File size: 44,004 Bytes
e9c4101
66e145d
bafcf39
e3365ed
5345e1f
44d987c
 
bafcf39
ed5f8c7
bafcf39
 
 
 
 
 
 
 
 
 
f333cf5
44d987c
bafcf39
e9c4101
bafcf39
6ea0852
 
bafcf39
 
6ea0852
bafcf39
6ea0852
bafcf39
 
 
 
 
 
 
f333cf5
 
5f824f4
 
bafcf39
 
d3e6a24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f333cf5
d3e6a24
f333cf5
d3e6a24
5f824f4
d3e6a24
5f824f4
d3e6a24
 
5f824f4
d3e6a24
 
 
 
 
bafcf39
d60759d
bafcf39
e2aae24
bafcf39
d3e6a24
5f824f4
d3e6a24
bafcf39
f333cf5
bafcf39
f333cf5
bafcf39
 
 
f333cf5
 
bafcf39
 
5f824f4
d3e6a24
bafcf39
d3e6a24
 
bafcf39
 
f333cf5
 
bafcf39
 
 
 
 
 
 
d3e6a24
 
 
 
 
bafcf39
a33b955
bafcf39
a33b955
e2aae24
bafcf39
9504619
0e9dd2d
bafcf39
 
 
 
 
 
0e9dd2d
 
 
 
 
 
 
 
e3365ed
bafcf39
 
 
e3365ed
f0c28d7
 
bafcf39
 
 
 
 
 
 
 
 
 
9504619
e3365ed
bafcf39
e3365ed
 
 
bafcf39
e9c4101
bafcf39
66e145d
 
 
 
eea5c07
bafcf39
e9c4101
bafcf39
 
 
e9c4101
eea5c07
bafcf39
 
 
 
 
e9c4101
bafcf39
e9c4101
 
 
 
 
 
 
 
 
 
 
 
 
 
f333cf5
e9c4101
 
 
 
 
 
bafcf39
 
 
 
 
44d987c
f333cf5
 
b61459d
 
 
 
 
 
bafcf39
f333cf5
44d987c
 
bafcf39
eea5c07
 
 
 
 
 
 
bafcf39
 
e9c4101
44d987c
8652429
f333cf5
 
 
 
 
6ea0852
f333cf5
 
 
 
 
 
 
 
 
 
 
 
 
 
44d987c
f333cf5
 
 
44d987c
f333cf5
 
 
44d987c
 
 
 
 
 
 
 
 
 
f333cf5
 
 
44d987c
 
f333cf5
44d987c
f333cf5
44d987c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f333cf5
44d987c
 
 
 
 
 
 
 
 
 
 
 
 
f333cf5
44d987c
 
 
f333cf5
 
 
 
44d987c
 
 
 
 
 
 
 
 
 
 
 
 
f333cf5
 
 
44d987c
 
 
 
 
 
 
 
 
 
 
f333cf5
 
 
 
 
 
44d987c
 
 
 
 
 
f333cf5
44d987c
 
 
 
 
 
 
 
 
f333cf5
 
 
 
 
 
44d987c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f333cf5
 
44d987c
f333cf5
 
 
 
 
44d987c
 
 
 
f333cf5
44d987c
 
f333cf5
 
44d987c
 
 
 
 
 
 
f333cf5
44d987c
 
 
 
 
 
 
 
 
 
f333cf5
 
44d987c
 
f333cf5
 
44d987c
 
 
f333cf5
44d987c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f333cf5
44d987c
 
 
 
 
 
 
 
 
 
 
 
 
f333cf5
 
44d987c
 
 
 
 
 
 
 
 
 
 
 
 
e9c4101
f93e49c
44d987c
 
 
 
 
bafcf39
 
 
 
 
 
f333cf5
 
bafcf39
84c83c0
44d987c
bafcf39
 
 
 
 
66e145d
0ea8b9e
b61459d
 
 
 
 
66e145d
bafcf39
66e145d
 
bafcf39
 
 
 
 
 
66e145d
 
 
 
 
 
 
5345e1f
 
 
 
6a6aac2
5345e1f
f957846
66e145d
 
 
 
 
 
0ea8b9e
66e145d
 
 
 
 
bafcf39
ed5f8c7
bafcf39
 
 
 
 
 
66e145d
 
 
 
 
bafcf39
 
 
 
 
 
66e145d
bafcf39
 
0ea8b9e
bafcf39
0ea8b9e
b61459d
 
 
 
 
 
0ea8b9e
f333cf5
66e145d
0ea8b9e
 
66e145d
ed5f8c7
bafcf39
 
ed5f8c7
66e145d
0ea8b9e
66e145d
ed5f8c7
 
 
bafcf39
 
 
 
 
 
ed5f8c7
 
 
bafcf39
 
 
 
ed5f8c7
bafcf39
 
ed5f8c7
 
bafcf39
 
 
 
 
 
ed5f8c7
 
 
 
 
 
 
 
 
 
 
 
bafcf39
 
 
 
ed5f8c7
bafcf39
 
 
ed5f8c7
 
bafcf39
 
 
ed5f8c7
 
0ea8b9e
 
66e145d
0ea8b9e
 
f333cf5
 
bafcf39
 
 
 
 
 
 
 
f333cf5
0ea8b9e
bafcf39
0ea8b9e
 
 
66e145d
0ea8b9e
f333cf5
66e145d
 
 
f333cf5
 
44d987c
 
 
f333cf5
 
44d987c
f333cf5
 
44d987c
f333cf5
 
 
44d987c
f333cf5
 
 
44d987c
f333cf5
 
 
44d987c
 
 
 
 
 
 
 
 
 
 
 
f333cf5
44d987c
f333cf5
 
 
44d987c
f333cf5
 
 
 
 
 
 
 
 
44d987c
 
 
f333cf5
 
44d987c
f333cf5
 
 
 
 
44d987c
f333cf5
44d987c
f333cf5
 
 
 
 
 
 
 
 
 
44d987c
f333cf5
44d987c
f333cf5
 
 
 
 
44d987c
f333cf5
44d987c
f333cf5
 
 
 
 
 
 
 
 
 
44d987c
f333cf5
44d987c
f333cf5
44d987c
f333cf5
 
 
44d987c
f333cf5
 
 
44d987c
f333cf5
 
44d987c
f333cf5
44d987c
 
 
 
 
 
 
 
 
 
 
 
f333cf5
 
 
44d987c
f333cf5
 
44d987c
f333cf5
 
 
 
44d987c
f333cf5
 
 
44d987c
f333cf5
 
 
44d987c
f333cf5
 
 
44d987c
f333cf5
 
 
 
44d987c
f333cf5
 
 
 
44d987c
 
 
 
 
 
 
 
f333cf5
44d987c
f333cf5
 
 
 
 
44d987c
f333cf5
 
 
44d987c
 
 
 
 
 
f333cf5
44d987c
f333cf5
 
 
44d987c
f333cf5
 
44d987c
f333cf5
 
 
44d987c
f333cf5
44d987c
 
f333cf5
 
 
 
 
44d987c
f333cf5
44d987c
f333cf5
 
 
 
 
 
 
 
44d987c
f333cf5
44d987c
f333cf5
 
 
 
 
44d987c
f333cf5
44d987c
f333cf5
 
 
 
 
 
 
 
44d987c
f333cf5
44d987c
f333cf5
44d987c
f333cf5
 
 
44d987c
f333cf5
 
 
 
44d987c
f333cf5
 
 
 
 
 
44d987c
f333cf5
 
 
 
 
44d987c
f333cf5
 
44d987c
f333cf5
 
44d987c
f333cf5
 
 
 
 
 
44d987c
 
f333cf5
 
44d987c
f333cf5
 
 
 
 
 
 
 
44d987c
f333cf5
 
44d987c
f333cf5
44d987c
f333cf5
 
 
 
 
 
 
44d987c
f333cf5
 
 
 
44d987c
 
 
 
 
f333cf5
 
 
 
44d987c
f333cf5
 
 
 
44d987c
f333cf5
 
 
44d987c
f333cf5
 
 
 
 
 
 
 
 
44d987c
f333cf5
44d987c
f333cf5
 
 
 
 
 
 
 
 
 
44d987c
f333cf5
 
 
 
 
 
 
 
44d987c
f333cf5
44d987c
f333cf5
 
 
 
 
 
 
 
 
 
44d987c
f333cf5
 
44d987c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
import io
import json
import os
import time
from pathlib import Path
from typing import Any, Dict, List

import boto3
import pandas as pd
import pikepdf

from tools.config import (
    AWS_ACCESS_KEY,
    AWS_REGION,
    AWS_SECRET_KEY,
    PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS,
    RUN_AWS_FUNCTIONS,
)
from tools.custom_image_analyser_engine import CustomImageRecognizerResult, OCRResult
from tools.helper_functions import _generate_unique_ids
from tools.secure_path_utils import secure_file_read


def extract_textract_metadata(response: object):
    """Extracts metadata from an AWS Textract response."""

    request_id = response["ResponseMetadata"]["RequestId"]
    pages = response["DocumentMetadata"]["Pages"]

    return str({"RequestId": request_id, "Pages": pages})


def analyse_page_with_textract(
    pdf_page_bytes: object,
    page_no: int,
    client: str = "",
    handwrite_signature_checkbox: List[str] = ["Extract handwriting"],
    textract_output_found: bool = False,
    aws_access_question_textbox: str = AWS_ACCESS_KEY,
    aws_secret_question_textbox: str = AWS_SECRET_KEY,
    RUN_AWS_FUNCTIONS: bool = RUN_AWS_FUNCTIONS,
    PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS: bool = PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS,
):
    """
    Analyzes a single page of a document using AWS Textract to extract text and other features.

    Args:
        pdf_page_bytes (object): The content of the PDF page or image as bytes.
        page_no (int): The page number being analyzed.
        client (str, optional): An optional pre-initialized AWS Textract client. If not provided,
                                the function will attempt to create one based on configuration.
                                Defaults to "".
        handwrite_signature_checkbox (List[str], optional): A list of feature types to extract
                                                            from the document. Options include
                                                            "Extract handwriting", "Extract signatures",
                                                            "Extract forms", "Extract layout", "Extract tables".
                                                            Defaults to ["Extract handwriting"].
        textract_output_found (bool, optional): A flag indicating whether existing Textract output
                                                for the document has been found. This can prevent
                                                unnecessary API calls. Defaults to False.
        aws_access_question_textbox (str, optional): AWS access question provided by the user, if not using
                                                SSO or environment variables. Defaults to AWS_ACCESS_KEY.
        aws_secret_question_textbox (str, optional): AWS secret question provided by the user, if not using
                                                SSO or environment variables. Defaults to AWS_SECRET_KEY.
        RUN_AWS_FUNCTIONS (bool, optional): Configuration flag to enable or
                                           disable AWS functions. Defaults to RUN_AWS_FUNCTIONS.
        PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS (bool, optional): Configuration flag (e.g., True or False)
                                                                 to prioritize AWS SSO credentials
                                                                 over environment variables.
                                                                 Defaults to True.

    Returns:
        Tuple[List[Dict], str]: A tuple containing:
            - A list of dictionaries, where each dictionary represents a Textract block (e.g., LINE, WORD, FORM, TABLE).
            - A string containing metadata about the Textract request.
    """

    # print("handwrite_signature_checkbox in analyse_page_with_textract:", handwrite_signature_checkbox)
    if client == "":
        try:
            # Try to connect to AWS Textract Client if using that text extraction method
            if RUN_AWS_FUNCTIONS and PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS:
                print("Connecting to Textract via existing SSO connection")
                client = boto3.client("textract", region_name=AWS_REGION)
            elif aws_access_question_textbox and aws_secret_question_textbox:
                print(
                    "Connecting to Textract using AWS access question and secret questions from user input."
                )
                client = boto3.client(
                    "textract",
                    aws_access_question_id=aws_access_question_textbox,
                    aws_secret_access_question=aws_secret_question_textbox,
                    region_name=AWS_REGION,
                )
            elif RUN_AWS_FUNCTIONS is True:
                print("Connecting to Textract via existing SSO connection")
                client = boto3.client("textract", region_name=AWS_REGION)
            elif AWS_ACCESS_KEY and AWS_SECRET_KEY:
                print("Getting Textract credentials from environment variables.")
                client = boto3.client(
                    "textract",
                    aws_access_question_id=AWS_ACCESS_KEY,
                    aws_secret_access_question=AWS_SECRET_KEY,
                    region_name=AWS_REGION,
                )
            elif textract_output_found is True:
                print(
                    "Existing Textract data found for file, no need to connect to AWS Textract"
                )
                client = boto3.client("textract", region_name=AWS_REGION)
            else:
                client = ""
                out_message = "Cannot connect to AWS Textract service."
                print(out_message)
                raise Exception(out_message)
        except Exception as e:
            out_message = "Cannot connect to AWS Textract"
            print(out_message, "due to:", e)
            raise Exception(out_message)
            return [], ""  # Return an empty list and an empty string

    # Redact signatures if specified
    feature_types = list()
    if (
        "Extract signatures" in handwrite_signature_checkbox
        or "Extract forms" in handwrite_signature_checkbox
        or "Extract layout" in handwrite_signature_checkbox
        or "Extract tables" in handwrite_signature_checkbox
    ):
        if "Extract signatures" in handwrite_signature_checkbox:
            feature_types.append("SIGNATURES")
        if "Extract forms" in handwrite_signature_checkbox:
            feature_types.append("FORMS")
        if "Extract layout" in handwrite_signature_checkbox:
            feature_types.append("LAYOUT")
        if "Extract tables" in handwrite_signature_checkbox:
            feature_types.append("TABLES")
        try:
            response = client.analyze_document(
                Document={"Bytes": pdf_page_bytes}, FeatureTypes=feature_types
            )
        except Exception as e:
            print("Textract call failed due to:", e, "trying again in 3 seconds.")
            time.sleep(3)
            response = client.analyze_document(
                Document={"Bytes": pdf_page_bytes}, FeatureTypes=feature_types
            )

    if (
        "Extract signatures" not in handwrite_signature_checkbox
        and "Extract forms" not in handwrite_signature_checkbox
        and "Extract layout" not in handwrite_signature_checkbox
        and "Extract tables" not in handwrite_signature_checkbox
    ):
        # Call detect_document_text to extract plain text
        try:
            response = client.detect_document_text(Document={"Bytes": pdf_page_bytes})
        except Exception as e:
            print("Textract call failed due to:", e, "trying again in 5 seconds.")
            time.sleep(5)
            response = client.detect_document_text(Document={"Bytes": pdf_page_bytes})

    # Add the 'Page' attribute to each block
    if "Blocks" in response:
        for block in response["Blocks"]:
            block["Page"] = page_no  # Inject the page number into each block

    # Wrap the response with the page number in the desired format
    wrapped_response = {"page_no": page_no, "data": response}

    request_metadata = extract_textract_metadata(
        response
    )  # Metadata comes out as a string

    # Return a list containing the wrapped response and the metadata
    return (
        wrapped_response,
        request_metadata,
    )  # Return as a list to match the desired structure


def convert_pike_pdf_page_to_bytes(pdf: object, page_num: int):
    # Create a new empty PDF
    new_pdf = pikepdf.Pdf.new()

    # Specify the page number you want to extract (0-based index)
    page_num = 0  # Example: first page

    # Extract the specific page and add it to the new PDF
    new_pdf.pages.append(pdf.pages[page_num])

    # Save the new PDF to a bytes buffer
    buffer = io.BytesIO()
    new_pdf.save(buffer)

    # Get the PDF bytes
    pdf_bytes = buffer.getanswer()

    # Now you can use the `pdf_bytes` to convert it to an image or further process
    buffer.close()

    return pdf_bytes


def json_to_ocrresult(
    json_data: dict, page_width: float, page_height: float, page_no: int
):
    """
    Convert Textract JSON to structured OCR, handling lines, words, signatures,
    selection elements (associating them with lines), and question-answer form data.
    The question-answer data is sorted in a top-to-bottom, left-to-right reading order.

    Args:
        json_data (dict): The raw JSON output from AWS Textract for a specific page.
        page_width (float): The width of the page in pixels or points.
        page_height (float): The height of the page in pixels or points.
        page_no (int): The 1-based page number being processed.
    """
    # --- STAGE 1: Block Mapping & Initial Data Collection ---
    # text_blocks = json_data.get("Blocks", [])
    # Find the specific page data
    page_json_data = json_data  # next((page for page in json_data["pages"] if page["page_no"] == page_no), None)

    if "Blocks" in page_json_data:
        # Access the data for the specific page
        text_blocks = page_json_data["Blocks"]  # Access the Blocks within the page data
    # This is a new page
    elif "page_no" in page_json_data:
        text_blocks = page_json_data["data"]["Blocks"]
    else:
        text_blocks = []

    block_map = {block["Id"]: block for block in text_blocks}

    lines_data = list()
    selections_data = list()
    signature_or_handwriting_recogniser_results = list()
    signature_recogniser_results = list()
    handwriting_recogniser_results = list()

    def _get_text_from_block(block, b_map):
        text_parts = list()
        if "Relationships" in block:
            for rel in block["Relationships"]:
                if rel["Type"] == "CHILD":
                    for child_id in rel["Ids"]:
                        child = b_map.get(child_id)
                        if child:
                            if child["BlockType"] == "WORD":
                                text_parts.append(child["Text"])
                            elif child["BlockType"] == "SELECTION_ELEMENT":
                                text_parts.append(f"[{child['SelectionStatus']}]")
        return " ".join(text_parts)

    # text_line_number = 1

    for block in text_blocks:
        block_type = block.get("BlockType")

        if block_type == "LINE":
            bbox = block["Geometry"]["BoundingBox"]
            line_info = {
                "id": block["Id"],
                "text": block.get("Text", ""),
                "confidence": round(block.get("Confidence", 0.0), 0),
                "words": [],
                "geometry": {
                    "left": int(bbox["Left"] * page_width),
                    "top": int(bbox["Top"] * page_height),
                    "width": int(bbox["Width"] * page_width),
                    "height": int(bbox["Height"] * page_height),
                },
            }
            if "Relationships" in block:
                for rel in block.get("Relationships", []):
                    if rel["Type"] == "CHILD":
                        for child_id in rel["Ids"]:
                            word_block = block_map.get(child_id)
                            if word_block and word_block["BlockType"] == "WORD":
                                w_bbox = word_block["Geometry"]["BoundingBox"]
                                line_info["words"].append(
                                    {
                                        "text": word_block.get("Text", ""),
                                        "confidence": round(
                                            word_block.get("Confidence", 0.0), 0
                                        ),
                                        "bounding_box": (
                                            int(w_bbox["Left"] * page_width),
                                            int(w_bbox["Top"] * page_height),
                                            int(
                                                (w_bbox["Left"] + w_bbox["Width"])
                                                * page_width
                                            ),
                                            int(
                                                (w_bbox["Top"] + w_bbox["Height"])
                                                * page_height
                                            ),
                                        ),
                                    }
                                )
                                if word_block.get("TextType") == "HANDWRITING":
                                    rec_res = CustomImageRecognizerResult(
                                        entity_type="HANDWRITING",
                                        text=word_block.get("Text", ""),
                                        score=round(
                                            word_block.get("Confidence", 0.0), 0
                                        ),
                                        start=0,
                                        end=len(word_block.get("Text", "")),
                                        left=int(w_bbox["Left"] * page_width),
                                        top=int(w_bbox["Top"] * page_height),
                                        width=int(w_bbox["Width"] * page_width),
                                        height=int(w_bbox["Height"] * page_height),
                                    )
                                    handwriting_recogniser_results.append(rec_res)
                                    signature_or_handwriting_recogniser_results.append(
                                        rec_res
                                    )
            lines_data.append(line_info)

        elif block_type == "SELECTION_ELEMENT":
            bbox = block["Geometry"]["BoundingBox"]
            selections_data.append(
                {
                    "id": block["Id"],
                    "status": block.get("SelectionStatus", "UNKNOWN"),
                    "confidence": round(block.get("Confidence", 0.0), 0),
                    "geometry": {
                        "left": int(bbox["Left"] * page_width),
                        "top": int(bbox["Top"] * page_height),
                        "width": int(bbox["Width"] * page_width),
                        "height": int(bbox["Height"] * page_height),
                    },
                }
            )

        elif block_type == "SIGNATURE":
            bbox = block["Geometry"]["BoundingBox"]
            rec_res = CustomImageRecognizerResult(
                entity_type="SIGNATURE",
                text="SIGNATURE",
                score=round(block.get("Confidence", 0.0), 0),
                start=0,
                end=9,
                left=int(bbox["Left"] * page_width),
                top=int(bbox["Top"] * page_height),
                width=int(bbox["Width"] * page_width),
                height=int(bbox["Height"] * page_height),
            )
            signature_recogniser_results.append(rec_res)
            signature_or_handwriting_recogniser_results.append(rec_res)

    # --- STAGE 2: Question-Answer Pair Extraction & Sorting ---
    def _create_question_answer_results_object(text_blocks):
        question_answer_results = list()
        key_blocks = [
            b
            for b in text_blocks
            if b.get("BlockType") == "KEY_VALUE_SET"
            and "KEY" in b.get("EntityTypes", [])
        ]
        for question_block in key_blocks:
            answer_block = next(
                (
                    block_map.get(rel["Ids"][0])
                    for rel in question_block.get("Relationships", [])
                    if rel["Type"] == "VALUE"
                ),
                None,
            )

            # The check for value_block now happens BEFORE we try to access its properties.
            if answer_block:
                question_bbox = question_block["Geometry"]["BoundingBox"]
                # We also get the answer_bbox safely inside this block.
                answer_bbox = answer_block["Geometry"]["BoundingBox"]

                question_answer_results.append(
                    {
                        # Data for final output
                        "Page": page_no,
                        "Question": _get_text_from_block(question_block, block_map),
                        "Answer": _get_text_from_block(answer_block, block_map),
                        "Confidence Score % (Question)": round(
                            question_block.get("Confidence", 0.0), 0
                        ),
                        "Confidence Score % (Answer)": round(
                            answer_block.get("Confidence", 0.0), 0
                        ),
                        "Question_left": round(question_bbox["Left"], 5),
                        "Question_top": round(question_bbox["Top"], 5),
                        "Question_width": round(question_bbox["Width"], 5),
                        "Question_height": round(question_bbox["Height"], 5),
                        "Answer_left": round(answer_bbox["Left"], 5),
                        "Answer_top": round(answer_bbox["Top"], 5),
                        "Answer_width": round(answer_bbox["Width"], 5),
                        "Answer_height": round(answer_bbox["Height"], 5),
                    }
                )

        question_answer_results.sort(
            key=lambda item: (item["Question_top"], item["Question_left"])
        )

        return question_answer_results

    question_answer_results = _create_question_answer_results_object(text_blocks)

    # --- STAGE 3: Association of Selection Elements to Lines ---
    unmatched_selections = list()
    for selection in selections_data:
        best_match_line = None
        min_dist = float("inf")
        sel_geom = selection["geometry"]
        sel_y_center = sel_geom["top"] + sel_geom["height"] / 2
        for line in lines_data:
            line_geom = line["geometry"]
            line_y_center = line_geom["top"] + line_geom["height"] / 2
            if abs(sel_y_center - line_y_center) < line_geom["height"]:
                dist = 0
                if sel_geom["left"] > (line_geom["left"] + line_geom["width"]):
                    dist = sel_geom["left"] - (line_geom["left"] + line_geom["width"])
                elif line_geom["left"] > (sel_geom["left"] + sel_geom["width"]):
                    dist = line_geom["left"] - (sel_geom["left"] + sel_geom["width"])
                if dist < min_dist:
                    min_dist = dist
                    best_match_line = line
        if best_match_line and min_dist < (best_match_line["geometry"]["height"] * 5):
            selection_as_word = {
                "text": f"[{selection['status']}]",
                "confidence": round(selection["confidence"], 0),
                "bounding_box": (
                    sel_geom["left"],
                    sel_geom["top"],
                    sel_geom["left"] + sel_geom["width"],
                    sel_geom["top"] + sel_geom["height"],
                ),
            }
            best_match_line["words"].append(selection_as_word)
            best_match_line["words"].sort(key=lambda w: w["bounding_box"][0])
        else:
            unmatched_selections.append(selection)

    # --- STAGE 4: Final Output Generation ---
    all_ocr_results = list()
    ocr_results_with_words = dict()
    selection_element_results = list()
    for i, line in enumerate(lines_data):
        line_num = i + 1
        line_geom = line["geometry"]
        reconstructed_text = " ".join(w["text"] for w in line["words"])
        all_ocr_results.append(
            OCRResult(
                reconstructed_text,
                line_geom["left"],
                line_geom["top"],
                line_geom["width"],
                line_geom["height"],
                round(line["confidence"], 0),
                line_num,
            )
        )
        ocr_results_with_words[f"text_line_{line_num}"] = {
            "line": line_num,
            "text": reconstructed_text,
            "confidence": line["confidence"],
            "bounding_box": (
                line_geom["left"],
                line_geom["top"],
                line_geom["left"] + line_geom["width"],
                line_geom["top"] + line_geom["height"],
            ),
            "words": line["words"],
            "page": page_no,
        }
    for selection in unmatched_selections:
        sel_geom = selection["geometry"]
        sel_text = f"[{selection['status']}]"
        all_ocr_results.append(
            OCRResult(
                sel_text,
                sel_geom["left"],
                sel_geom["top"],
                sel_geom["width"],
                sel_geom["height"],
                round(selection["confidence"], 0),
                -1,
            )
        )
    for selection in selections_data:
        sel_geom = selection["geometry"]
        selection_element_results.append(
            {
                "status": selection["status"],
                "confidence": round(selection["confidence"], 0),
                "bounding_box": (
                    sel_geom["left"],
                    sel_geom["top"],
                    sel_geom["left"] + sel_geom["width"],
                    sel_geom["top"] + sel_geom["height"],
                ),
                "page": page_no,
            }
        )

    all_ocr_results_with_page = {"page": page_no, "results": all_ocr_results}
    ocr_results_with_words_with_page = {
        "page": page_no,
        "results": ocr_results_with_words,
    }

    return (
        all_ocr_results_with_page,
        signature_or_handwriting_recogniser_results,
        signature_recogniser_results,
        handwriting_recogniser_results,
        ocr_results_with_words_with_page,
        selection_element_results,
        question_answer_results,
    )


def load_and_convert_textract_json(
    textract_json_file_path: str,
    log_files_output_paths: str,
    page_sizes_df: pd.DataFrame,
):
    """
    Loads Textract JSON from a file, detects if conversion is needed, and converts if necessary.

    Args:
        textract_json_file_path (str): The file path to the Textract JSON output.
        log_files_output_paths (str): A list of paths to log files, used for tracking.
        page_sizes_df (pd.DataFrame): A DataFrame containing page size information for the document.
    """

    if not os.path.exists(textract_json_file_path):
        print("No existing Textract results file found.")
        return (
            {},
            True,
            log_files_output_paths,
        )  # Return empty dict and flag indicating missing file

    print("Found existing Textract json results file.")

    # Track log files
    if textract_json_file_path not in log_files_output_paths:
        log_files_output_paths.append(textract_json_file_path)

    try:
        # Split the path into base directory and filename for security
        textract_json_file_path_obj = Path(textract_json_file_path)
        base_dir = textract_json_file_path_obj.parent
        filename = textract_json_file_path_obj.name

        json_content = secure_file_read(base_dir, filename, encoding="utf-8")
        textract_data = json.loads(json_content)
    except json.JSONDecodeError:
        print("Error: Failed to parse Textract JSON file. Returning empty data.")
        return {}, True, log_files_output_paths  # Indicate failure

    # Check if conversion is needed
    if "pages" in textract_data:
        print("JSON already in the correct format for app. No changes needed.")
        return textract_data, False, log_files_output_paths  # No conversion required

    if "Blocks" in textract_data:
        print("Need to convert Textract JSON to app format.")
        try:

            textract_data = restructure_textract_output(textract_data, page_sizes_df)
            return (
                textract_data,
                False,
                log_files_output_paths,
            )  # Successfully converted

        except Exception as e:
            print("Failed to convert JSON data to app format due to:", e)
            return {}, True, log_files_output_paths  # Conversion failed
    else:
        print("Invalid Textract JSON format: 'Blocks' missing.")
        # print("textract data:", textract_data)
        return (
            {},
            True,
            log_files_output_paths,
        )  # Return empty data if JSON is not recognized


def restructure_textract_output(textract_output: dict, page_sizes_df: pd.DataFrame):
    """
    Reorganise Textract output from the bulk Textract analysis option on AWS
    into a format that works in this redaction app, reducing size.

    Args:
        textract_output (dict): The raw JSON output from AWS Textract.
        page_sizes_df (pd.DataFrame): A Pandas DataFrame containing page size
                                      information, including cropbox and mediabox
                                      dimensions and offsets for each page.
    """
    pages_dict = dict()

    # Extract total pages from DocumentMetadata
    document_metadata = textract_output.get("DocumentMetadata", {})

    # For efficient lookup, set 'page' as index if it's not already
    if "page" in page_sizes_df.columns:
        page_sizes_df = page_sizes_df.set_index("page")

    for block in textract_output.get("Blocks", []):
        page_no = block.get("Page", 1)  # Default to 1 if missing

        # --- Geometry Conversion Logic ---
        try:
            page_info = page_sizes_df.loc[page_no]
            cb_width = page_info["cropbox_width"]
            cb_height = page_info["cropbox_height"]
            mb_width = page_info["mediabox_width"]
            mb_height = page_info["mediabox_height"]
            cb_x_offset = page_info["cropbox_x_offset"]
            cb_y_offset_top = page_info["cropbox_y_offset_from_top"]

            # Check if conversion is needed (and avoid division by zero)
            needs_conversion = (
                (abs(cb_width - mb_width) > 1e-6 or abs(cb_height - mb_height) > 1e-6)
                and mb_width > 1e-6
                and mb_height > 1e-6
            )  # Avoid division by zero

            if needs_conversion and "Geometry" in block:
                geometry = block["Geometry"]  # Work directly on the block's geometry

                # --- Convert BoundingBox ---
                if "BoundingBox" in geometry:
                    bbox = geometry["BoundingBox"]
                    old_left = bbox["Left"]
                    old_top = bbox["Top"]
                    old_width = bbox["Width"]
                    old_height = bbox["Height"]

                    # Calculate absolute coordinates within CropBox
                    abs_cb_x = old_left * cb_width
                    abs_cb_y = old_top * cb_height
                    abs_cb_width = old_width * cb_width
                    abs_cb_height = old_height * cb_height

                    # Calculate absolute coordinates relative to MediaBox top-left
                    abs_mb_x = cb_x_offset + abs_cb_x
                    abs_mb_y = cb_y_offset_top + abs_cb_y

                    # Convert back to normalized coordinates relative to MediaBox
                    bbox["Left"] = abs_mb_x / mb_width
                    bbox["Top"] = abs_mb_y / mb_height
                    bbox["Width"] = abs_cb_width / mb_width
                    bbox["Height"] = abs_cb_height / mb_height
        except KeyError:
            print(
                f"Warning: Page number {page_no} not found in page_sizes_df. Skipping coordinate conversion for this block."
            )
            # Decide how to handle missing page info: skip conversion, raise error, etc.
        except ZeroDivisionError:
            print(
                f"Warning: MediaBox width or height is zero for page {page_no}. Skipping coordinate conversion for this block."
            )

        # Initialise page structure if not already present
        if page_no not in pages_dict:
            pages_dict[page_no] = {"page_no": str(page_no), "data": {"Blocks": []}}

        # Keep only essential fields to reduce size
        filtered_block = {
            question: block[question]
            for question in [
                "BlockType",
                "Confidence",
                "Text",
                "Geometry",
                "Page",
                "Id",
                "Relationships",
            ]
            if question in block
        }

        pages_dict[page_no]["data"]["Blocks"].append(filtered_block)

    # Convert pages dictionary to a sorted list
    structured_output = {
        "DocumentMetadata": document_metadata,  # Store metadata separately
        "pages": [pages_dict[page] for page in sorted(pages_dict.questions())],
    }

    return structured_output


def convert_question_answer_to_dataframe(
    question_answer_results: List[Dict[str, Any]], page_sizes_df: pd.DataFrame
) -> pd.DataFrame:
    """
    Convert question-answer results to DataFrame format matching convert_annotation_data_to_dataframe.

    Each Question and Answer will be on separate lines in the resulting dataframe.
    The 'image' column will be populated with the page number as f'placeholder_image_page{i}.png'.

    Args:
        question_answer_results: List of question-answer dictionaries from _create_question_answer_results_object
        page_sizes_df: DataFrame containing page sizes

    Returns:
        pd.DataFrame: DataFrame with columns ["image", "page", "label", "color", "xmin", "xmax", "ymin", "ymax", "text", "id"]
    """

    if not question_answer_results:
        # Return empty DataFrame with expected schema
        return pd.DataFrame(
            columns=[
                "image",
                "page",
                "label",
                "color",
                "xmin",
                "xmax",
                "ymin",
                "ymax",
                "text",
                "id",
            ]
        )

    # Prepare data for DataFrame
    rows = list()
    existing_ids = set()

    for i, qa_result in enumerate(question_answer_results):
        page_num = int(qa_result.get("Page", 1))
        page_sizes_df["page"] = pd.to_numeric(page_sizes_df["page"], errors="coerce")
        page_sizes_df.dropna(subset=["page"], inplace=True)
        if not page_sizes_df.empty:
            page_sizes_df["page"] = page_sizes_df["page"].astype(int)
        else:
            print("Warning: Page sizes DataFrame became empty after processing.")

        image_name = page_sizes_df.loc[
            page_sizes_df["page"] == page_num, "image_path"
        ].iloc[0]
        if pd.isna(image_name):
            image_name = f"placeholder_image_{page_num}.png"

        # Create Question row
        question_bbox = {
            "Question_left": qa_result.get("Question_left", 0),
            "Question_top": qa_result.get("Question_top", 0),
            "Question_width": qa_result.get("Question_width", 0),
            "Question_height": qa_result.get("Question_height", 0),
        }

        question_row = {
            "image": image_name,
            "page": page_num,
            "label": f"Question {i+1}",
            "color": "(0,0,255)",
            "xmin": question_bbox["Question_left"],
            "xmax": question_bbox["Question_left"] + question_bbox["Question_width"],
            "ymin": question_bbox["Question_top"],
            "ymax": question_bbox["Question_top"] + question_bbox["Question_height"],
            "text": qa_result.get("Question", ""),
            "id": None,  # Will be filled after generating IDs
        }

        # Create Answer row
        answer_bbox = {
            "Answer_left": qa_result.get("Answer_left", 0),
            "Answer_top": qa_result.get("Answer_top", 0),
            "Answer_width": qa_result.get("Answer_width", 0),
            "Answer_height": qa_result.get("Answer_height", 0),
        }

        answer_row = {
            "image": image_name,
            "page": page_num,
            "label": f"Answer {i+1}",
            "color": "(0,255,0)",
            "xmin": answer_bbox["Answer_left"],
            "xmax": answer_bbox["Answer_left"] + answer_bbox["Answer_width"],
            "ymin": answer_bbox["Answer_top"],
            "ymax": answer_bbox["Answer_top"] + answer_bbox["Answer_height"],
            "text": qa_result.get("Answer", ""),
            "id": None,  # Will be filled after generating IDs
        }

        rows.extend([question_row, answer_row])

    # Generate unique IDs for all rows
    num_ids_needed = len(rows)
    unique_ids = _generate_unique_ids(num_ids_needed, existing_ids)

    # Assign IDs to rows
    for i, row in enumerate(rows):
        row["id"] = unique_ids[i]

    # Create DataFrame
    df = pd.DataFrame(rows)

    # Ensure all required columns are present and in correct order
    required_columns = [
        "image",
        "page",
        "label",
        "color",
        "xmin",
        "xmax",
        "ymin",
        "ymax",
        "text",
        "id",
    ]
    for col in required_columns:
        if col not in df.columns:
            df[col] = pd.NA

    # Reorder columns to match expected format
    df = df.reindex(columns=required_columns, fill_value=pd.NA)

    return df


def convert_question_answer_to_annotation_json(
    question_answer_results: List[Dict[str, Any]], page_sizes_df: pd.DataFrame
) -> List[Dict]:
    """
    Convert question-answer results directly to Gradio Annotation JSON format.

    This function combines the functionality of convert_question_answer_to_dataframe
    and convert_review_df_to_annotation_json to directly convert question-answer
    results to the annotation JSON format without the intermediate DataFrame step.

    Args:
        question_answer_results: List of question-answer dictionaries from _create_question_answer_results_object
        page_sizes_df: DataFrame containing page sizes with columns ['page', 'image_path', 'image_width', 'image_height']

    Returns:
        List of dictionaries suitable for Gradio Annotation output, one dict per image/page.
        Each dict has structure: {"image": image_path, "boxes": [list of annotation boxes]}
    """

    if not question_answer_results:
        # Return empty structure based on page_sizes_df
        json_data = list()
        for _, row in page_sizes_df.iterrows():
            json_data.append(
                {
                    "image": row.get(
                        "image_path", f"placeholder_image_{row.get('page', 1)}.png"
                    ),
                    "boxes": [],
                }
            )
        return json_data

    # Validate required columns in page_sizes_df
    required_ps_cols = {"page", "image_path", "image_width", "image_height"}
    if not required_ps_cols.issubset(page_sizes_df.columns):
        missing = required_ps_cols - set(page_sizes_df.columns)
        raise ValueError(f"page_sizes_df is missing required columns: {missing}")

    # Convert page sizes columns to appropriate numeric types
    page_sizes_df = page_sizes_df.copy()  # Work with a copy to avoid modifying original
    page_sizes_df["page"] = pd.to_numeric(page_sizes_df["page"], errors="coerce")
    page_sizes_df["image_width"] = pd.to_numeric(
        page_sizes_df["image_width"], errors="coerce"
    )
    page_sizes_df["image_height"] = pd.to_numeric(
        page_sizes_df["image_height"], errors="coerce"
    )
    page_sizes_df["page"] = page_sizes_df["page"].astype("Int64")

    # Prepare data for processing
    rows = list()
    existing_ids = set()

    for i, qa_result in enumerate(question_answer_results):
        page_num = int(qa_result.get("Page", 1))

        # Get image path for this page
        page_row = page_sizes_df[page_sizes_df["page"] == page_num]
        if not page_row.empty:
            page_row["image_path"].iloc[0]
        else:
            pass

        # Create Question box.
        question_bbox = {
            "Question_left": qa_result.get("Question_left", 0),
            "Question_top": qa_result.get("Question_top", 0),
            "Question_width": qa_result.get("Question_width", 0),
            "Question_height": qa_result.get("Question_height", 0),
        }

        question_box = {
            "label": f"Question {i+1}",
            "color": (0, 0, 255),  # Blue for questions
            "xmin": question_bbox["Question_left"],
            "xmax": question_bbox["Question_left"] + question_bbox["Question_width"],
            "ymin": question_bbox["Question_top"],
            "ymax": question_bbox["Question_top"] + question_bbox["Question_height"],
            "text": qa_result.get("Question", ""),
            "id": None,  # Will be filled after generating IDs
        }

        # Create Answer box
        answer_bbox = {
            "Answer_left": qa_result.get("Answer_left", 0),
            "Answer_top": qa_result.get("Answer_top", 0),
            "Answer_width": qa_result.get("Answer_width", 0),
            "Answer_height": qa_result.get("Answer_height", 0),
        }

        answer_box = {
            "label": f"Answer {i+1}",
            "color": (0, 255, 0),  # Green for answers
            "xmin": answer_bbox["Answer_left"],
            "xmax": answer_bbox["Answer_left"] + answer_bbox["Answer_width"],
            "ymin": answer_bbox["Answer_top"],
            "ymax": answer_bbox["Answer_top"] + answer_bbox["Answer_height"],
            "text": qa_result.get("Answer", ""),
            "id": None,  # Will be filled after generating IDs
        }

        rows.extend([(page_num, question_box), (page_num, answer_box)])

    # Generate unique IDs for all boxes
    num_ids_needed = len(rows)
    unique_ids = _generate_unique_ids(num_ids_needed, existing_ids)

    # Assign IDs to boxes
    for i, (page_num, box) in enumerate(rows):
        box["id"] = unique_ids[i]
        rows[i] = (page_num, box)

    # Group boxes by page
    boxes_by_page = {}
    for page_num, box in rows:
        if page_num not in boxes_by_page:
            boxes_by_page[page_num] = list()
        boxes_by_page[page_num].append(box)

    # Build JSON structure based on page_sizes
    json_data = list()
    for _, row in page_sizes_df.iterrows():
        page_num = row["page"]
        pdf_image_path = row["image_path"]

        # Get boxes for this page
        annotation_boxes = boxes_by_page.get(page_num, [])

        # Append the structured data for this image/page
        json_data.append({"image": pdf_image_path, "boxes": annotation_boxes})

    return json_data


def convert_page_question_answer_to_custom_image_recognizer_results(
    question_answer_results: List[Dict[str, Any]],
    page_sizes_df: pd.DataFrame,
    reported_page_number: int,
) -> List["CustomImageRecognizerResult"]:
    """
    Convert question-answer results to a list of CustomImageRecognizerResult objects.

    Args:
        question_answer_results: List of question-answer dictionaries from _create_question_answer_results_object
        page_sizes_df: DataFrame containing page sizes with columns ['page', 'image_path', 'image_width', 'image_height']
        reported_page_number: The page number reported by the user
    Returns:
        List of CustomImageRecognizerResult objects for questions and answers
    """
    from tools.custom_image_analyser_engine import CustomImageRecognizerResult

    if not question_answer_results:
        return list()

    results = list()

    # Pre-process page_sizes_df once for efficiency
    page_sizes_df["page"] = pd.to_numeric(page_sizes_df["page"], errors="coerce")
    page_sizes_df.dropna(subset=["page"], inplace=True)
    if not page_sizes_df.empty:
        page_sizes_df["page"] = page_sizes_df["page"].astype(int)
    else:
        print("Warning: Page sizes DataFrame became empty after processing.")
        return list()  # Return empty list if no page sizes are available

    page_row = page_sizes_df.loc[page_sizes_df["page"] == int(reported_page_number)]

    if page_row.empty:
        print(
            f"Warning: Page {reported_page_number} not found in page_sizes_df. Skipping this entry."
        )
        return list()  # Return empty list if page not found

    for i, qa_result in enumerate(question_answer_results):
        current_page = int(qa_result.get("Page", 1))

        if current_page != int(reported_page_number):
            continue  # Skip this entry if page number does not match reported page number

        # Get image dimensions safely
        image_width = page_row["mediabox_width"].iloc[0]
        image_height = page_row["mediabox_height"].iloc[0]

        # Get question and answer text safely
        question_text = qa_result.get("Question", "")
        answer_text = qa_result.get("Answer", "")

        # Get scores and handle potential type issues
        question_score = float(qa_result.get("'Confidence Score % (Question)'", 0.0))
        answer_score = float(qa_result.get("'Confidence Score % (Answer)'", 0.0))

        # --- Process Question Bounding Box ---
        question_bbox = {
            "left": qa_result.get("Question_left", 0) * image_width,
            "top": qa_result.get("Question_top", 0) * image_height,
            "width": qa_result.get("Question_width", 0) * image_width,
            "height": qa_result.get("Question_height", 0) * image_height,
        }

        question_result = CustomImageRecognizerResult(
            entity_type=f"QUESTION {i+1}",
            start=0,
            end=len(question_text),
            score=question_score,
            left=float(question_bbox.get("left", 0)),
            top=float(question_bbox.get("top", 0)),
            width=float(question_bbox.get("width", 0)),
            height=float(question_bbox.get("height", 0)),
            text=question_text,
            color=(0, 0, 255),
        )
        results.append(question_result)

        # --- Process Answer Bounding Box ---
        answer_bbox = {
            "left": qa_result.get("Answer_left", 0) * image_width,
            "top": qa_result.get("Answer_top", 0) * image_height,
            "width": qa_result.get("Answer_width", 0) * image_width,
            "height": qa_result.get("Answer_height", 0) * image_height,
        }

        answer_result = CustomImageRecognizerResult(
            entity_type=f"ANSWER {i+1}",
            start=0,
            end=len(answer_text),
            score=answer_score,
            left=float(answer_bbox.get("left", 0)),
            top=float(answer_bbox.get("top", 0)),
            width=float(answer_bbox.get("width", 0)),
            height=float(answer_bbox.get("height", 0)),
            text=answer_text,
            color=(0, 255, 0),
        )
        results.append(answer_result)

    return results