered = df[df['word_count'] >= min_word_count].copy()
df_filtered.reset_index(drop=True, inplace=True)
print(f"Filtered out {original_row_count - len(df_filtered)} pages with fewer than {min_word_count} words.")
if len(df_filtered) < 2:
return pd.DataFrame(), [], df_combined
# Similarity calculated differently if comparing between files only (inter_file_only==True), or within the same file
if inter_file_only:
progress(0.2, desc="Finding direct text matches...")
#base_similarity_df = _debug_similarity_between_two_files(df_filtered, vectorizer, similarity_threshold, file1_name, file2_name)
base_similarity_df = find_consecutive_sequence_matches(df_filtered, file1_name, file2_name)
if base_similarity_df.empty:
return pd.DataFrame(), [], df_combined
else:
# Use the original, simpler path for all-to-all comparisons (including intra-file).
vectorizer = TfidfVectorizer()
print("Standard Path: Calculating all-to-all similarity.")
progress(0.2, desc="Vectorizing text...")
tfidf_matrix = vectorizer.fit_transform(df_filtered['text_clean'])
progress(0.3, desc="Calculating similarity matrix...")
similarity_matrix = cosine_similarity(tfidf_matrix, dense_output=False)
coo_matrix = similarity_matrix.tocoo()
similar_pages = [
(r, c, v) for r, c, v in zip(coo_matrix.row, coo_matrix.col, coo_matrix.data)
if r < c and v >= similarity_threshold
]
if not similar_pages:
return pd.DataFrame(), [], df_combined
base_similarity_df = pd.DataFrame(similar_pages, columns=['Page1_Index', 'Page2_Index', 'Similarity_Score'])
progress(0.7, desc="Aggregating results based on matching strategy")
if greedy_match or min_consecutive_pages > 1:
#print("Finding all consecutive page matches of minimum length:", min_consecutive_pages)
# Sort the dataframe to ensure consecutive pages are adjacent
similarity_df = base_similarity_df #.sort_values(['Page1_Index', 'Page2_Index']).copy()
# A new sequence starts if the difference from the previous row is not (1, 1)
# is_consecutive will be True if a row continues the sequence, False if it's a new one.
is_consecutive = (similarity_df['Page1_Index'].diff() == 1) & (similarity_df['Page2_Index'].diff() == 1)
# Use cumsum() on the inverted boolean series to create a unique ID for each block.
# Every time a 'False' appears (a new block starts), the sum increases.
block_id = is_consecutive.eq(False).cumsum()
# Group by this block ID
grouped = similarity_df.groupby(block_id)
# Aggregate each group to get the start, end, and length of the match
agg_results = grouped.agg(
Page1_Start_Index=('Page1_Index', 'first'),
Page2_Start_Index=('Page2_Index', 'first'),
Page1_End_Index=('Page1_Index', 'last'),
Page2_End_Index=('Page2_Index', 'last'),
Match_Length=('Page1_Index', 'size'),
Avg_Similarity=('Similarity_Score', 'mean')
).reset_index(drop=True)
# If greedy_match=True, we keep all matches. If min_consecutive_pages > 1, we filter.
if greedy_match and min_consecutive_pages <= 1:
subdocument_df = agg_results
else:
# This handles the case for min_consecutive_pages > 1
subdocument_df = agg_results[agg_results['Match_Length'] >= min_consecutive_pages].copy()
if subdocument_df.empty:
gr.Info("No matches found")
return pd.DataFrame(), [], df_combined
final_df = map_metadata_subdocument(subdocument_df, df_filtered)
else:
print(f"Finding single page matches, not greedy (min_consecutive_pages=1)")
# This part of your code would handle the non-sequential case
final_df = map_metadata_single_page(base_similarity_df, df_filtered)
#subdocument_df = final_df # To align variable names for saving
if final_df.empty:
gr.Info("No matches found")
return pd.DataFrame(), [], df_combined
progress(0.9, desc="Saving output files")
output_paths = save_results_and_redaction_lists(final_df, output_folder, combine_pages)
gr.Info(f"Found {final_df.shape[0]} match(es)")
print(f"Found {final_df.shape[0]} match(es)")
return final_df, output_paths, df_combined
def handle_selection_and_preview(evt: gr.SelectData, results_df:pd.DataFrame, full_duplicate_data_by_file: dict):
"""
This single function handles a user selecting a row. It:
1. Determines the selected row index.
2. Calls the show_page_previews function to get the text data.
3. Returns all the necessary outputs for the UI.
"""
# If the user deselects, the event might be None.
if not evt:
return None, None, None # Clear state and both preview panes
# 1. Get the selected index
selected_index = evt.index[0]
# 2. Get the preview data
page1_data, page2_data = show_page_previews(full_duplicate_data_by_file, results_df, evt)
# 3. Return all three outputs in the correct order
return selected_index, page1_data, page2_data
def exclude_match(results_df:pd.DataFrame, selected_index:int, output_folder="./output/"):
"""
Removes a selected row from the results DataFrame, regenerates output files,
and clears the text preview panes.
"""
if selected_index is None:
gr.Warning("No match selected. Please click on a row in the table first.")
# Return the original dataframe and update=False for the files
return results_df, gr.update(), None, None
if results_df.empty:
gr.Warning("No duplicate page results found, nothing to exclude.")
return results_df, gr.update(), None, None
# Drop the selected row
updated_df = results_df.drop(selected_index).reset_index(drop=True)
# Recalculate all output files using the helper function
new_output_paths = save_results_and_redaction_lists(updated_df, output_folder)
gr.Info(f"Match at row {selected_index} excluded. Output files have been updated.")
# Return the updated dataframe, the new file list, and clear the preview panes
return updated_df, new_output_paths, None, None
def run_duplicate_analysis(files:list[pd.DataFrame], threshold:float, min_words:int, min_consecutive:int, greedy_match:bool, combine_pages:bool=True, preview_length:int=500, progress=gr.Progress(track_tqdm=True)):
"""
Wrapper function updated to include the 'greedy_match' boolean.
"""
if not files:
raise Warning("Please upload files to analyse.")
progress(0, desc="Combining input files...")
df_combined, _, full_out_ocr_df = combine_ocr_output_text(files, combine_pages=combine_pages)
if df_combined.empty:
raise Warning("No data found in the uploaded files.")
# Call the main analysis function with the new parameter
results_df, output_paths, full_df = identify_similar_text_sequences(
df_combined=df_combined,
similarity_threshold=threshold,
min_word_count=min_words,
min_consecutive_pages=int(min_consecutive),
greedy_match=greedy_match,
combine_pages=combine_pages,
progress=progress
)
# Clip text to first 200 characters
full_df['text'] = full_df['text'].str[:preview_length]
# Preprocess full_data (without preview text) for fast access (run once)
full_data_by_file = {
file: df.sort_values('page').set_index('page')
for file, df in full_df.drop(["text_clean"],axis=1).groupby('file')
}
if results_df.empty:
gr.Info(f"No duplicate pages found, no results returned.")
return results_df, output_paths, full_data_by_file
def show_page_previews(full_data_by_file: dict, results_df: pd.DataFrame, evt: gr.SelectData, preview_length:int=500):
"""
Optimized version using pre-partitioned and indexed full_data.
Triggered when a user selects a row in the results DataFrame.
"""
if not full_data_by_file or results_df is None or not evt:
return None, None
selected_row = results_df.iloc[evt.index[0], :]
is_subdocument_match = 'Page1_Start_Page' in selected_row
if is_subdocument_match:
file1, start1, end1 = selected_row['Page1_File'], selected_row['Page1_Start_Page'], selected_row['Page1_End_Page']
file2, start2, end2 = selected_row['Page2_File'], selected_row['Page2_Start_Page'], selected_row['Page2_End_Page']
page1_data = full_data_by_file[file1].loc[start1:end1, ['text']].reset_index()
page2_data = full_data_by_file[file2].loc[start2:end2, ['text']].reset_index()
else:
file1, page1 = selected_row['Page1_File'], selected_row['Page1_Page']
file2, page2 = selected_row['Page2_File'], selected_row['Page2_Page']
page1_data = full_data_by_file[file1].loc[[page1], ['text']].reset_index()
page2_data = full_data_by_file[file2].loc[[page2], ['text']].reset_index()
page1_data['text'] = page1_data['text'].str[:preview_length]
page2_data['text'] = page2_data['text'].str[:preview_length]
return page1_data[['page', 'text']], page2_data[['page', 'text']]
def get_page_image_info(page_num: int, page_sizes: List[Dict]) -> Optional[Dict]:
"""
Finds and returns the size and path information for a specific page.
"""
return next((size for size in page_sizes if size["page"] == page_num), None)
def add_new_annotations_to_existing_page_annotations(
all_annotations: List[Dict],
image_path: str,
new_annotation_boxes: List[Dict]
) -> Tuple[List[Dict], Dict]:
"""
Adds a list of new annotation boxes to the annotations for a specific page.
If the page already has annotations, it extends the list of boxes. If not,
it creates a new entry for the page.
Args:
all_annotations (List[Dict]): The current list of all annotation groups.
image_path (str): The identifier for the image/page.
new_annotation_boxes (List[Dict]): A list of new annotation boxes to add.
Returns:
Tuple[List[Dict], Dict]: A tuple containing:
- The updated list of all annotation groups.
- The annotation group representing the newly added boxes.
"""
# Find the annotation group for the current page/image
current_page_group = next(
(annot_group for annot_group in all_annotations if annot_group["image"] == image_path),
None
)
if current_page_group:
# Page already has annotations, so extend the list with the new boxes
current_page_group["boxes"].extend(new_annotation_boxes)
else:
# This is the first set of annotations for this page, create a new group
new_group = {
"image": image_path,
"boxes": new_annotation_boxes
}
all_annotations.append(new_group)
# This object represents all annotations that were just added for this page
newly_added_annotation_group = {
"image": image_path,
"boxes": new_annotation_boxes
}
return all_annotations, newly_added_annotation_group
def apply_whole_page_redactions_from_list(duplicate_page_numbers_df: pd.DataFrame, doc_file_name_with_extension_textbox: str, review_file_state: pd.DataFrame, duplicate_output_paths: list[str], pymupdf_doc: object, page_sizes: list[dict], all_existing_annotations: list[dict], combine_pages:bool=True, new_annotations_with_bounding_boxes:List[dict]=list()):
'''
This function applies redactions to whole pages based on a provided list of duplicate page numbers. It supports two modes of operation: combining pages and not combining pages. When combining pages is enabled, it attempts to identify duplicate pages across different files and applies redactions accordingly. If combining pages is disabled, it relies on new annotations with bounding boxes to determine which pages to redact. The function utilises a PyMuPDF document object to manipulate the PDF file, and it also considers the sizes of pages to ensure accurate redaction application.
Args:
duplicate_page_numbers_df (pd.DataFrame): A DataFrame containing page numbers identified as duplicates.
doc_file_name_with_extension_textbox (str): The name of the document file with its extension.
review_file_state (pd.DataFrame): The current state of the review file.
duplicate_output_paths (list[str]): A list of paths to files containing duplicate page information.
pymupdf_doc (object): A PyMuPDF document object representing the PDF file.
page_sizes (list[dict]): A list of dictionaries containing page size information.
all_existing_annotations (list[dict]): A list of all existing annotations in the document.
combine_pages (bool, optional): A flag indicating whether to combine pages for redaction. Defaults to True.
new_annotations_with_bounding_boxes (List[dict], optional): A list of new annotations with bounding boxes. Defaults to an empty list.
'''
if all_existing_annotations is None:
all_existing_annotations = []
if new_annotations_with_bounding_boxes is None:
new_annotations_with_bounding_boxes = []
all_annotations = all_existing_annotations.copy()
if not pymupdf_doc:
message = "No document file currently under review"
print(f"Warning: {message}")
raise Warning(message)
list_whole_pages_to_redact = []
if combine_pages == True:
# Get list of pages to redact from either dataframe or file
if not duplicate_page_numbers_df.empty:
list_whole_pages_to_redact = duplicate_page_numbers_df.iloc[:, 0].tolist()
elif duplicate_output_paths:
expected_duplicate_pages_to_redact_name = f"{doc_file_name_with_extension_textbox}"
whole_pages_list = pd.DataFrame() # Initialize empty DataFrame
for output_file in duplicate_output_paths:
# Note: output_file.name might not be available if output_file is just a string path
# If it's a Path object or similar, .name is fine. Otherwise, parse from string.
file_name_from_path = output_file.split('/')[-1] if isinstance(output_file, str) else output_file.name
if expected_duplicate_pages_to_redact_name in file_name_from_path:
whole_pages_list = pd.read_csv(output_file, header=None) # Use output_file directly if it's a path
break
else:
message = "No relevant list of whole pages to redact found."
print(message)
raise Warning(message)
if not whole_pages_list.empty:
list_whole_pages_to_redact = whole_pages_list.iloc[:, 0].tolist()
list_whole_pages_to_redact = list(set(list_whole_pages_to_redact))
else:
if not new_annotations_with_bounding_boxes:
message = "Can't find any new annotations to add"
print(message)
raise Warning(message)
list_whole_pages_to_redact = []
for annotation in new_annotations_with_bounding_boxes:
match = re.search(r'_(\d+)\.png$', annotation["image"])
if match:
page = int(match.group(1)) + 1
list_whole_pages_to_redact.append(page)
else:
print(f"Warning: Could not extract page number from {annotation['image']}")
list_whole_pages_to_redact = list(set(list_whole_pages_to_redact))
new_annotations = []
# Process each page for redaction
for page in list_whole_pages_to_redact:
try:
page_num = int(page)
page_index = page_num - 1
if not (0 <= page_index < len(pymupdf_doc)):
print(f"Page {page_num} is out of bounds, skipping.")
continue
page_info = get_page_image_info(page_num, page_sizes)
if not page_info:
print(f"Page {page_num} not found in page_sizes, skipping.")
continue
image_path = page_info["image_path"]
page_annotation_group = next((g for g in all_annotations if g["image"] == image_path), None)
if page_annotation_group and any(box["label"] == "Whole page" for box in page_annotation_group["boxes"]):
print(f"Whole page redaction for page {page_num} already exists, skipping.")
continue
# --- Create a LIST of boxes to add.---
boxes_to_add = []
pymupdf_page = pymupdf_doc[page_index]
if combine_pages==True:
whole_page_box = redact_whole_pymupdf_page(
rect_height=page_info["cropbox_height"],
rect_width=page_info["cropbox_width"],
page=pymupdf_page, border=0.005, redact_pdf=False
)
boxes_to_add.append(whole_page_box)
else:
# Find the specific annotation group that matches the current page's image path
relevant_box_group = next(
(group for group in new_annotations_with_bounding_boxes if group.get('image') == image_path),
None # Default to None if no match is found
)
# Check if we found a matching group of boxes for this page
if relevant_box_group:
boxes_to_add.extend(relevant_box_group['boxes'])
else:
# This case would be unexpected, but it's good to handle.
# It means a page was in list_whole_pages_to_redact but had no
# corresponding boxes generated in new_annotations_with_bounding_boxes.
print(f"Warning: No new annotation boxes found for page {page_num} ({image_path}).")
# === Use the modified helper function to add a LIST of boxes ===
all_annotations, new_annotations_for_page = add_new_annotations_to_existing_page_annotations(
all_annotations=all_annotations,
image_path=image_path,
new_annotation_boxes=boxes_to_add # Pass the list here
)
new_annotations_for_page = fill_missing_box_ids_each_box(new_annotations_for_page)
new_annotations.append(new_annotations_for_page)
except Exception as e:
print(f"Error processing page {page}: {str(e)}")
continue
whole_page_review_file = convert_annotation_data_to_dataframe(new_annotations)
if whole_page_review_file.empty:
message = "No new whole page redactions were added."
print(message)
gr.Info(message)
return review_file_state, all_annotations
expected_cols = ['image', 'page', 'label', 'color', 'xmin', 'ymin', 'xmax', 'ymax', 'text', 'id']
for col in expected_cols:
if col not in review_file_state.columns: review_file_state[col] = pd.NA
if col not in whole_page_review_file.columns: whole_page_review_file[col] = pd.NA
review_file_out = pd.concat([review_file_state, whole_page_review_file], ignore_index=True)
review_file_out = review_file_out.sort_values(by=["page", "ymin", "xmin"]).reset_index(drop=True)
review_file_out = review_file_out.drop_duplicates(subset=['page', 'label', 'text', 'id'], keep='first')
out_message = "Successfully created duplicate text redactions."
print(out_message)
gr.Info(out_message)
return review_file_out, all_annotations
def _parse_page_line_id(combined_id: int) -> Tuple[int, int]:
"""Parses a combined ID using modular arithmetic."""
if int(combined_id) < ID_MULTIPLIER:
# Handle cases where page is 0 (or just an edge case)
return 0, combined_id
page = combined_id // ID_MULTIPLIER
line = combined_id % ID_MULTIPLIER
return page, line
def create_annotation_objects_from_duplicates(
duplicates_df: pd.DataFrame,
ocr_results_df: pd.DataFrame,
page_sizes: List[Dict],
combine_pages:bool=False) -> List[Dict]:
"""
Creates structured annotation objects from duplicate line ranges, mapping
page numbers to image paths.
Args:
duplicates_df (pd.DataFrame): DataFrame with duplicate ranges.
ocr_results_df (pd.DataFrame): DataFrame with OCR results.
page_sizes (List[Dict]): A list of dictionaries mapping page numbers to image paths and other metadata. Expected format: [{"page": 1, "image_path": "path/to/img.png", ...}]
combine_pages (bool): A boolean that determines whether in previous functions, all text from a page was combined (True). This function will only run if this is False.
Returns:
List[Dict]: A list of dictionaries, where each dict represents a page and its list of annotation boxes, in the format: [{"image": "path/to/img.png", "boxes": [...]}, ...]
"""
final_output = []
if duplicates_df.empty:
raise Warning("No duplicates found")
if ocr_results_df.empty:
raise Warning("No OCR results found for file under review. Please upload relevant OCR_output file and original PDF document on the review tab.")
if combine_pages == False:
page_to_image_map = {item['page']: item['image_path'] for item in page_sizes}
# Prepare OCR Data: Add a line number column if it doesn't exist
if 'line_number_by_page' not in ocr_results_df.columns:
ocr_results_df = ocr_results_df.sort_values(by=['page', 'top', 'left']).reset_index(drop=True)
ocr_results_df['line_number_by_page'] = ocr_results_df.groupby('page').cumcount() + 1
annotations_by_page = defaultdict(list)
# Iterate through each duplicate range (this logic is unchanged)
for _, row in duplicates_df.iterrows():
start_page, start_line = _parse_page_line_id(row['Page2_Start_Page'])
end_page, end_line = _parse_page_line_id(row['Page2_End_Page'])
# Select OCR Lines based on the range (this logic is unchanged)
if start_page == end_page:
condition = (
(ocr_results_df['page'] == start_page) &
(ocr_results_df['line_number_by_page'].between(start_line, end_line))
)
else:
cond_start = (ocr_results_df['page'] == start_page) & (ocr_results_df['line_number_by_page'] >= start_line)
cond_middle = ocr_results_df['page'].between(start_page + 1, end_page - 1)
cond_end = (ocr_results_df['page'] == end_page) & (ocr_results_df['line_number_by_page'] <= end_line)
condition = cond_start | cond_middle | cond_end
lines_to_annotate = ocr_results_df[condition]
# Build and group annotation boxes by page number (this logic is unchanged)
for _, line_row in lines_to_annotate.iterrows():
box = {
"label": "Duplicate text",
"color": (0,0,0),
"xmin": line_row['left'],
"ymin": line_row['top'],
"xmax": line_row['left'] + line_row['width'],
"ymax": line_row['top'] + line_row['height'],
"text": line_row['text'],
"id": "" # to be filled in after
}
page_number = line_row['page']
annotations_by_page[page_number].append(box)
# --- Format the final output list using the page-to-image map ---
final_output = []
# Sort by page number for a predictable order
for page_num, boxes in sorted(annotations_by_page.items()):
# Look up the image path using the page number
image_path = page_to_image_map.get(page_num)
if image_path:
page_boxes = {
"image": image_path,
"boxes": boxes
}
# Fill in missing IDs for the new data entries
page_boxes = fill_missing_box_ids_each_box(page_boxes)
# Add the annotation group using 'image' as the key
final_output.append(page_boxes)
else:
# Handle cases where a page might not have a corresponding image path
print(f"Warning: Page {page_num} found in OCR data but has no corresponding "
f"entry in the 'page_sizes' object. This page's annotations will be skipped.")
return final_output |