File size: 32,330 Bytes
e9c4101 8c33828 641ff3e e9c4101 12224f5 641ff3e 7810536 641ff3e e9c4101 641ff3e e9c4101 12224f5 641ff3e e9c4101 641ff3e 12224f5 7810536 8c33828 e9c4101 12224f5 34addbf 0f18146 8c33828 34addbf 8c33828 01c88c0 bbf818d 01c88c0 34addbf 7aa4d5f 34addbf 7aa4d5f 34addbf 7aa4d5f e1c402a 34addbf 7aa4d5f e1c402a 34addbf 7aa4d5f 34addbf 01c88c0 0f18146 2807627 01c88c0 0f18146 01c88c0 7810536 8c33828 7810536 34addbf 7810536 e9c4101 7810536 e9c4101 7810536 e9c4101 34addbf 8c33828 bbf818d 7810536 01c88c0 7810536 e9c4101 7810536 e9c4101 7810536 e9c4101 7810536 e9c4101 7810536 8c33828 bbf818d 8c33828 7810536 01c88c0 34addbf 01c88c0 bbf818d 7aa4d5f 7810536 34addbf 01c88c0 0f18146 01c88c0 0f18146 7810536 01c88c0 0f18146 34addbf 0f18146 e9c4101 641ff3e 12224f5 641ff3e e9c4101 bc4bdbd e9c4101 641ff3e 2807627 641ff3e 230fcc3 bc4bdbd 641ff3e a63133d 7810536 641ff3e bc4bdbd 641ff3e bc4bdbd 12224f5 e9c4101 641ff3e bc4bdbd e9c4101 bc4bdbd e9c4101 bc4bdbd e9c4101 bc4bdbd e9c4101 bc4bdbd e9c4101 bc4bdbd e9c4101 bc4bdbd e9c4101 bc4bdbd e9c4101 bc4bdbd e9c4101 bc4bdbd 12224f5 e9c4101 12224f5 bc4bdbd e9c4101 12224f5 bc4bdbd 12224f5 641ff3e e9c4101 641ff3e 93ac94f e9c4101 93ac94f e9c4101 93ac94f e9c4101 93ac94f e9c4101 93ac94f 34addbf 93ac94f 34addbf 93ac94f e9c4101 93ac94f e9c4101 93ac94f e9c4101 93ac94f e9c4101 641ff3e 93ac94f 12224f5 641ff3e 2807627 bc4bdbd 641ff3e e9c4101 641ff3e 93ac94f 641ff3e bc4bdbd 93ac94f 641ff3e e9c4101 641ff3e e9c4101 93ac94f 641ff3e 93ac94f bc4bdbd 93ac94f bc4bdbd 12224f5 93ac94f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 |
import time
import re
import json
import io
import os
from PIL import Image, ImageChops, ImageDraw
from typing import List
import pandas as pd
from presidio_image_redactor.entities import ImageRecognizerResult
from pdfminer.high_level import extract_pages
from pdfminer.layout import LTTextContainer, LTChar, LTTextLine #, LTAnno
from pikepdf import Pdf, Dictionary, Name
import gradio as gr
from gradio import Progress
from collections import defaultdict # For efficient grouping
from tools.custom_image_analyser_engine import CustomImageAnalyzerEngine, OCRResult
from tools.file_conversion import process_file
from tools.load_spacy_model_custom_recognisers import nlp_analyser, score_threshold
from tools.helper_functions import get_file_path_end, output_folder
from tools.file_conversion import process_file, is_pdf, convert_text_pdf_to_img_pdf
from tools.data_anonymise import generate_decision_process_output
from tools.aws_textract import analyse_page_with_textract, convert_pike_pdf_page_to_bytes, json_to_ocrresult
def choose_and_run_redactor(file_paths:List[str], image_paths:List[str], language:str, chosen_redact_entities:List[str], in_redact_method:str, in_allow_list:List[List[str]]=None, latest_file_completed:int=0, out_message:list=[], out_file_paths:list=[], log_files_output_paths:list=[], first_loop_state:bool=False, page_min:int=0, page_max:int=999, estimated_time_taken_state:float=0.0, progress=gr.Progress(track_tqdm=True)):
tic = time.perf_counter()
# If this is the first time around, set variables to 0/blank
if first_loop_state==True:
latest_file_completed = 0
#out_message = []
out_file_paths = []
# If out message is string or out_file_paths are blank, change to a list so it can be appended to
if isinstance(out_message, str):
out_message = [out_message]
if not out_file_paths:
out_file_paths = []
latest_file_completed = int(latest_file_completed)
# If we have already redacted the last file, return the input out_message and file list to the relevant components
if latest_file_completed >= len(file_paths):
print("Last file reached")
# Set to a very high number so as not to mess with subsequent file processing by the user
latest_file_completed = 99
final_out_message = '\n'.join(out_message)
#final_out_message = final_out_message + "\n\nGo to to the Redaction settings tab to see redaction logs. Please give feedback on the results below to help improve this app."
def sum_numbers_before_seconds(string):
"""Extracts numbers that precede the word 'seconds' from a string and adds them up.
Args:
string: The input string.
Returns:
The sum of all numbers before 'seconds' in the string.
"""
# Extract numbers before 'seconds' using regular expression
numbers = re.findall(r'(\d+\.\d+)?\s*seconds', string)
# Extract the numbers from the matches
numbers = [float(num.split()[0]) for num in numbers]
# Sum up the extracted numbers
sum_of_numbers = round(sum(numbers),1)
return sum_of_numbers
estimate_total_processing_time = sum_numbers_before_seconds(final_out_message)
print("Estimated total processing time:", str(estimate_total_processing_time))
return final_out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths, estimate_total_processing_time
file_paths_loop = [file_paths[int(latest_file_completed)]]
if in_allow_list:
in_allow_list_flat = [item for sublist in in_allow_list for item in sublist]
for file in progress.tqdm(file_paths_loop, desc="Redacting files", unit = "files"):
file_path = file.name
if file_path:
file_path_without_ext = get_file_path_end(file_path)
is_a_pdf = is_pdf(file_path) == True
if is_a_pdf == False:
# If user has not submitted a pdf, assume it's an image
print("File is not a pdf, assuming that image analysis needs to be used.")
in_redact_method = "Image analysis"
else:
out_message = "No file selected"
print(out_message)
return out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths, estimated_time_taken_state
if in_redact_method == "Image analysis" or in_redact_method == "AWS Textract":
# Analyse and redact image-based pdf or image
# if is_pdf_or_image(file_path) == False:
# return "Please upload a PDF file or image file (JPG, PNG) for image analysis.", None
print("Redacting file" + file_path_without_ext + "as an image-based file")
pdf_images, output_logs, logging_file_paths = redact_image_pdf(file_path, image_paths, language, chosen_redact_entities, in_allow_list_flat, is_a_pdf, page_min, page_max, in_redact_method)
out_image_file_path = output_folder + file_path_without_ext + "_redacted_as_img.pdf"
pdf_images[0].save(out_image_file_path, "PDF" ,resolution=100.0, save_all=True, append_images=pdf_images[1:])
out_file_paths.append(out_image_file_path)
if logging_file_paths:
log_files_output_paths.extend(logging_file_paths)
out_message.append("File '" + file_path_without_ext + "' successfully redacted")
output_logs_str = str(output_logs)
logs_output_file_name = out_image_file_path + "_decision_process_output.txt"
with open(logs_output_file_name, "w") as f:
f.write(output_logs_str)
log_files_output_paths.append(logs_output_file_name)
# Increase latest file completed count unless we are at the last file
if latest_file_completed != len(file_paths):
print("Completed file number:", str(latest_file_completed))
latest_file_completed += 1
elif in_redact_method == "Text analysis":
if is_pdf(file_path) == False:
return "Please upload a PDF file for text analysis. If you have an image, select 'Image analysis'.", None, None
# Analyse text-based pdf
print('Redacting file as text-based PDF')
pdf_text, output_logs = redact_text_pdf(file_path, language, chosen_redact_entities, in_allow_list_flat, page_min, page_max, "Text analysis")
out_text_file_path = output_folder + file_path_without_ext + "_text_redacted.pdf"
pdf_text.save(out_text_file_path)
# Convert message
convert_message="Converting PDF to image-based PDF to embed redactions."
#progress(0.8, desc=convert_message)
print(convert_message)
# Convert document to image-based document to 'embed' redactions
img_output_summary, img_output_file_path = convert_text_pdf_to_img_pdf(file_path, [out_text_file_path])
out_file_paths.extend(img_output_file_path)
output_logs_str = str(output_logs)
logs_output_file_name = img_output_file_path[0] + "_decision_process_output.txt"
with open(logs_output_file_name, "w") as f:
f.write(output_logs_str)
log_files_output_paths.append(logs_output_file_name)
# Add confirmation for converting to image if you want
# out_message.append(img_output_summary)
#out_file_paths.append(out_text_file_path)
out_message_new = "File '" + file_path_without_ext + "' successfully redacted"
out_message.append(out_message_new)
if latest_file_completed != len(file_paths):
print("Completed file number:", str(latest_file_completed), "more files to do")
latest_file_completed += 1
else:
out_message = "No redaction method selected"
print(out_message)
return out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths, estimated_time_taken_state
toc = time.perf_counter()
out_time = f"in {toc - tic:0.1f} seconds."
print(out_time)
out_message_out = '\n'.join(out_message)
out_message_out = out_message_out + " " + out_time
return out_message_out, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths, estimated_time_taken_state
def merge_img_bboxes(bboxes, handwriting_or_signature_boxes = [], horizontal_threshold=150, vertical_threshold=25):
merged_bboxes = []
grouped_bboxes = defaultdict(list)
if handwriting_or_signature_boxes:
print("Handwriting or signature boxes exist at merge:", handwriting_or_signature_boxes)
bboxes.extend(handwriting_or_signature_boxes)
# 1. Group by approximate vertical proximity
for box in bboxes:
grouped_bboxes[round(box.top / vertical_threshold)].append(box)
# 2. Merge within each group
for _, group in grouped_bboxes.items():
group.sort(key=lambda box: box.left)
merged_box = group[0]
for next_box in group[1:]:
if next_box.left - (merged_box.left + merged_box.width) <= horizontal_threshold:
#print("Merging a box")
# Calculate new dimensions for the merged box
print("Merged box:", merged_box)
new_left = min(merged_box.left, next_box.left)
new_top = min(merged_box.top, next_box.top)
new_width = max(merged_box.left + merged_box.width, next_box.left + next_box.width) - new_left
new_height = max(merged_box.top + merged_box.height, next_box.top + next_box.height) - new_top
merged_box = ImageRecognizerResult(
merged_box.entity_type, merged_box.start, merged_box.end, merged_box.score, new_left, new_top, new_width, new_height
)
else:
merged_bboxes.append(merged_box)
merged_box = next_box
merged_bboxes.append(merged_box)
return merged_bboxes
def redact_image_pdf(file_path:str, image_paths:List[str], language:str, chosen_redact_entities:List[str], allow_list:List[str]=None, is_a_pdf:bool=True, page_min:int=0, page_max:int=999, analysis_type:str="Image analysis", progress=Progress(track_tqdm=True)):
'''
Take an path for an image of a document, then run this image through the Presidio ImageAnalyzer and PIL to get a redacted page back. Adapted from Presidio ImageRedactorEngine.
'''
# json_file_path is for AWS Textract outputs
logging_file_paths = []
file_name = get_file_path_end(file_path)
fill = (0, 0, 0) # Fill colour
decision_process_output_str = ""
images = []
image_analyser = CustomImageAnalyzerEngine(nlp_analyser)
if not image_paths:
out_message = "PDF does not exist as images. Converting pages to image"
print(out_message)
image_paths = process_file(file_path)
if not isinstance(image_paths, list):
print("Converting image_paths to list")
image_paths = [image_paths]
#print("Image paths:", image_paths)
number_of_pages = len(image_paths[0])
print("Number of pages:", str(number_of_pages))
out_message = "Redacting pages"
print(out_message)
#progress(0.1, desc=out_message)
# Check that page_min and page_max are within expected ranges
if page_max > number_of_pages or page_max == 0:
page_max = number_of_pages
if page_min <= 0:
page_min = 0
else:
page_min = page_min - 1
print("Page range:", str(page_min + 1), "to", str(page_max))
#for i in progress.tqdm(range(0,number_of_pages), total=number_of_pages, unit="pages", desc="Redacting pages"):
for n in range(0, number_of_pages):
handwriting_or_signature_boxes = []
try:
image = image_paths[0][n]#.copy()
print("Skipping page", str(n))
#print("image:", image)
except Exception as e:
print("Could not redact page:", str(n), "due to:")
print(e)
continue
if n >= page_min and n < page_max:
i = n
reported_page_number = str(i + 1)
print("Redacting page", reported_page_number)
# Assuming image_paths[i] is your PIL image object
try:
image = image_paths[0][i]#.copy()
#print("image:", image)
except Exception as e:
print("Could not redact page:", reported_page_number, "due to:")
print(e)
continue
# %%
# image_analyser = ImageAnalyzerEngine(nlp_analyser)
# engine = ImageRedactorEngine(image_analyser)
if language == 'en':
ocr_lang = 'eng'
else: ocr_lang = language
# bboxes = image_analyser.analyze(image,
# ocr_kwargs={"lang": ocr_lang},
# **{
# "allow_list": allow_list,
# "language": language,
# "entities": chosen_redact_entities,
# "score_threshold": score_threshold,
# "return_decision_process":True,
# })
# Step 1: Perform OCR. Either with Tesseract, or with AWS Textract
if analysis_type == "Image analysis":
ocr_results = image_analyser.perform_ocr(image)
# Process all OCR text with bounding boxes
#print("OCR results:", ocr_results)
ocr_results_str = str(ocr_results)
ocr_results_file_path = output_folder + "ocr_results_" + file_name + "_page_" + reported_page_number + ".txt"
with open(ocr_results_file_path, "w") as f:
f.write(ocr_results_str)
logging_file_paths.append(ocr_results_file_path)
# Import results from json and convert
if analysis_type == "AWS Textract":
# Ensure image is a PIL Image object
# if isinstance(image, str):
# image = Image.open(image)
# elif not isinstance(image, Image.Image):
# print(f"Unexpected image type on page {i}: {type(image)}")
# continue
# Convert the image to bytes using an in-memory buffer
image_buffer = io.BytesIO()
image.save(image_buffer, format='PNG') # Save as PNG, or adjust format if needed
pdf_page_as_bytes = image_buffer.getvalue()
json_file_path = output_folder + file_name + "_page_" + reported_page_number + "_textract.json"
if not os.path.exists(json_file_path):
text_blocks = analyse_page_with_textract(pdf_page_as_bytes, json_file_path) # Analyse page with Textract
logging_file_paths.append(json_file_path)
else:
# Open the file and load the JSON data
print("Found existing Textract json results file for this page.")
with open(json_file_path, 'r') as json_file:
text_blocks = json.load(json_file)
text_blocks = text_blocks['Blocks']
# Need image size to convert textract OCR outputs to the correct sizes
#print("Image size:", image.size)
page_width, page_height = image.size
ocr_results, handwriting_or_signature_boxes = json_to_ocrresult(text_blocks, page_width, page_height)
#print("OCR results:", ocr_results)
ocr_results_str = str(ocr_results)
textract_ocr_results_file_path = output_folder + "ocr_results_" + file_name + "_page_" + reported_page_number + "_textract.txt"
with open(textract_ocr_results_file_path, "w") as f:
f.write(ocr_results_str)
logging_file_paths.append(textract_ocr_results_file_path)
# Step 2: Analyze text and identify PII
bboxes = image_analyser.analyze_text(
ocr_results,
language=language,
entities=chosen_redact_entities,
allow_list=allow_list,
score_threshold=score_threshold,
)
# Process the bboxes (PII entities)
if bboxes:
for bbox in bboxes:
print(f"Entity: {bbox.entity_type}, Text: {bbox.text}, Bbox: ({bbox.left}, {bbox.top}, {bbox.width}, {bbox.height})")
decision_process_output_str = str(bboxes)
print("Decision process:", decision_process_output_str)
# Merge close bounding boxes
merged_bboxes = merge_img_bboxes(bboxes, handwriting_or_signature_boxes)
#print("For page:", str(i), "Merged bounding boxes:", merged_bboxes)
#from PIL import Image
#image_object = Image.open(image)
# 3. Draw the merged boxes
draw = ImageDraw.Draw(image)
for box in merged_bboxes:
x0 = box.left
y0 = box.top
x1 = x0 + box.width
y1 = y0 + box.height
draw.rectangle([x0, y0, x1, y1], fill=fill)
images.append(image)
return images, decision_process_output_str, logging_file_paths
def analyze_text_container(text_container, language, chosen_redact_entities, score_threshold, allow_list):
if isinstance(text_container, LTTextContainer):
text_to_analyze = text_container.get_text()
analyzer_results = nlp_analyser.analyze(text=text_to_analyze,
language=language,
entities=chosen_redact_entities,
score_threshold=score_threshold,
return_decision_process=True,
allow_list=allow_list)
characters = [char
for line in text_container
if isinstance(line, LTTextLine)
for char in line]
return analyzer_results, characters
return [], []
# Inside the loop where you process analyzer_results, merge bounding boxes that are right next to each other:
# def merge_bounding_boxes(analyzer_results, characters, combine_pixel_dist, vertical_padding=2):
# '''
# Merge identified bounding boxes containing PII that are very close to one another
# '''
# analyzed_bounding_boxes = []
# if len(analyzer_results) > 0 and len(characters) > 0:
# merged_bounding_boxes = []
# current_box = None
# current_y = None
# for i, result in enumerate(analyzer_results):
# print("Considering result", str(i))
# for char in characters[result.start : result.end]:
# if isinstance(char, LTChar):
# char_box = list(char.bbox)
# # Add vertical padding to the top of the box
# char_box[3] += vertical_padding
# if current_y is None or current_box is None:
# current_box = char_box
# current_y = char_box[1]
# else:
# vertical_diff_bboxes = abs(char_box[1] - current_y)
# horizontal_diff_bboxes = abs(char_box[0] - current_box[2])
# if (
# vertical_diff_bboxes <= 5
# and horizontal_diff_bboxes <= combine_pixel_dist
# ):
# current_box[2] = char_box[2] # Extend the current box horizontally
# current_box[3] = max(current_box[3], char_box[3]) # Ensure the top is the highest
# else:
# merged_bounding_boxes.append(
# {"boundingBox": current_box, "result": result})
# # Reset current_box and current_y after appending
# current_box = char_box
# current_y = char_box[1]
# # After finishing with the current result, add the last box for this result
# if current_box:
# merged_bounding_boxes.append({"boundingBox": current_box, "result": result})
# current_box = None
# current_y = None # Reset for the next result
# if not merged_bounding_boxes:
# analyzed_bounding_boxes.extend(
# {"boundingBox": char.bbox, "result": result}
# for result in analyzer_results
# for char in characters[result.start:result.end]
# if isinstance(char, LTChar)
# )
# else:
# analyzed_bounding_boxes.extend(merged_bounding_boxes)
# print("analysed_bounding_boxes:\n\n", analyzed_bounding_boxes)
# return analyzed_bounding_boxes
def merge_bounding_boxes(analyzer_results, characters, combine_pixel_dist, vertical_padding=2, signature_bounding_boxes=None):
'''
Merge identified bounding boxes containing PII or signatures that are very close to one another.
'''
analyzed_bounding_boxes = []
merged_bounding_boxes = []
current_box = None
current_y = None
# Handle PII and text bounding boxes first
if len(analyzer_results) > 0 and len(characters) > 0:
for i, result in enumerate(analyzer_results):
#print("Considering result", str(i))
#print("Result:", result)
#print("Characters:", characters)
for char in characters[result.start: result.end]:
if isinstance(char, LTChar):
char_box = list(char.bbox)
# Add vertical padding to the top of the box
char_box[3] += vertical_padding
if current_y is None or current_box is None:
current_box = char_box
current_y = char_box[1]
else:
vertical_diff_bboxes = abs(char_box[1] - current_y)
horizontal_diff_bboxes = abs(char_box[0] - current_box[2])
if (
vertical_diff_bboxes <= 5
and horizontal_diff_bboxes <= combine_pixel_dist
):
current_box[2] = char_box[2] # Extend the current box horizontally
current_box[3] = max(current_box[3], char_box[3]) # Ensure the top is the highest
else:
merged_bounding_boxes.append(
{"boundingBox": current_box, "result": result})
# Reset current_box and current_y after appending
current_box = char_box
current_y = char_box[1]
# After finishing with the current result, add the last box for this result
if current_box:
merged_bounding_boxes.append({"boundingBox": current_box, "result": result})
current_box = None
current_y = None # Reset for the next result
# Handle signature bounding boxes (without specific characters)
if signature_bounding_boxes is not None:
for sig_box in signature_bounding_boxes:
sig_box = list(sig_box) # Ensure it's a list to modify the values
if current_y is None or current_box is None:
current_box = sig_box
current_y = sig_box[1]
else:
vertical_diff_bboxes = abs(sig_box[1] - current_y)
horizontal_diff_bboxes = abs(sig_box[0] - current_box[2])
if (
vertical_diff_bboxes <= 5
and horizontal_diff_bboxes <= combine_pixel_dist
):
current_box[2] = sig_box[2] # Extend the current box horizontally
current_box[3] = max(current_box[3], sig_box[3]) # Ensure the top is the highest
else:
merged_bounding_boxes.append({"boundingBox": current_box, "type": "signature"})
# Reset current_box and current_y after appending
current_box = sig_box
current_y = sig_box[1]
# Add the last bounding box for the signature
if current_box:
merged_bounding_boxes.append({"boundingBox": current_box, "type": "signature"})
current_box = None
current_y = None
# If no bounding boxes were merged, add individual character bounding boxes
if not merged_bounding_boxes:
analyzed_bounding_boxes.extend(
{"boundingBox": char.bbox, "result": result}
for result in analyzer_results
for char in characters[result.start:result.end]
if isinstance(char, LTChar)
)
else:
analyzed_bounding_boxes.extend(merged_bounding_boxes)
#print("analysed_bounding_boxes:\n\n", analyzed_bounding_boxes)
return analyzed_bounding_boxes
def create_text_redaction_process_results(analyzer_results, analyzed_bounding_boxes, page_num):
decision_process_table = pd.DataFrame()
if len(analyzer_results) > 0:
# Create summary df of annotations to be made
analyzed_bounding_boxes_df_new = pd.DataFrame(analyzed_bounding_boxes)
analyzed_bounding_boxes_df_text = analyzed_bounding_boxes_df_new['result'].astype(str).str.split(",",expand=True).replace(".*: ", "", regex=True)
analyzed_bounding_boxes_df_text.columns = ["type", "start", "end", "score"]
analyzed_bounding_boxes_df_new = pd.concat([analyzed_bounding_boxes_df_new, analyzed_bounding_boxes_df_text], axis = 1)
analyzed_bounding_boxes_df_new['page'] = page_num + 1
decision_process_table = pd.concat([decision_process_table, analyzed_bounding_boxes_df_new], axis = 0).drop('result', axis=1)
print('\n\ndecision_process_table:\n\n', decision_process_table)
return decision_process_table
def create_annotations_for_bounding_boxes(analyzed_bounding_boxes):
annotations_on_page = []
for analyzed_bounding_box in analyzed_bounding_boxes:
bounding_box = analyzed_bounding_box["boundingBox"]
annotation = Dictionary(
Type=Name.Annot,
Subtype=Name.Square, #Name.Highlight,
QuadPoints=[bounding_box[0], bounding_box[3], bounding_box[2], bounding_box[3],
bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[1]],
Rect=[bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[3]],
C=[0, 0, 0],
IC=[0, 0, 0],
CA=1, # Transparency
T=analyzed_bounding_box["result"].entity_type,
BS=Dictionary(
W=0, # Border width: 1 point
S=Name.S # Border style: solid
)
)
annotations_on_page.append(annotation)
return annotations_on_page
def redact_text_pdf(filename:str, language:str, chosen_redact_entities:List[str], allow_list:List[str]=None, page_min:int=0, page_max:int=999, analysis_type:str = "Text analysis", progress=Progress(track_tqdm=True)):
'''
Redact chosen entities from a pdf that is made up of multiple pages that are not images.
'''
annotations_all_pages = []
decision_process_table_all_pages = []
combine_pixel_dist = 100 # Horizontal distance between PII bounding boxes under/equal they are combined into one
pdf = Pdf.open(filename)
page_num = 0
number_of_pages = len(pdf.pages)
# Check that page_min and page_max are within expected ranges
if page_max > number_of_pages or page_max == 0:
page_max = number_of_pages
#else:
# page_max = page_max - 1
if page_min <= 0:
page_min = 0
else:
page_min = page_min - 1
print("Page range is",str(page_min), "to", str(page_max))
for page_no in range(page_min, page_max):
page = pdf.pages[page_no]
print("Page number is:", page_no)
# The /MediaBox in a PDF specifies the size of the page [left, bottom, right, top]
media_box = page.MediaBox
page_width = media_box[2] - media_box[0]
page_height = media_box[3] - media_box[1]
annotations_on_page = []
decision_process_table_on_page = []
for page_layout in extract_pages(filename, page_numbers = [page_no], maxpages=1):
page_analyzer_results = []
page_analyzed_bounding_boxes = []
text_container_analyzer_results = []
text_container_analyzed_bounding_boxes = []
characters = []
if analysis_type == "Text analysis":
for i, text_container in enumerate(page_layout):
text_container_analyzer_results, characters = analyze_text_container(text_container, language, chosen_redact_entities, score_threshold, allow_list)
# Merge bounding boxes if very close together
text_container_analyzed_bounding_boxes = merge_bounding_boxes(text_container_analyzer_results, characters, combine_pixel_dist, vertical_padding = 2)
page_analyzed_bounding_boxes.extend(text_container_analyzed_bounding_boxes)
page_analyzer_results.extend(text_container_analyzer_results)
# Merge bounding boxes if very close together
text_container_analyzed_bounding_boxes = merge_bounding_boxes(text_container_analyzer_results, characters, combine_pixel_dist, vertical_padding = 2)
page_analyzed_bounding_boxes.extend(text_container_analyzed_bounding_boxes)
page_analyzer_results.extend(text_container_analyzer_results)
decision_process_table_on_page = create_text_redaction_process_results(page_analyzer_results, page_analyzed_bounding_boxes, page_num)
annotations_on_page = create_annotations_for_bounding_boxes(page_analyzed_bounding_boxes)
#print('\n\nannotations_on_page:', annotations_on_page)
# Make page annotations
page.Annots = pdf.make_indirect(annotations_on_page)
annotations_all_pages.extend([annotations_on_page])
decision_process_table_all_pages.extend([decision_process_table_on_page])
print("For page number:", page_no, "there are", len(annotations_all_pages[page_num]), "annotations")
#page_num += 1
return pdf, decision_process_table_all_pages
|