File size: 32,330 Bytes
e9c4101
 
 
 
 
8c33828
641ff3e
 
e9c4101
12224f5
641ff3e
7810536
641ff3e
e9c4101
641ff3e
e9c4101
12224f5
641ff3e
e9c4101
 
641ff3e
12224f5
7810536
8c33828
e9c4101
12224f5
34addbf
0f18146
 
 
8c33828
 
 
34addbf
8c33828
 
01c88c0
 
 
 
 
 
 
 
 
 
bbf818d
 
 
 
01c88c0
34addbf
 
7aa4d5f
 
34addbf
 
 
 
7aa4d5f
 
34addbf
 
7aa4d5f
e1c402a
34addbf
7aa4d5f
 
 
 
e1c402a
34addbf
 
 
7aa4d5f
34addbf
 
 
01c88c0
 
0f18146
2807627
 
01c88c0
0f18146
01c88c0
7810536
 
 
 
8c33828
 
7810536
 
 
 
 
 
34addbf
7810536
e9c4101
7810536
 
 
 
e9c4101
 
7810536
 
 
 
e9c4101
 
 
34addbf
8c33828
 
 
 
 
bbf818d
7810536
01c88c0
 
 
 
 
7810536
e9c4101
7810536
 
e9c4101
7810536
 
e9c4101
7810536
e9c4101
7810536
 
 
 
 
 
 
 
 
 
8c33828
 
 
 
bbf818d
8c33828
7810536
01c88c0
 
34addbf
 
 
 
01c88c0
bbf818d
7aa4d5f
 
7810536
 
 
34addbf
01c88c0
0f18146
 
01c88c0
0f18146
 
7810536
01c88c0
0f18146
34addbf
0f18146
e9c4101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
641ff3e
12224f5
641ff3e
e9c4101
 
 
 
bc4bdbd
e9c4101
 
641ff3e
2807627
 
 
 
 
641ff3e
230fcc3
 
 
bc4bdbd
 
 
 
 
641ff3e
a63133d
 
7810536
641ff3e
bc4bdbd
 
 
641ff3e
bc4bdbd
 
 
 
12224f5
e9c4101
641ff3e
bc4bdbd
 
 
e9c4101
bc4bdbd
 
 
 
 
 
e9c4101
bc4bdbd
 
 
e9c4101
bc4bdbd
 
 
e9c4101
bc4bdbd
e9c4101
bc4bdbd
 
 
 
 
 
e9c4101
bc4bdbd
 
 
 
e9c4101
 
bc4bdbd
 
 
 
 
e9c4101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc4bdbd
e9c4101
 
bc4bdbd
 
12224f5
e9c4101
 
12224f5
bc4bdbd
e9c4101
 
 
 
 
12224f5
bc4bdbd
 
 
 
 
 
12224f5
 
641ff3e
e9c4101
641ff3e
93ac94f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9c4101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93ac94f
e9c4101
 
 
93ac94f
e9c4101
 
93ac94f
e9c4101
 
 
 
 
93ac94f
 
34addbf
 
93ac94f
 
 
 
 
 
 
 
 
 
 
 
 
34addbf
93ac94f
 
 
 
 
 
 
e9c4101
93ac94f
 
 
 
 
 
e9c4101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93ac94f
e9c4101
93ac94f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9c4101
641ff3e
 
 
 
93ac94f
 
 
12224f5
641ff3e
2807627
 
bc4bdbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
641ff3e
e9c4101
 
 
 
 
 
641ff3e
93ac94f
641ff3e
bc4bdbd
93ac94f
 
 
 
 
 
641ff3e
e9c4101
 
 
 
 
 
 
 
 
 
 
 
 
 
641ff3e
e9c4101
 
93ac94f
 
 
 
 
 
 
641ff3e
 
93ac94f
 
 
bc4bdbd
93ac94f
bc4bdbd
12224f5
93ac94f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
import time
import re
import json
import io
import os
from PIL import Image, ImageChops, ImageDraw
from typing import List
import pandas as pd

from presidio_image_redactor.entities import ImageRecognizerResult
from pdfminer.high_level import extract_pages
from pdfminer.layout import LTTextContainer, LTChar, LTTextLine #, LTAnno
from pikepdf import Pdf, Dictionary, Name
import gradio as gr
from gradio import Progress

from collections import defaultdict  # For efficient grouping

from tools.custom_image_analyser_engine import CustomImageAnalyzerEngine, OCRResult
from tools.file_conversion import process_file
from tools.load_spacy_model_custom_recognisers import nlp_analyser, score_threshold
from tools.helper_functions import get_file_path_end, output_folder
from tools.file_conversion import process_file, is_pdf, convert_text_pdf_to_img_pdf
from tools.data_anonymise import generate_decision_process_output
from tools.aws_textract import analyse_page_with_textract, convert_pike_pdf_page_to_bytes, json_to_ocrresult

def choose_and_run_redactor(file_paths:List[str], image_paths:List[str], language:str, chosen_redact_entities:List[str], in_redact_method:str, in_allow_list:List[List[str]]=None, latest_file_completed:int=0, out_message:list=[], out_file_paths:list=[], log_files_output_paths:list=[], first_loop_state:bool=False, page_min:int=0, page_max:int=999, estimated_time_taken_state:float=0.0, progress=gr.Progress(track_tqdm=True)):

    tic = time.perf_counter()

    # If this is the first time around, set variables to 0/blank
    if first_loop_state==True:
        latest_file_completed = 0
        #out_message = []
        out_file_paths = []

    # If out message is string or out_file_paths are blank, change to a list so it can be appended to
    if isinstance(out_message, str):
        out_message = [out_message]

    if not out_file_paths:
        out_file_paths = []

    latest_file_completed = int(latest_file_completed)

    # If we have already redacted the last file, return the input out_message and file list to the relevant components
    if latest_file_completed >= len(file_paths):
        print("Last file reached")
        # Set to a very high number so as not to mess with subsequent file processing by the user
        latest_file_completed = 99
        final_out_message = '\n'.join(out_message)
        #final_out_message = final_out_message + "\n\nGo to to the Redaction settings tab to see redaction logs. Please give feedback on the results below to help improve this app."

        def sum_numbers_before_seconds(string):
            """Extracts numbers that precede the word 'seconds' from a string and adds them up.



            Args:

                string: The input string.



            Returns:

                The sum of all numbers before 'seconds' in the string.

            """

            # Extract numbers before 'seconds' using regular expression
            numbers = re.findall(r'(\d+\.\d+)?\s*seconds', string)

            # Extract the numbers from the matches
            numbers = [float(num.split()[0]) for num in numbers]

            # Sum up the extracted numbers
            sum_of_numbers = round(sum(numbers),1)

            return sum_of_numbers

        estimate_total_processing_time = sum_numbers_before_seconds(final_out_message)
        print("Estimated total processing time:", str(estimate_total_processing_time))

        return final_out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths, estimate_total_processing_time
    
    file_paths_loop = [file_paths[int(latest_file_completed)]]

    if in_allow_list:
        in_allow_list_flat = [item for sublist in in_allow_list for item in sublist]
    

    for file in progress.tqdm(file_paths_loop, desc="Redacting files", unit = "files"):
        file_path = file.name

        if file_path:
            file_path_without_ext = get_file_path_end(file_path)
            is_a_pdf = is_pdf(file_path) == True
            if is_a_pdf == False:
                # If user has not submitted a pdf, assume it's an image
                print("File is not a pdf, assuming that image analysis needs to be used.")
                in_redact_method = "Image analysis"
        else:
            out_message = "No file selected"
            print(out_message)
            return out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths, estimated_time_taken_state

        if in_redact_method == "Image analysis" or in_redact_method == "AWS Textract":
            # Analyse and redact image-based pdf or image
            # if is_pdf_or_image(file_path) == False:
            #     return "Please upload a PDF file or image file (JPG, PNG) for image analysis.", None

            print("Redacting file" + file_path_without_ext + "as an image-based file")
            pdf_images, output_logs, logging_file_paths = redact_image_pdf(file_path, image_paths, language, chosen_redact_entities, in_allow_list_flat, is_a_pdf, page_min, page_max, in_redact_method)
            out_image_file_path = output_folder + file_path_without_ext + "_redacted_as_img.pdf"
            pdf_images[0].save(out_image_file_path, "PDF" ,resolution=100.0, save_all=True, append_images=pdf_images[1:])

            out_file_paths.append(out_image_file_path)
            if logging_file_paths:
                log_files_output_paths.extend(logging_file_paths)

            out_message.append("File '" + file_path_without_ext + "' successfully redacted")

            output_logs_str = str(output_logs)
            logs_output_file_name = out_image_file_path + "_decision_process_output.txt"
            with open(logs_output_file_name, "w") as f:
                f.write(output_logs_str)
            log_files_output_paths.append(logs_output_file_name)

            # Increase latest file completed count unless we are at the last file
            if latest_file_completed != len(file_paths):
                print("Completed file number:", str(latest_file_completed))
                latest_file_completed += 1                

        elif in_redact_method == "Text analysis":
            
            if is_pdf(file_path) == False:
                return "Please upload a PDF file for text analysis. If you have an image, select 'Image analysis'.", None, None
            
            # Analyse text-based pdf
            print('Redacting file as text-based PDF')
            pdf_text, output_logs = redact_text_pdf(file_path, language, chosen_redact_entities, in_allow_list_flat, page_min, page_max, "Text analysis")
            out_text_file_path = output_folder + file_path_without_ext + "_text_redacted.pdf"
            pdf_text.save(out_text_file_path)            

            # Convert message
            convert_message="Converting PDF to image-based PDF to embed redactions."
            #progress(0.8, desc=convert_message)
            print(convert_message)

            # Convert document to image-based document to 'embed' redactions
            img_output_summary, img_output_file_path = convert_text_pdf_to_img_pdf(file_path, [out_text_file_path])
            out_file_paths.extend(img_output_file_path)

            output_logs_str = str(output_logs)
            logs_output_file_name = img_output_file_path[0] + "_decision_process_output.txt"
            with open(logs_output_file_name, "w") as f:
                f.write(output_logs_str)
            log_files_output_paths.append(logs_output_file_name)

            # Add confirmation for converting to image if you want
            # out_message.append(img_output_summary)

            #out_file_paths.append(out_text_file_path)
            out_message_new = "File '" + file_path_without_ext + "' successfully redacted"
            out_message.append(out_message_new)

            if latest_file_completed != len(file_paths):
                print("Completed file number:", str(latest_file_completed), "more files to do")
                latest_file_completed += 1
                            
        else:
            out_message = "No redaction method selected"
            print(out_message)
            return out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths, estimated_time_taken_state
        
    
    toc = time.perf_counter()
    out_time = f"in {toc - tic:0.1f} seconds."
    print(out_time)

    out_message_out = '\n'.join(out_message)
    out_message_out = out_message_out + " " + out_time

    return out_message_out, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths, estimated_time_taken_state

def merge_img_bboxes(bboxes, handwriting_or_signature_boxes = [], horizontal_threshold=150, vertical_threshold=25):
    merged_bboxes = []
    grouped_bboxes = defaultdict(list)

    if handwriting_or_signature_boxes:
        print("Handwriting or signature boxes exist at merge:", handwriting_or_signature_boxes)
        bboxes.extend(handwriting_or_signature_boxes)

    # 1. Group by approximate vertical proximity
    for box in bboxes:
        grouped_bboxes[round(box.top / vertical_threshold)].append(box)

    # 2. Merge within each group
    for _, group in grouped_bboxes.items():
        group.sort(key=lambda box: box.left)

        merged_box = group[0]
        for next_box in group[1:]:
            if next_box.left - (merged_box.left + merged_box.width) <= horizontal_threshold:
                #print("Merging a box")
                # Calculate new dimensions for the merged box
                print("Merged box:", merged_box)
                new_left = min(merged_box.left, next_box.left)
                new_top = min(merged_box.top, next_box.top)
                new_width = max(merged_box.left + merged_box.width, next_box.left + next_box.width) - new_left
                new_height = max(merged_box.top + merged_box.height, next_box.top + next_box.height) - new_top
                merged_box = ImageRecognizerResult(
                    merged_box.entity_type, merged_box.start, merged_box.end, merged_box.score, new_left, new_top, new_width, new_height
                )
            else:
                merged_bboxes.append(merged_box)
                merged_box = next_box  

        merged_bboxes.append(merged_box) 
    return merged_bboxes

def redact_image_pdf(file_path:str, image_paths:List[str], language:str, chosen_redact_entities:List[str], allow_list:List[str]=None, is_a_pdf:bool=True, page_min:int=0, page_max:int=999, analysis_type:str="Image analysis", progress=Progress(track_tqdm=True)):
    '''

    Take an path for an image of a document, then run this image through the Presidio ImageAnalyzer and PIL to get a redacted page back. Adapted from Presidio ImageRedactorEngine.

    '''
    # json_file_path is for AWS Textract outputs
    logging_file_paths = []
    file_name = get_file_path_end(file_path)
    fill = (0, 0, 0)   # Fill colour
    decision_process_output_str = ""
    images = []
    image_analyser = CustomImageAnalyzerEngine(nlp_analyser)

    if not image_paths:
        out_message = "PDF does not exist as images. Converting pages to image"
        print(out_message)

        image_paths = process_file(file_path)

    if not isinstance(image_paths, list):
        print("Converting image_paths to list")
        image_paths = [image_paths]

    #print("Image paths:", image_paths)
    number_of_pages = len(image_paths[0])

    print("Number of pages:", str(number_of_pages))

    out_message = "Redacting pages"
    print(out_message)
    #progress(0.1, desc=out_message)

    # Check that page_min and page_max are within expected ranges
    if page_max > number_of_pages or page_max == 0:
        page_max = number_of_pages

    if page_min <= 0:
        page_min = 0
    else:
        page_min = page_min - 1

    print("Page range:", str(page_min + 1), "to", str(page_max))

    #for i in progress.tqdm(range(0,number_of_pages), total=number_of_pages, unit="pages", desc="Redacting pages"):
    
    for n in range(0, number_of_pages):
        handwriting_or_signature_boxes = []

        try:
            image = image_paths[0][n]#.copy()
            print("Skipping page", str(n))
            #print("image:", image)
        except Exception as e:
            print("Could not redact page:", str(n), "due to:")
            print(e)
            continue

        if n >= page_min and n < page_max:

            i = n

            reported_page_number = str(i + 1)

            print("Redacting page", reported_page_number)

            # Assuming image_paths[i] is your PIL image object
            try:
                image = image_paths[0][i]#.copy()
                #print("image:", image)
            except Exception as e:
                print("Could not redact page:", reported_page_number, "due to:")
                print(e)
                continue

            # %%
            # image_analyser = ImageAnalyzerEngine(nlp_analyser)
            # engine = ImageRedactorEngine(image_analyser)

            if language == 'en':
                ocr_lang = 'eng'
            else: ocr_lang = language

            # bboxes = image_analyser.analyze(image,
            #         ocr_kwargs={"lang": ocr_lang},
            #         **{
            #         "allow_list": allow_list,
            #         "language": language,
            #         "entities": chosen_redact_entities,
            #         "score_threshold": score_threshold,
            #         "return_decision_process":True,
            #     })

            # Step 1: Perform OCR. Either with Tesseract, or with AWS Textract
            if analysis_type == "Image analysis":
                ocr_results = image_analyser.perform_ocr(image)

                # Process all OCR text with bounding boxes
                #print("OCR results:", ocr_results)
                ocr_results_str = str(ocr_results)
                ocr_results_file_path = output_folder + "ocr_results_" + file_name + "_page_" + reported_page_number + ".txt"
                with open(ocr_results_file_path, "w") as f:
                    f.write(ocr_results_str)
                logging_file_paths.append(ocr_results_file_path)

            # Import results from json and convert
            if analysis_type == "AWS Textract":

                # Ensure image is a PIL Image object
                # if isinstance(image, str):
                #     image = Image.open(image)
                # elif not isinstance(image, Image.Image):
                #     print(f"Unexpected image type on page {i}: {type(image)}")
                #     continue

                # Convert the image to bytes using an in-memory buffer
                image_buffer = io.BytesIO()
                image.save(image_buffer, format='PNG')  # Save as PNG, or adjust format if needed
                pdf_page_as_bytes = image_buffer.getvalue()
                
                json_file_path = output_folder + file_name + "_page_" + reported_page_number + "_textract.json"
                
                if not os.path.exists(json_file_path):
                    text_blocks = analyse_page_with_textract(pdf_page_as_bytes, json_file_path) # Analyse page with Textract
                    logging_file_paths.append(json_file_path)
                else:
                    # Open the file and load the JSON data
                    print("Found existing Textract json results file for this page.")
                    with open(json_file_path, 'r') as json_file:
                        text_blocks = json.load(json_file)
                        text_blocks = text_blocks['Blocks']


                # Need image size to convert textract OCR outputs to the correct sizes
                #print("Image size:", image.size)
                page_width, page_height = image.size

                ocr_results, handwriting_or_signature_boxes = json_to_ocrresult(text_blocks, page_width, page_height)
       
                #print("OCR results:", ocr_results)
                ocr_results_str = str(ocr_results)
                textract_ocr_results_file_path = output_folder + "ocr_results_" + file_name + "_page_" + reported_page_number + "_textract.txt"
                with open(textract_ocr_results_file_path, "w") as f:
                            f.write(ocr_results_str)
                logging_file_paths.append(textract_ocr_results_file_path)

            # Step 2: Analyze text and identify PII
            bboxes = image_analyser.analyze_text(
                ocr_results,
                language=language,
                entities=chosen_redact_entities,
                allow_list=allow_list,
                score_threshold=score_threshold,
            )

            # Process the bboxes (PII entities)
            if bboxes:
                for bbox in bboxes:
                    print(f"Entity: {bbox.entity_type}, Text: {bbox.text}, Bbox: ({bbox.left}, {bbox.top}, {bbox.width}, {bbox.height})")
                decision_process_output_str = str(bboxes)
                print("Decision process:", decision_process_output_str)

            # Merge close bounding boxes
            merged_bboxes = merge_img_bboxes(bboxes, handwriting_or_signature_boxes)

            #print("For page:", str(i), "Merged bounding boxes:", merged_bboxes)
            #from PIL import Image
            #image_object = Image.open(image)

            # 3. Draw the merged boxes
            draw = ImageDraw.Draw(image)

            for box in merged_bboxes:
                x0 = box.left
                y0 = box.top
                x1 = x0 + box.width
                y1 = y0 + box.height
                draw.rectangle([x0, y0, x1, y1], fill=fill)

        images.append(image)

    return images, decision_process_output_str, logging_file_paths

def analyze_text_container(text_container, language, chosen_redact_entities, score_threshold, allow_list):
    if isinstance(text_container, LTTextContainer):
        text_to_analyze = text_container.get_text()

        analyzer_results = nlp_analyser.analyze(text=text_to_analyze,
                                                language=language, 
                                                entities=chosen_redact_entities,
                                                score_threshold=score_threshold,
                                                return_decision_process=True,
                                                allow_list=allow_list)
        characters = [char
                for line in text_container
                if isinstance(line, LTTextLine)
                for char in line]
        
        return analyzer_results, characters
    return [], []

# Inside the loop where you process analyzer_results, merge bounding boxes that are right next to each other:
# def merge_bounding_boxes(analyzer_results, characters, combine_pixel_dist, vertical_padding=2):
#     '''
#     Merge identified bounding boxes containing PII that are very close to one another
#     '''
#     analyzed_bounding_boxes = []
#     if len(analyzer_results) > 0 and len(characters) > 0:
#         merged_bounding_boxes = []
#         current_box = None
#         current_y = None

#         for i, result in enumerate(analyzer_results):
#             print("Considering result", str(i))
#             for char in characters[result.start : result.end]:
#                 if isinstance(char, LTChar):
#                     char_box = list(char.bbox)
#                     # Add vertical padding to the top of the box
#                     char_box[3] += vertical_padding

#                     if current_y is None or current_box is None:
#                         current_box = char_box
#                         current_y = char_box[1]
#                     else:
#                         vertical_diff_bboxes = abs(char_box[1] - current_y)
#                         horizontal_diff_bboxes = abs(char_box[0] - current_box[2])

#                         if (
#                             vertical_diff_bboxes <= 5
#                             and horizontal_diff_bboxes <= combine_pixel_dist
#                         ):
#                             current_box[2] = char_box[2]  # Extend the current box horizontally
#                             current_box[3] = max(current_box[3], char_box[3])  # Ensure the top is the highest
#                         else:
#                             merged_bounding_boxes.append(
#                                 {"boundingBox": current_box, "result": result})
                            
#                             # Reset current_box and current_y after appending
#                             current_box = char_box
#                             current_y = char_box[1]
            
#             # After finishing with the current result, add the last box for this result
#             if current_box:
#                 merged_bounding_boxes.append({"boundingBox": current_box, "result": result})
#                 current_box = None
#                 current_y = None  # Reset for the next result

#         if not merged_bounding_boxes:
#             analyzed_bounding_boxes.extend(
#                 {"boundingBox": char.bbox, "result": result} 
#                 for result in analyzer_results 
#                 for char in characters[result.start:result.end] 
#                 if isinstance(char, LTChar)
#             )
#         else:
#             analyzed_bounding_boxes.extend(merged_bounding_boxes)

#         print("analysed_bounding_boxes:\n\n", analyzed_bounding_boxes)
    
#     return analyzed_bounding_boxes

def merge_bounding_boxes(analyzer_results, characters, combine_pixel_dist, vertical_padding=2, signature_bounding_boxes=None):
    '''

    Merge identified bounding boxes containing PII or signatures that are very close to one another.

    '''
    analyzed_bounding_boxes = []
    merged_bounding_boxes = []
    current_box = None
    current_y = None

    # Handle PII and text bounding boxes first
    if len(analyzer_results) > 0 and len(characters) > 0:
        for i, result in enumerate(analyzer_results):
            #print("Considering result", str(i))
            #print("Result:", result)
            #print("Characters:", characters)

            for char in characters[result.start: result.end]:
                if isinstance(char, LTChar):
                    char_box = list(char.bbox)
                    # Add vertical padding to the top of the box
                    char_box[3] += vertical_padding

                    if current_y is None or current_box is None:
                        current_box = char_box
                        current_y = char_box[1]
                    else:
                        vertical_diff_bboxes = abs(char_box[1] - current_y)
                        horizontal_diff_bboxes = abs(char_box[0] - current_box[2])

                        if (
                            vertical_diff_bboxes <= 5
                            and horizontal_diff_bboxes <= combine_pixel_dist
                        ):
                            current_box[2] = char_box[2]  # Extend the current box horizontally
                            current_box[3] = max(current_box[3], char_box[3])  # Ensure the top is the highest
                        else:
                            merged_bounding_boxes.append(
                                {"boundingBox": current_box, "result": result})
                            
                            # Reset current_box and current_y after appending
                            current_box = char_box
                            current_y = char_box[1]

            # After finishing with the current result, add the last box for this result
            if current_box:
                merged_bounding_boxes.append({"boundingBox": current_box, "result": result})
                current_box = None
                current_y = None  # Reset for the next result

    # Handle signature bounding boxes (without specific characters)
    if signature_bounding_boxes is not None:
        for sig_box in signature_bounding_boxes:
            sig_box = list(sig_box)  # Ensure it's a list to modify the values
            if current_y is None or current_box is None:
                current_box = sig_box
                current_y = sig_box[1]
            else:
                vertical_diff_bboxes = abs(sig_box[1] - current_y)
                horizontal_diff_bboxes = abs(sig_box[0] - current_box[2])

                if (
                    vertical_diff_bboxes <= 5
                    and horizontal_diff_bboxes <= combine_pixel_dist
                ):
                    current_box[2] = sig_box[2]  # Extend the current box horizontally
                    current_box[3] = max(current_box[3], sig_box[3])  # Ensure the top is the highest
                else:
                    merged_bounding_boxes.append({"boundingBox": current_box, "type": "signature"})
                    
                    # Reset current_box and current_y after appending
                    current_box = sig_box
                    current_y = sig_box[1]

            # Add the last bounding box for the signature
            if current_box:
                merged_bounding_boxes.append({"boundingBox": current_box, "type": "signature"})
                current_box = None
                current_y = None

    # If no bounding boxes were merged, add individual character bounding boxes
    if not merged_bounding_boxes:
        analyzed_bounding_boxes.extend(
            {"boundingBox": char.bbox, "result": result}
            for result in analyzer_results
            for char in characters[result.start:result.end]
            if isinstance(char, LTChar)
        )
    else:
        analyzed_bounding_boxes.extend(merged_bounding_boxes)

    #print("analysed_bounding_boxes:\n\n", analyzed_bounding_boxes)
    
    return analyzed_bounding_boxes

def create_text_redaction_process_results(analyzer_results, analyzed_bounding_boxes, page_num):
    decision_process_table = pd.DataFrame()

    if len(analyzer_results) > 0:
        # Create summary df of annotations to be made
        analyzed_bounding_boxes_df_new = pd.DataFrame(analyzed_bounding_boxes)
        analyzed_bounding_boxes_df_text = analyzed_bounding_boxes_df_new['result'].astype(str).str.split(",",expand=True).replace(".*: ", "", regex=True)
        analyzed_bounding_boxes_df_text.columns = ["type", "start", "end", "score"]
        analyzed_bounding_boxes_df_new = pd.concat([analyzed_bounding_boxes_df_new, analyzed_bounding_boxes_df_text], axis = 1)
        analyzed_bounding_boxes_df_new['page'] = page_num + 1
        decision_process_table = pd.concat([decision_process_table, analyzed_bounding_boxes_df_new], axis = 0).drop('result', axis=1)

        print('\n\ndecision_process_table:\n\n', decision_process_table)
    
    return decision_process_table

def create_annotations_for_bounding_boxes(analyzed_bounding_boxes):
    annotations_on_page = []
    for analyzed_bounding_box in analyzed_bounding_boxes:
        bounding_box = analyzed_bounding_box["boundingBox"]
        annotation = Dictionary(
            Type=Name.Annot,
            Subtype=Name.Square, #Name.Highlight,
            QuadPoints=[bounding_box[0], bounding_box[3], bounding_box[2], bounding_box[3],
                        bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[1]],
            Rect=[bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[3]],
            C=[0, 0, 0],
            IC=[0, 0, 0],
            CA=1, # Transparency
            T=analyzed_bounding_box["result"].entity_type,
            BS=Dictionary(
                W=0,                     # Border width: 1 point
                S=Name.S                # Border style: solid
            )
        )
        annotations_on_page.append(annotation)
    return annotations_on_page

def redact_text_pdf(filename:str, language:str, chosen_redact_entities:List[str], allow_list:List[str]=None, page_min:int=0, page_max:int=999, analysis_type:str = "Text analysis", progress=Progress(track_tqdm=True)):
    '''

    Redact chosen entities from a pdf that is made up of multiple pages that are not images.

    '''
    annotations_all_pages = []
    decision_process_table_all_pages = []
    
    combine_pixel_dist = 100 # Horizontal distance between PII bounding boxes under/equal they are combined into one

    pdf = Pdf.open(filename)
    page_num = 0

    number_of_pages = len(pdf.pages)

    # Check that page_min and page_max are within expected ranges
    if page_max > number_of_pages or page_max == 0:
        page_max = number_of_pages
    #else:
    #    page_max = page_max - 1

    if page_min <= 0:
        page_min = 0
    else:
        page_min = page_min - 1

    print("Page range is",str(page_min), "to", str(page_max))
    
    for page_no in range(page_min, page_max):
        page = pdf.pages[page_no]

        print("Page number is:", page_no)

        # The /MediaBox in a PDF specifies the size of the page [left, bottom, right, top]
        media_box = page.MediaBox
        page_width = media_box[2] - media_box[0]
        page_height = media_box[3] - media_box[1]
        

        annotations_on_page = []
        decision_process_table_on_page = []       

        for page_layout in extract_pages(filename, page_numbers = [page_no], maxpages=1):
            
            page_analyzer_results = []
            page_analyzed_bounding_boxes = []
            text_container_analyzer_results = []
            text_container_analyzed_bounding_boxes = []
            characters = []

            if analysis_type == "Text analysis":
                for i, text_container in enumerate(page_layout):

                    text_container_analyzer_results, characters = analyze_text_container(text_container, language, chosen_redact_entities, score_threshold, allow_list)
                                 
                    # Merge bounding boxes if very close together
                    text_container_analyzed_bounding_boxes = merge_bounding_boxes(text_container_analyzer_results, characters, combine_pixel_dist, vertical_padding = 2)


                    page_analyzed_bounding_boxes.extend(text_container_analyzed_bounding_boxes)
                    page_analyzer_results.extend(text_container_analyzer_results)

                    # Merge bounding boxes if very close together
                    text_container_analyzed_bounding_boxes = merge_bounding_boxes(text_container_analyzer_results, characters, combine_pixel_dist, vertical_padding = 2)

                    page_analyzed_bounding_boxes.extend(text_container_analyzed_bounding_boxes)
                    page_analyzer_results.extend(text_container_analyzer_results)

            decision_process_table_on_page = create_text_redaction_process_results(page_analyzer_results, page_analyzed_bounding_boxes, page_num)           

            annotations_on_page = create_annotations_for_bounding_boxes(page_analyzed_bounding_boxes)
            #print('\n\nannotations_on_page:', annotations_on_page)    
          
            # Make page annotations
            page.Annots = pdf.make_indirect(annotations_on_page)

            annotations_all_pages.extend([annotations_on_page])
            decision_process_table_all_pages.extend([decision_process_table_on_page])
            
            print("For page number:", page_no, "there are", len(annotations_all_pages[page_num]), "annotations")
            
            #page_num += 1

    return pdf, decision_process_table_all_pages