File size: 5,509 Bytes
e9c4101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import boto3
from PIL import Image
import io
import json
import pikepdf
# Example: converting this single page to an image
from pdf2image import convert_from_bytes
from tools.custom_image_analyser_engine import OCRResult, CustomImageRecognizerResult

def analyse_page_with_textract(pdf_page_bytes, json_file_path):
    '''
    Analyse page with AWS Textract
    '''
    try:
        client = boto3.client('textract')
    except:
        print("Cannot connect to AWS Textract")
        return "", "", ""

    print("Analysing page with AWS Textract")
    
    # Convert the image to bytes using an in-memory buffer
    #image_buffer = io.BytesIO()
    #image.save(image_buffer, format='PNG')  # Save as PNG, or adjust format if needed
    #image_bytes = image_buffer.getvalue()

    #response = client.detect_document_text(Document={'Bytes': image_bytes})
    response = client.analyze_document(Document={'Bytes': pdf_page_bytes}, FeatureTypes=["SIGNATURES"])

    text_blocks = response['Blocks']    

    # Write the response to a JSON file
    with open(json_file_path, 'w') as json_file:
        json.dump(response, json_file, indent=4)  # indent=4 makes the JSON file pretty-printed

    print("Response has been written to output:", json_file_path)       
            
    return text_blocks


def convert_pike_pdf_page_to_bytes(pdf, page_num):
    # Create a new empty PDF
    new_pdf = pikepdf.Pdf.new()

    # Specify the page number you want to extract (0-based index)
    page_num = 0  # Example: first page

    # Extract the specific page and add it to the new PDF
    new_pdf.pages.append(pdf.pages[page_num])

    # Save the new PDF to a bytes buffer
    buffer = io.BytesIO()
    new_pdf.save(buffer)

    # Get the PDF bytes
    pdf_bytes = buffer.getvalue()

    # Now you can use the `pdf_bytes` to convert it to an image or further process
    buffer.close()

    #images = convert_from_bytes(pdf_bytes)
    #image = images[0]

    return pdf_bytes


def json_to_ocrresult(json_data, page_width, page_height):
    '''
    Convert the json response from textract to the OCRResult format used elsewhere in the code.
    '''
    all_ocr_results = []
    signature_or_handwriting_recogniser_results = []
    signatures = []
    handwriting = []

    for text_block in json_data:

        is_signature = False
        is_handwriting = False

        if (text_block['BlockType'] == 'WORD') | (text_block['BlockType'] == 'LINE'):
            text = text_block['Text']

            # Extract BoundingBox details
            bbox = text_block["Geometry"]["BoundingBox"]
            left = bbox["Left"]
            top = bbox["Top"]
            width = bbox["Width"]
            height = bbox["Height"]

            # Convert proportional coordinates to absolute coordinates
            left_abs = int(left * page_width)
            top_abs = int(top * page_height)
            width_abs = int(width * page_width)
            height_abs = int(height * page_height)

            # Create OCRResult with absolute coordinates
            ocr_result = OCRResult(text, left_abs, top_abs, width_abs, height_abs)

            # If handwriting or signature, add to bounding box
            confidence = text_block['Confidence']            

            if 'TextType' in text_block:
                text_type = text_block["TextType"]
                
                if text_type == "HANDWRITING":
                    is_handwriting = True
                    entity_name = "HANDWRITING"
                    word_end = len(entity_name)
                    recogniser_result = CustomImageRecognizerResult(entity_type=entity_name, text= text, score= confidence, start=0, end=word_end, left=left_abs, top=top_abs, width=width_abs, height=height_abs)
                    handwriting.append(recogniser_result)                    
                    print("Handwriting found:", handwriting[-1]) 
            
            all_ocr_results.append(ocr_result)

        elif (text_block['BlockType'] == 'SIGNATURE'):
            text = "SIGNATURE"

            # Extract BoundingBox details
            bbox = text_block["Geometry"]["BoundingBox"]
            left = bbox["Left"]
            top = bbox["Top"]
            width = bbox["Width"]
            height = bbox["Height"]

            # Convert proportional coordinates to absolute coordinates
            left_abs = int(left * page_width)
            top_abs = int(top * page_height)
            width_abs = int(width * page_width)
            height_abs = int(height * page_height)

            # Create OCRResult with absolute coordinates
            ocr_result = OCRResult(text, left_abs, top_abs, width_abs, height_abs)


            is_signature = True
            entity_name = "Signature"
            word_end = len(entity_name)
            recogniser_result = CustomImageRecognizerResult(entity_type=entity_name, text= text, score= confidence, start=0, end=word_end, left=left_abs, top=top_abs, width=width_abs, height=height_abs)
            signatures.append(recogniser_result)
            print("Signature found:", signatures[-1])

            all_ocr_results.append(ocr_result)

        is_signature_or_handwriting = is_signature | is_handwriting

        # If it is signature or handwriting, will overwrite the default behaviour of the PII analyser
        if is_signature_or_handwriting:
            signature_or_handwriting_recogniser_results.append(recogniser_result)
    
    return all_ocr_results, signature_or_handwriting_recogniser_results