Spaces:
Sleeping
Sleeping
File size: 12,092 Bytes
e9c4101 9504619 e9c4101 9504619 e9c4101 e3365ed e9c4101 9504619 e9c4101 7907ad4 e9c4101 6ea0852 e3365ed 6ea0852 9504619 e9c4101 e2aae24 7907ad4 e2aae24 e9c4101 e3365ed e9c4101 9504619 e3365ed f0c28d7 e3365ed 9504619 e3365ed 9504619 e3365ed e9c4101 eea5c07 e9c4101 eea5c07 e9c4101 eea5c07 e9c4101 eea5c07 e9c4101 6ea0852 e9c4101 6ea0852 e9c4101 84c83c0 eea5c07 e9c4101 84c83c0 8652429 eea5c07 e9c4101 eea5c07 e9c4101 eea5c07 8652429 6ea0852 84c83c0 8652429 84c83c0 8652429 0d3554e 6ea0852 eea5c07 8652429 84c83c0 8652429 84c83c0 8652429 0d3554e 84c83c0 e9c4101 6ea0852 8652429 6ea0852 0d3554e 84c83c0 8652429 6ea0852 84c83c0 e9c4101 6ea0852 eea5c07 e9c4101 eea5c07 84c83c0 eea5c07 84c83c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import boto3
#from PIL import Image
from typing import List
import io
#import json
import pikepdf
import time
# Example: converting this single page to an image
#from pdf2image import convert_from_bytes
from tools.custom_image_analyser_engine import OCRResult, CustomImageRecognizerResult
from tools.aws_functions import AWS_ACCESS_KEY, AWS_SECRET_KEY
def extract_textract_metadata(response):
"""Extracts metadata from an AWS Textract response."""
#print("Document metadata:", response['DocumentMetadata'])
request_id = response['ResponseMetadata']['RequestId']
pages = response['DocumentMetadata']['Pages']
#number_of_pages = response['DocumentMetadata']['NumberOfPages']
return str({
'RequestId': request_id,
'Pages': pages
#,
#'NumberOfPages': number_of_pages
})
def analyse_page_with_textract(pdf_page_bytes, page_no, client="", handwrite_signature_checkbox:List[str]=["Redact all identified handwriting", "Redact all identified signatures"]):
'''
Analyse page with AWS Textract
'''
if client == "":
try:
if AWS_ACCESS_KEY and AWS_SECRET_KEY:
client = boto3.client('textract',
aws_access_key_id=AWS_ACCESS_KEY,
aws_secret_access_key=AWS_SECRET_KEY)
else:
client = boto3.client('textract')
except:
print("Cannot connect to AWS Textract")
return [], "" # Return an empty list and an empty string
#print("Analysing page with AWS Textract")
#print("pdf_page_bytes:", pdf_page_bytes)
#print("handwrite_signature_checkbox:", handwrite_signature_checkbox)
# Redact signatures if specified
if "Redact all identified signatures" in handwrite_signature_checkbox:
#print("Analysing document with signature detection")
try:
response = client.analyze_document(Document={'Bytes': pdf_page_bytes}, FeatureTypes=["SIGNATURES"])
except Exception as e:
print("Textract call failed due to:", e, "trying again in 3 seconds.")
time.sleep(3)
response = client.analyze_document(Document={'Bytes': pdf_page_bytes}, FeatureTypes=["SIGNATURES"])
else:
#print("Analysing document without signature detection")
# Call detect_document_text to extract plain text
try:
response = client.detect_document_text(Document={'Bytes': pdf_page_bytes})
except Exception as e:
print("Textract call failed due to:", e, "trying again in 5 seconds.")
time.sleep(5)
response = client.detect_document_text(Document={'Bytes': pdf_page_bytes})
# Wrap the response with the page number in the desired format
wrapped_response = {
'page_no': page_no,
'data': response
}
request_metadata = extract_textract_metadata(response) # Metadata comes out as a string
# Return a list containing the wrapped response and the metadata
return wrapped_response, request_metadata # Return as a list to match the desired structure
def convert_pike_pdf_page_to_bytes(pdf, page_num):
# Create a new empty PDF
new_pdf = pikepdf.Pdf.new()
# Specify the page number you want to extract (0-based index)
page_num = 0 # Example: first page
# Extract the specific page and add it to the new PDF
new_pdf.pages.append(pdf.pages[page_num])
# Save the new PDF to a bytes buffer
buffer = io.BytesIO()
new_pdf.save(buffer)
# Get the PDF bytes
pdf_bytes = buffer.getvalue()
# Now you can use the `pdf_bytes` to convert it to an image or further process
buffer.close()
#images = convert_from_bytes(pdf_bytes)
#image = images[0]
return pdf_bytes
def json_to_ocrresult(json_data, page_width, page_height, page_no):
'''
Convert the json response from textract to the OCRResult format used elsewhere in the code. Looks for lines, words, and signatures. Handwriting and signatures are set aside especially for later in case the user wants to override the default behaviour and redact all handwriting/signatures.
'''
all_ocr_results = []
signature_or_handwriting_recogniser_results = []
signature_recogniser_results = []
handwriting_recogniser_results = []
signatures = []
handwriting = []
ocr_results_with_children = {}
text_block={}
i = 1
# Assuming json_data is structured as a dictionary with a "pages" key
#if "pages" in json_data:
# Find the specific page data
page_json_data = json_data #next((page for page in json_data["pages"] if page["page_no"] == page_no), None)
if "Blocks" in page_json_data:
# Access the data for the specific page
text_blocks = page_json_data["Blocks"] # Access the Blocks within the page data
# This is a new page
elif "page_no" in page_json_data:
text_blocks = page_json_data["data"]["Blocks"]
is_signature = False
is_handwriting = False
for text_block in text_blocks:
if (text_block['BlockType'] == 'LINE') | (text_block['BlockType'] == 'SIGNATURE'): # (text_block['BlockType'] == 'WORD') |
# Extract text and bounding box for the line
line_bbox = text_block["Geometry"]["BoundingBox"]
line_left = int(line_bbox["Left"] * page_width)
line_top = int(line_bbox["Top"] * page_height)
line_right = int((line_bbox["Left"] + line_bbox["Width"]) * page_width)
line_bottom = int((line_bbox["Top"] + line_bbox["Height"]) * page_height)
width_abs = int(line_bbox["Width"] * page_width)
height_abs = int(line_bbox["Height"] * page_height)
if text_block['BlockType'] == 'LINE':
# Extract text and bounding box for the line
line_text = text_block.get('Text', '')
words = []
current_line_handwriting_results = [] # Track handwriting results for this line
if 'Relationships' in text_block:
for relationship in text_block['Relationships']:
if relationship['Type'] == 'CHILD':
for child_id in relationship['Ids']:
child_block = next((block for block in text_blocks if block['Id'] == child_id), None)
if child_block and child_block['BlockType'] == 'WORD':
word_text = child_block.get('Text', '')
word_bbox = child_block["Geometry"]["BoundingBox"]
confidence = child_block.get('Confidence','')
word_left = int(word_bbox["Left"] * page_width)
word_top = int(word_bbox["Top"] * page_height)
word_right = int((word_bbox["Left"] + word_bbox["Width"]) * page_width)
word_bottom = int((word_bbox["Top"] + word_bbox["Height"]) * page_height)
# Extract BoundingBox details
word_width = word_bbox["Width"]
word_height = word_bbox["Height"]
# Convert proportional coordinates to absolute coordinates
word_width_abs = int(word_width * page_width)
word_height_abs = int(word_height * page_height)
words.append({
'text': word_text,
'bounding_box': (word_left, word_top, word_right, word_bottom)
})
# Check for handwriting
text_type = child_block.get("TextType", '')
if text_type == "HANDWRITING":
is_handwriting = True
entity_name = "HANDWRITING"
word_end = len(word_text)
recogniser_result = CustomImageRecognizerResult(
entity_type=entity_name,
text=word_text,
score=confidence,
start=0,
end=word_end,
left=word_left,
top=word_top,
width=word_width_abs,
height=word_height_abs
)
# Add to handwriting collections immediately
handwriting.append(recogniser_result)
handwriting_recogniser_results.append(recogniser_result)
signature_or_handwriting_recogniser_results.append(recogniser_result)
current_line_handwriting_results.append(recogniser_result)
# If handwriting or signature, add to bounding box
elif (text_block['BlockType'] == 'SIGNATURE'):
line_text = "SIGNATURE"
is_signature = True
entity_name = "SIGNATURE"
confidence = text_block.get('Confidence', 0)
word_end = len(line_text)
recogniser_result = CustomImageRecognizerResult(
entity_type=entity_name,
text=line_text,
score=confidence,
start=0,
end=word_end,
left=line_left,
top=line_top,
width=width_abs,
height=height_abs
)
# Add to signature collections immediately
signatures.append(recogniser_result)
signature_recogniser_results.append(recogniser_result)
signature_or_handwriting_recogniser_results.append(recogniser_result)
words = [{
'text': line_text,
'bounding_box': (line_left, line_top, line_right, line_bottom)
}]
ocr_results_with_children["text_line_" + str(i)] = {
"line": i,
'text': line_text,
'bounding_box': (line_left, line_top, line_right, line_bottom),
'words': words
}
# Create OCRResult with absolute coordinates
ocr_result = OCRResult(line_text, line_left, line_top, width_abs, height_abs)
all_ocr_results.append(ocr_result)
is_signature_or_handwriting = is_signature | is_handwriting
# If it is signature or handwriting, will overwrite the default behaviour of the PII analyser
if is_signature_or_handwriting:
if recogniser_result not in signature_or_handwriting_recogniser_results:
signature_or_handwriting_recogniser_results.append(recogniser_result)
if is_signature:
if recogniser_result not in signature_recogniser_results:
signature_recogniser_results.append(recogniser_result)
if is_handwriting:
if recogniser_result not in handwriting_recogniser_results:
handwriting_recogniser_results.append(recogniser_result)
i += 1
return all_ocr_results, signature_or_handwriting_recogniser_results, signature_recogniser_results, handwriting_recogniser_results, ocr_results_with_children |