File size: 12,092 Bytes
e9c4101
9504619
 
e9c4101
9504619
e9c4101
e3365ed
e9c4101
9504619
e9c4101
7907ad4
e9c4101
6ea0852
 
 
e3365ed
6ea0852
 
 
 
 
 
 
 
 
 
 
 
9504619
e9c4101
 
 
e2aae24
7907ad4
 
 
 
 
 
 
e2aae24
 
 
e9c4101
e3365ed
 
 
e9c4101
9504619
 
e3365ed
 
 
 
f0c28d7
 
e3365ed
9504619
e3365ed
9504619
e3365ed
 
 
 
 
 
e9c4101
eea5c07
 
 
 
 
e9c4101
eea5c07
e9c4101
eea5c07
 
e9c4101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eea5c07
e9c4101
6ea0852
e9c4101
 
 
6ea0852
 
e9c4101
 
84c83c0
eea5c07
e9c4101
84c83c0
8652429
eea5c07
 
 
 
 
 
 
 
 
 
 
e9c4101
eea5c07
 
e9c4101
eea5c07
 
8652429
6ea0852
84c83c0
 
 
 
 
 
 
 
 
 
8652429
84c83c0
8652429
 
 
0d3554e
 
6ea0852
 
 
 
eea5c07
8652429
 
 
 
 
 
 
 
 
 
84c83c0
 
8652429
 
84c83c0
 
8652429
 
 
 
 
 
 
 
 
 
 
0d3554e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84c83c0
 
e9c4101
6ea0852
8652429
6ea0852
 
0d3554e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84c83c0
 
 
 
 
 
 
8652429
6ea0852
84c83c0
e9c4101
 
6ea0852
 
 
 
eea5c07
 
e9c4101
eea5c07
 
 
 
 
 
 
84c83c0
 
eea5c07
84c83c0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import boto3
#from PIL import Image
from typing import List
import io
#import json
import pikepdf
import time
# Example: converting this single page to an image
#from pdf2image import convert_from_bytes
from tools.custom_image_analyser_engine import OCRResult, CustomImageRecognizerResult
from tools.aws_functions import AWS_ACCESS_KEY, AWS_SECRET_KEY

def extract_textract_metadata(response):
    """Extracts metadata from an AWS Textract response."""

    #print("Document metadata:", response['DocumentMetadata'])

    request_id = response['ResponseMetadata']['RequestId']
    pages = response['DocumentMetadata']['Pages']
    #number_of_pages = response['DocumentMetadata']['NumberOfPages']

    return str({
        'RequestId': request_id,
        'Pages': pages
        #,
        #'NumberOfPages': number_of_pages
    })

def analyse_page_with_textract(pdf_page_bytes, page_no, client="", handwrite_signature_checkbox:List[str]=["Redact all identified handwriting", "Redact all identified signatures"]):
    '''
    Analyse page with AWS Textract
    '''
    if client == "":
        try:               
            if AWS_ACCESS_KEY and AWS_SECRET_KEY:
                client = boto3.client('textract', 
                aws_access_key_id=AWS_ACCESS_KEY, 
                aws_secret_access_key=AWS_SECRET_KEY)
            else:
                client = boto3.client('textract')
        except:
            print("Cannot connect to AWS Textract")
            return [], ""  # Return an empty list and an empty string

    #print("Analysing page with AWS Textract")
    #print("pdf_page_bytes:", pdf_page_bytes)
    #print("handwrite_signature_checkbox:", handwrite_signature_checkbox)
    
    # Redact signatures if specified
    if "Redact all identified signatures" in handwrite_signature_checkbox:
        #print("Analysing document with signature detection")
        try:
            response = client.analyze_document(Document={'Bytes': pdf_page_bytes}, FeatureTypes=["SIGNATURES"])
        except Exception as e:
            print("Textract call failed due to:", e, "trying again in 3 seconds.")
            time.sleep(3)
            response = client.analyze_document(Document={'Bytes': pdf_page_bytes}, FeatureTypes=["SIGNATURES"])
    else:
        #print("Analysing document without signature detection")
        # Call detect_document_text to extract plain text
        try:
            response = client.detect_document_text(Document={'Bytes': pdf_page_bytes})
        except Exception as e:
            print("Textract call failed due to:", e, "trying again in 5 seconds.")
            time.sleep(5)
            response = client.detect_document_text(Document={'Bytes': pdf_page_bytes})

    # Wrap the response with the page number in the desired format
    wrapped_response = {
        'page_no': page_no,
        'data': response
    }

    request_metadata = extract_textract_metadata(response)  # Metadata comes out as a string

    # Return a list containing the wrapped response and the metadata
    return wrapped_response, request_metadata  # Return as a list to match the desired structure


def convert_pike_pdf_page_to_bytes(pdf, page_num):
    # Create a new empty PDF
    new_pdf = pikepdf.Pdf.new()

    # Specify the page number you want to extract (0-based index)
    page_num = 0  # Example: first page

    # Extract the specific page and add it to the new PDF
    new_pdf.pages.append(pdf.pages[page_num])

    # Save the new PDF to a bytes buffer
    buffer = io.BytesIO()
    new_pdf.save(buffer)

    # Get the PDF bytes
    pdf_bytes = buffer.getvalue()

    # Now you can use the `pdf_bytes` to convert it to an image or further process
    buffer.close()

    #images = convert_from_bytes(pdf_bytes)
    #image = images[0]

    return pdf_bytes


def json_to_ocrresult(json_data, page_width, page_height, page_no):
    '''
    Convert the json response from textract to the OCRResult format used elsewhere in the code. Looks for lines, words, and signatures. Handwriting and signatures are set aside especially for later in case the user wants to override the default behaviour and redact all handwriting/signatures.
    '''
    all_ocr_results = []
    signature_or_handwriting_recogniser_results = []
    signature_recogniser_results = []
    handwriting_recogniser_results = []
    signatures = []
    handwriting = []
    ocr_results_with_children = {}
    text_block={}

    i = 1

    # Assuming json_data is structured as a dictionary with a "pages" key
    #if "pages" in json_data:
    # Find the specific page data
    page_json_data = json_data #next((page for page in json_data["pages"] if page["page_no"] == page_no), None)

    if "Blocks" in page_json_data:
        # Access the data for the specific page
        text_blocks = page_json_data["Blocks"]  # Access the Blocks within the page data
    # This is a new page
    elif "page_no" in page_json_data:
        text_blocks = page_json_data["data"]["Blocks"]

    is_signature = False
    is_handwriting = False

    for text_block in text_blocks:
    
        if (text_block['BlockType'] == 'LINE') | (text_block['BlockType'] == 'SIGNATURE'): # (text_block['BlockType'] == 'WORD') |

            # Extract text and bounding box for the line
            line_bbox = text_block["Geometry"]["BoundingBox"]
            line_left = int(line_bbox["Left"] * page_width)
            line_top = int(line_bbox["Top"] * page_height)
            line_right = int((line_bbox["Left"] + line_bbox["Width"]) * page_width)
            line_bottom = int((line_bbox["Top"] + line_bbox["Height"]) * page_height)

            width_abs = int(line_bbox["Width"] * page_width)
            height_abs = int(line_bbox["Height"] * page_height)

            if text_block['BlockType'] == 'LINE':
                
                # Extract text and bounding box for the line
                line_text = text_block.get('Text', '')
                words = []
                current_line_handwriting_results = []  # Track handwriting results for this line

                if 'Relationships' in text_block:
                    for relationship in text_block['Relationships']:
                        if relationship['Type'] == 'CHILD':
                            for child_id in relationship['Ids']:
                                child_block = next((block for block in text_blocks if block['Id'] == child_id), None)
                                if child_block and child_block['BlockType'] == 'WORD':
                                    word_text = child_block.get('Text', '')
                                    word_bbox = child_block["Geometry"]["BoundingBox"]
                                    confidence = child_block.get('Confidence','')
                                    word_left = int(word_bbox["Left"] * page_width)
                                    word_top = int(word_bbox["Top"] * page_height)
                                    word_right = int((word_bbox["Left"] + word_bbox["Width"]) * page_width)
                                    word_bottom = int((word_bbox["Top"] + word_bbox["Height"]) * page_height)

                                    # Extract BoundingBox details
                                    word_width = word_bbox["Width"]
                                    word_height = word_bbox["Height"]

                                    # Convert proportional coordinates to absolute coordinates
                                    word_width_abs = int(word_width * page_width)
                                    word_height_abs = int(word_height * page_height)
                                    
                                    words.append({
                                        'text': word_text,
                                        'bounding_box': (word_left, word_top, word_right, word_bottom)
                                    })
                                    # Check for handwriting
                                    text_type = child_block.get("TextType", '')

                                    if text_type == "HANDWRITING":
                                        is_handwriting = True
                                        entity_name = "HANDWRITING"
                                        word_end = len(word_text)

                                        recogniser_result = CustomImageRecognizerResult(
                                            entity_type=entity_name,
                                            text=word_text,
                                            score=confidence,
                                            start=0,
                                            end=word_end,
                                            left=word_left,
                                            top=word_top,
                                            width=word_width_abs,
                                            height=word_height_abs
                                        )

                                        # Add to handwriting collections immediately
                                        handwriting.append(recogniser_result)
                                        handwriting_recogniser_results.append(recogniser_result)
                                        signature_or_handwriting_recogniser_results.append(recogniser_result)
                                        current_line_handwriting_results.append(recogniser_result)

            # If handwriting or signature, add to bounding box               

            elif (text_block['BlockType'] == 'SIGNATURE'):
                line_text = "SIGNATURE"
                is_signature = True
                entity_name = "SIGNATURE"
                confidence = text_block.get('Confidence', 0)
                word_end = len(line_text)

                recogniser_result = CustomImageRecognizerResult(
                    entity_type=entity_name,
                    text=line_text,
                    score=confidence,
                    start=0,
                    end=word_end,
                    left=line_left,
                    top=line_top,
                    width=width_abs,
                    height=height_abs
                )

                # Add to signature collections immediately
                signatures.append(recogniser_result)
                signature_recogniser_results.append(recogniser_result)
                signature_or_handwriting_recogniser_results.append(recogniser_result)

                words = [{
                    'text': line_text,
                    'bounding_box': (line_left, line_top, line_right, line_bottom)
                }]

            ocr_results_with_children["text_line_" + str(i)] = {
                "line": i,
                'text': line_text,
                'bounding_box': (line_left, line_top, line_right, line_bottom),
                'words': words
            }         

            # Create OCRResult with absolute coordinates
            ocr_result = OCRResult(line_text, line_left, line_top, width_abs, height_abs)
            all_ocr_results.append(ocr_result)

            is_signature_or_handwriting = is_signature | is_handwriting

            # If it is signature or handwriting, will overwrite the default behaviour of the PII analyser
            if is_signature_or_handwriting:
                if recogniser_result not in signature_or_handwriting_recogniser_results: 
                    signature_or_handwriting_recogniser_results.append(recogniser_result)

                if is_signature:
                    if recogniser_result not in signature_recogniser_results:          
                        signature_recogniser_results.append(recogniser_result)

                if is_handwriting: 
                    if recogniser_result not in handwriting_recogniser_results: 
                        handwriting_recogniser_results.append(recogniser_result)

            i += 1

    return all_ocr_results, signature_or_handwriting_recogniser_results, signature_recogniser_results, handwriting_recogniser_results, ocr_results_with_children