File size: 59,833 Bytes
6319afc ebf9010 a770956 ebf9010 6b28cfa a265560 ebf9010 6319afc ebf9010 6319afc ebf9010 0ea8b9e 6319afc 3518b67 ebf9010 eea5c07 ebf9010 eea5c07 ebf9010 0ea8b9e ebf9010 0ea8b9e eea5c07 ebf9010 0ea8b9e ebf9010 eea5c07 ebf9010 eea5c07 ebf9010 face41c ec98119 c9e23cb ec98119 a9dcd2e ec98119 face41c ec98119 0c2987b 66e145d 0ea8b9e 66e145d 0ea8b9e 66e145d 3187788 0ea8b9e 3187788 a9dcd2e 0ea8b9e 66e145d 3187788 66e145d a9dcd2e 66e145d 3187788 4276db1 0ea8b9e a9dcd2e 0ea8b9e 66e145d 0ea8b9e 3187788 0ea8b9e 66e145d 0ea8b9e a9dcd2e 0ea8b9e 66e145d e2aae24 a9dcd2e 0ea8b9e 1d772de 4276db1 66e145d 0ea8b9e 66e145d 0ea8b9e 66e145d 3187788 0ea8b9e 66e145d 0ea8b9e 66e145d 3187788 66e145d 0ea8b9e 66e145d 6319afc 0ea8b9e 6319afc 66e145d 6319afc 66e145d 6319afc 0ea8b9e 6319afc 66e145d 0ea8b9e 4276db1 0ea8b9e 66e145d 0ea8b9e 66e145d 0ea8b9e 1d772de 0ea8b9e ec98119 0ea8b9e 66e145d 0ea8b9e 1d772de 0ea8b9e e2aae24 0ea8b9e e2aae24 0ea8b9e 5b4b5fb 0ea8b9e ebf9010 0ea8b9e e2aae24 0ea8b9e e2aae24 0ea8b9e ebf9010 0ea8b9e ebf9010 0ea8b9e ebf9010 0ea8b9e 66e145d 0ea8b9e ebf9010 a9dcd2e 5b4b5fb ec98119 ebf9010 5b4b5fb ebf9010 f6e6d80 0ea8b9e ebf9010 0ea8b9e 66e145d 0ea8b9e 66e145d 0ea8b9e 66e145d ebf9010 0ea8b9e ebf9010 e2aae24 0ea8b9e 5b4b5fb 0ea8b9e ebf9010 0ea8b9e ebf9010 66e145d 0ea8b9e 66e145d 0ea8b9e 66e145d ebf9010 a770956 ebf9010 a770956 cb349ad 0ea8b9e ebf9010 0ea8b9e 1d772de 0ea8b9e ebf9010 0ea8b9e ebf9010 a770956 eea5c07 a770956 bde6e5b cb349ad a770956 c3a8cd7 ebf9010 c3a8cd7 ebf9010 0ea8b9e c3a8cd7 ebf9010 c3a8cd7 ebf9010 0ea8b9e c3a8cd7 760ef5c cb349ad ebf9010 760ef5c c3a8cd7 ebf9010 c3a8cd7 0ea8b9e c3a8cd7 ebf9010 c3a8cd7 cb349ad a770956 c3a8cd7 66e145d a770956 0ea8b9e a770956 c3a8cd7 0ea8b9e c3a8cd7 a770956 c3a8cd7 0ea8b9e 66e145d c3a8cd7 b805ec6 a770956 0ea8b9e c3a8cd7 cb349ad 0ea8b9e c3a8cd7 a770956 cb349ad 760ef5c cb349ad a770956 ed5f8c7 0ea8b9e cb349ad 66e145d a770956 66e145d a770956 0ea8b9e ebf9010 a770956 0ea8b9e 66e145d 0ea8b9e 66e145d 0ea8b9e 6319afc 0ea8b9e 1d772de 66e145d 1d772de 0ea8b9e 66e145d ed5f8c7 0ea8b9e 66e145d 0ea8b9e 4276db1 0ea8b9e 11eb675 0ea8b9e 4276db1 0ea8b9e a770956 42180e4 6b28cfa 6319afc 6b28cfa 6319afc 6b28cfa a265560 0ea8b9e 6319afc 0ea8b9e 6319afc 0ea8b9e a265560 6319afc 6b28cfa 6319afc a265560 6319afc 4276db1 6319afc 4276db1 6319afc 0ea8b9e 6319afc 0ea8b9e 6319afc 0ea8b9e 6319afc 0ea8b9e 6319afc 0ea8b9e 6319afc 0ea8b9e 6b28cfa 6319afc 08a3ec3 6319afc 08a3ec3 0ea8b9e 6b28cfa 0ea8b9e 6b28cfa 0ea8b9e 6b28cfa 0ea8b9e 6b28cfa a265560 6b28cfa a265560 6b28cfa a265560 6b28cfa 0ea8b9e 6b28cfa a265560 6b28cfa a265560 6b28cfa a265560 6b28cfa 20d940b 6b28cfa a265560 6b28cfa a265560 6b28cfa a265560 0ea8b9e 6b28cfa 6319afc 6b28cfa a265560 6319afc 6b28cfa 6319afc 6b28cfa 6319afc a265560 6319afc 6b28cfa 6319afc 6b28cfa 6319afc 6b28cfa 6319afc 6b28cfa dacc782 6b28cfa 6319afc 6b28cfa 0ea8b9e 6b28cfa bde6e5b 6b28cfa bde6e5b 6b28cfa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 |
import os
import re
import gradio as gr
import pandas as pd
import numpy as np
from xml.etree.ElementTree import Element, SubElement, tostring, parse
from xml.dom import minidom
import uuid
from typing import List
from gradio_image_annotation import image_annotator
from gradio_image_annotation.image_annotator import AnnotatedImageData
from pymupdf import Document, Rect
import pymupdf
#from fitz
from PIL import ImageDraw, Image
from tools.config import OUTPUT_FOLDER, CUSTOM_BOX_COLOUR, MAX_IMAGE_PIXELS, INPUT_FOLDER
from tools.file_conversion import is_pdf, convert_annotation_json_to_review_df, convert_review_df_to_annotation_json, process_single_page_for_image_conversion, multiply_coordinates_by_page_sizes, convert_annotation_data_to_dataframe, create_annotation_dicts_from_annotation_df, remove_duplicate_images_with_blank_boxes
from tools.helper_functions import get_file_name_without_type, detect_file_type
from tools.file_redaction import redact_page_with_pymupdf
if not MAX_IMAGE_PIXELS: Image.MAX_IMAGE_PIXELS = None
def decrease_page(number:int):
'''
Decrease page number for review redactions page.
'''
if number > 1:
return number - 1, number - 1
else:
return 1, 1
def increase_page(number:int, page_image_annotator_object:AnnotatedImageData):
'''
Increase page number for review redactions page.
'''
if not page_image_annotator_object:
return 1, 1
max_pages = len(page_image_annotator_object)
if number < max_pages:
return number + 1, number + 1
else:
return max_pages, max_pages
def update_zoom(current_zoom_level:int, annotate_current_page:int, decrease:bool=True):
if decrease == False:
if current_zoom_level >= 70:
current_zoom_level -= 10
else:
if current_zoom_level < 110:
current_zoom_level += 10
return current_zoom_level, annotate_current_page
def update_dropdown_list_based_on_dataframe(df:pd.DataFrame, column:str) -> List["str"]:
'''
Gather unique elements from a string pandas Series, then append 'ALL' to the start and return the list.
'''
if isinstance(df, pd.DataFrame):
# Check if the Series is empty or all NaN
if column not in df.columns or df[column].empty or df[column].isna().all():
return ["ALL"]
elif column != "page":
entities = df[column].astype(str).unique().tolist()
entities_for_drop = sorted(entities)
entities_for_drop.insert(0, "ALL")
else:
# Ensure the column can be converted to int - assumes it is the page column
try:
entities = df[column].astype(int).unique()
entities_for_drop = sorted(entities)
entities_for_drop = [str(e) for e in entities_for_drop] # Convert back to string
entities_for_drop.insert(0, "ALL")
except ValueError:
return ["ALL"] # Handle case where conversion fails
return entities_for_drop # Ensure to return the list
else:
return ["ALL"]
def get_filtered_recogniser_dataframe_and_dropdowns(page_image_annotator_object:AnnotatedImageData,
recogniser_dataframe_base:pd.DataFrame,
recogniser_dropdown_value:str,
text_dropdown_value:str,
page_dropdown_value:str,
review_df:pd.DataFrame=[],
page_sizes:List[str]=[]):
'''
Create a filtered recogniser dataframe and associated dropdowns based on current information in the image annotator and review data frame.
'''
recogniser_entities_list = ["Redaction"]
recogniser_dataframe_out = recogniser_dataframe_base
recogniser_dataframe_out_gr = gr.Dataframe()
review_dataframe = review_df
try:
review_dataframe = convert_annotation_json_to_review_df(page_image_annotator_object, review_df, page_sizes)
recogniser_entities_for_drop = update_dropdown_list_based_on_dataframe(review_dataframe, "label")
recogniser_entities_drop = gr.Dropdown(value=recogniser_dropdown_value, choices=recogniser_entities_for_drop, allow_custom_value=True, interactive=True)
# This is the choice list for entities when creating a new redaction box
recogniser_entities_list = [entity for entity in recogniser_entities_for_drop.copy() if entity != 'Redaction' and entity != 'ALL'] # Remove any existing 'Redaction'
recogniser_entities_list.insert(0, 'Redaction') # Add 'Redaction' to the start of the list
text_entities_for_drop = update_dropdown_list_based_on_dataframe(review_dataframe, "text")
text_entities_drop = gr.Dropdown(value=text_dropdown_value, choices=text_entities_for_drop, allow_custom_value=True, interactive=True)
page_entities_for_drop = update_dropdown_list_based_on_dataframe(review_dataframe, "page")
page_entities_drop = gr.Dropdown(value=page_dropdown_value, choices=page_entities_for_drop, allow_custom_value=True, interactive=True)
recogniser_dataframe_out_gr = gr.Dataframe(review_dataframe[["page", "label", "text"]], show_search="filter", col_count=(3, "fixed"), type="pandas", headers=["page", "label", "text"], show_fullscreen_button=True, wrap=True, max_height=400)
recogniser_dataframe_out = review_dataframe[["page", "label", "text"]]
except Exception as e:
print("Could not extract recogniser information:", e)
recogniser_dataframe_out = recogniser_dataframe_base[["page", "label", "text"]]
label_choices = review_dataframe["label"].astype(str).unique().tolist()
text_choices = review_dataframe["text"].astype(str).unique().tolist()
page_choices = review_dataframe["page"].astype(str).unique().tolist()
recogniser_entities_drop = gr.Dropdown(value=recogniser_dropdown_value, choices=label_choices, allow_custom_value=True, interactive=True)
recogniser_entities_list = ["Redaction"]
text_entities_drop = gr.Dropdown(value=text_dropdown_value, choices=text_choices, allow_custom_value=True, interactive=True)
page_entities_drop = gr.Dropdown(value=page_dropdown_value, choices=page_choices, allow_custom_value=True, interactive=True)
return recogniser_dataframe_out_gr, recogniser_dataframe_out, recogniser_entities_drop, recogniser_entities_list, text_entities_drop, page_entities_drop
def update_recogniser_dataframes(page_image_annotator_object:AnnotatedImageData, recogniser_dataframe_base:pd.DataFrame, recogniser_entities_dropdown_value:str="ALL", text_dropdown_value:str="ALL", page_dropdown_value:str="ALL", review_df:pd.DataFrame=[], page_sizes:list[str]=[]):
'''
Update recogniser dataframe information that appears alongside the pdf pages on the review screen.
'''
recogniser_entities_list = ["Redaction"]
recogniser_dataframe_out = pd.DataFrame()
recogniser_dataframe_out_gr = gr.Dataframe()
# If base recogniser dataframe is empy, need to create it.
if recogniser_dataframe_base.empty:
recogniser_dataframe_out_gr, recogniser_dataframe_out, recogniser_entities_drop, recogniser_entities_list, text_entities_drop, page_entities_drop = get_filtered_recogniser_dataframe_and_dropdowns(page_image_annotator_object, recogniser_dataframe_base, recogniser_entities_dropdown_value, text_dropdown_value, page_dropdown_value, review_df, page_sizes)
elif recogniser_dataframe_base.iloc[0,0] == "":
recogniser_dataframe_out_gr, recogniser_dataframe_out, recogniser_entities_dropdown_value, recogniser_entities_list, text_entities_drop, page_entities_drop = get_filtered_recogniser_dataframe_and_dropdowns(page_image_annotator_object, recogniser_dataframe_base, recogniser_entities_dropdown_value, text_dropdown_value, page_dropdown_value, review_df, page_sizes)
else:
recogniser_dataframe_out_gr, recogniser_dataframe_out, recogniser_entities_dropdown, recogniser_entities_list, text_dropdown, page_dropdown = get_filtered_recogniser_dataframe_and_dropdowns(page_image_annotator_object, recogniser_dataframe_base, recogniser_entities_dropdown_value, text_dropdown_value, page_dropdown_value, review_df, page_sizes)
review_dataframe, text_entities_drop, page_entities_drop = update_entities_df_recogniser_entities(recogniser_entities_dropdown_value, recogniser_dataframe_out, page_dropdown_value, text_dropdown_value)
recogniser_dataframe_out_gr = gr.Dataframe(review_dataframe[["page", "label", "text"]], show_search="filter", col_count=(3, "fixed"), type="pandas", headers=["page", "label", "text"], show_fullscreen_button=True, wrap=True, max_height=400)
recogniser_entities_for_drop = update_dropdown_list_based_on_dataframe(recogniser_dataframe_out, "label")
recogniser_entities_drop = gr.Dropdown(value=recogniser_entities_dropdown_value, choices=recogniser_entities_for_drop, allow_custom_value=True, interactive=True)
recogniser_entities_list_base = recogniser_dataframe_out["label"].astype(str).unique().tolist()
# Recogniser entities list is the list of choices that appear when you make a new redaction box
recogniser_entities_list = [entity for entity in recogniser_entities_list_base if entity != 'Redaction']
recogniser_entities_list.insert(0, 'Redaction')
return recogniser_entities_list, recogniser_dataframe_out_gr, recogniser_dataframe_out, recogniser_entities_drop, text_entities_drop, page_entities_drop
def undo_last_removal(backup_review_state, backup_image_annotations_state, backup_recogniser_entity_dataframe_base):
return backup_review_state, backup_image_annotations_state, backup_recogniser_entity_dataframe_base
def update_annotator_page_from_review_df(review_df: pd.DataFrame,
image_file_paths:List[str],
page_sizes:List[dict],
current_page:int,
previous_page:int,
current_image_annotations_state:List[str],
current_page_annotator:object):
'''
Update the visible annotation object with the latest review file information
'''
out_image_annotations_state = current_image_annotations_state
out_current_page_annotator = current_page_annotator
if not review_df.empty:
out_image_annotations_state = convert_review_df_to_annotation_json(review_df, image_file_paths, page_sizes)
print("out_image_annotations_state[current_page-1]:", out_image_annotations_state[current_page-1])
if previous_page == current_page:
out_current_page_annotator = out_image_annotations_state[current_page-1]
return out_current_page_annotator, out_image_annotations_state
def exclude_selected_items_from_redaction(review_df: pd.DataFrame,
selected_rows_df: pd.DataFrame,
image_file_paths:List[str],
page_sizes:List[dict],
image_annotations_state:dict,
recogniser_entity_dataframe_base:pd.DataFrame):
'''
Remove selected items from the review dataframe from the annotation object and review dataframe.
'''
backup_review_state = review_df
backup_image_annotations_state = image_annotations_state
backup_recogniser_entity_dataframe_base = recogniser_entity_dataframe_base
if not selected_rows_df.empty and not review_df.empty:
# Ensure selected_rows_df has the same relevant columns
selected_subset = selected_rows_df[['label', 'page', 'text']].drop_duplicates(subset=['label', 'page', 'text'])
# Perform anti-join using merge with an indicator column
merged_df = review_df.merge(selected_subset, on=['label', 'page', 'text'], how='left', indicator=True)
# Keep only the rows that do not have a match in selected_rows_df
out_review_df = merged_df[merged_df['_merge'] == 'left_only'].drop(columns=['_merge'])
out_image_annotations_state = convert_review_df_to_annotation_json(out_review_df, image_file_paths, page_sizes)
out_recogniser_entity_dataframe_base = out_review_df[["page", "label", "text"]]
# Either there is nothing left in the selection dataframe, or the review dataframe
else:
out_review_df = review_df
out_recogniser_entity_dataframe_base = recogniser_entity_dataframe_base
out_image_annotations_state = image_annotations_state
return out_review_df, out_image_annotations_state, out_recogniser_entity_dataframe_base, backup_review_state, backup_image_annotations_state, backup_recogniser_entity_dataframe_base
def update_annotator_object_and_filter_df(
all_image_annotations:List[AnnotatedImageData],
gradio_annotator_current_page_number:int,
recogniser_entities_dropdown_value:str="ALL",
page_dropdown_value:str="ALL",
text_dropdown_value:str="ALL",
recogniser_dataframe_base:gr.Dataframe=gr.Dataframe(pd.DataFrame(data={"page":[], "label":[], "text":[]}), type="pandas", headers=["page", "label", "text"], show_fullscreen_button=True, wrap=True, show_search='filter', max_height=400),
zoom:int=100,
review_df:pd.DataFrame=[],
page_sizes:List[dict]=[],
doc_full_file_name_textbox:str='',
input_folder:str=INPUT_FOLDER):
'''
Update a gradio_image_annotation object with new annotation data.
'''
zoom_str = str(zoom) + '%'
if not gradio_annotator_current_page_number: gradio_annotator_current_page_number = 0
# Check bounding values for current page and page max
if gradio_annotator_current_page_number > 0: page_num_reported = gradio_annotator_current_page_number
elif gradio_annotator_current_page_number == 0: page_num_reported = 1 # minimum possible reported page is 1
else:
gradio_annotator_current_page_number = 0
page_num_reported = 1
# Ensure page displayed can't exceed number of pages in document
page_max_reported = len(all_image_annotations)
if page_num_reported > page_max_reported: page_num_reported = page_max_reported
page_num_reported_zero_indexed = page_num_reported - 1
# First, check that the image on the current page is valid, replace with what exists in page_sizes object if not
page_image_annotator_object, all_image_annotations = replace_images_in_image_annotation_object(all_image_annotations, all_image_annotations[page_num_reported_zero_indexed], page_sizes, page_num_reported)
all_image_annotations[page_num_reported_zero_indexed] = page_image_annotator_object
current_image_path = all_image_annotations[page_num_reported_zero_indexed]['image']
# If image path is still not valid, load in a new image an overwrite it. Then replace all items in the image annotation object for all pages based on the updated information.
page_sizes_df = pd.DataFrame(page_sizes)
if not os.path.exists(current_image_path):
page_num, replaced_image_path, width, height = process_single_page_for_image_conversion(doc_full_file_name_textbox, page_num_reported_zero_indexed, input_folder=input_folder)
# Overwrite page_sizes values
page_sizes_df.loc[page_sizes_df['page']==page_num_reported, "image_width"] = width
page_sizes_df.loc[page_sizes_df['page']==page_num_reported, "image_height"] = height
page_sizes_df.loc[page_sizes_df['page']==page_num_reported, "image_path"] = replaced_image_path
else:
if not page_sizes_df.loc[page_sizes_df['page']==page_num_reported, "image_width"].isnull().all():
width = page_sizes_df.loc[page_sizes_df['page']==page_num_reported, "image_width"].max()
height = page_sizes_df.loc[page_sizes_df['page']==page_num_reported, "image_height"].max()
else:
image = Image.open(current_image_path)
width = image.width
height = image.height
page_sizes_df.loc[page_sizes_df['page']==page_num_reported, "image_width"] = width
page_sizes_df.loc[page_sizes_df['page']==page_num_reported, "image_height"] = height
page_sizes_df.loc[page_sizes_df['page']==page_num_reported, "image_path"] = current_image_path
replaced_image_path = current_image_path
if review_df.empty: review_df = pd.DataFrame(columns=["image", "page", "label", "color", "xmin", "ymin", "xmax", "ymax", "text"])
##
review_df.loc[review_df["page"]==page_num_reported, 'image'] = replaced_image_path
# Update dropdowns and review selection dataframe with the updated annotator object
recogniser_entities_list, recogniser_dataframe_out_gr, recogniser_dataframe_modified, recogniser_entities_dropdown_value, text_entities_drop, page_entities_drop = update_recogniser_dataframes(all_image_annotations, recogniser_dataframe_base, recogniser_entities_dropdown_value, text_dropdown_value, page_dropdown_value, review_df.copy(), page_sizes)
recogniser_colour_list = [(0, 0, 0) for _ in range(len(recogniser_entities_list))]
# page_sizes_df has been changed - save back to page_sizes_object
page_sizes = page_sizes_df.to_dict(orient='records')
images_list = list(page_sizes_df["image_path"])
images_list[page_num_reported_zero_indexed] = replaced_image_path
all_image_annotations[page_num_reported_zero_indexed]['image'] = replaced_image_path
# Multiply out image_annotation coordinates from relative to absolute if necessary
all_image_annotations_df = convert_annotation_data_to_dataframe(all_image_annotations)
all_image_annotations_df = multiply_coordinates_by_page_sizes(all_image_annotations_df, page_sizes_df, xmin="xmin", xmax="xmax", ymin="ymin", ymax="ymax")
all_image_annotations = create_annotation_dicts_from_annotation_df(all_image_annotations_df, page_sizes)
# Remove blank duplicate entries
all_image_annotations = remove_duplicate_images_with_blank_boxes(all_image_annotations)
current_page_image_annotator_object = all_image_annotations[page_num_reported_zero_indexed]
page_number_reported_gradio = gr.Number(label = "Current page", value=page_num_reported, precision=0)
###
# If no data, present a blank page
if not all_image_annotations:
print("No all_image_annotation object found")
page_num_reported = 1
out_image_annotator = image_annotator(
value = None,
boxes_alpha=0.1,
box_thickness=1,
label_list=recogniser_entities_list,
label_colors=recogniser_colour_list,
show_label=False,
height=zoom_str,
width=zoom_str,
box_min_size=1,
box_selected_thickness=2,
handle_size=4,
sources=None,#["upload"],
show_clear_button=False,
show_share_button=False,
show_remove_button=False,
handles_cursor=True,
interactive=True,
use_default_label=True
)
return out_image_annotator, page_number_reported_gradio, page_number_reported_gradio, page_num_reported, recogniser_entities_dropdown_value, recogniser_dataframe_out_gr, recogniser_dataframe_modified, text_entities_drop, page_entities_drop, page_sizes, all_image_annotations
else:
### Present image_annotator outputs
out_image_annotator = image_annotator(
value = current_page_image_annotator_object,
boxes_alpha=0.1,
box_thickness=1,
label_list=recogniser_entities_list,
label_colors=recogniser_colour_list,
show_label=False,
height=zoom_str,
width=zoom_str,
box_min_size=1,
box_selected_thickness=2,
handle_size=4,
sources=None,#["upload"],
show_clear_button=False,
show_share_button=False,
show_remove_button=False,
handles_cursor=True,
interactive=True
)
#print("all_image_annotations at end of update_annotator...:", all_image_annotations)
#print("review_df at end of update_annotator_object:", review_df)
return out_image_annotator, page_number_reported_gradio, page_number_reported_gradio, page_num_reported, recogniser_entities_dropdown_value, recogniser_dataframe_out_gr, recogniser_dataframe_modified, text_entities_drop, page_entities_drop, page_sizes, all_image_annotations
def replace_images_in_image_annotation_object(
all_image_annotations:List[dict],
page_image_annotator_object:AnnotatedImageData,
page_sizes:List[dict],
page:int):
'''
Check if the image value in an AnnotatedImageData dict is a placeholder or np.array. If either of these, replace the value with the file path of the image that is hopefully already loaded into the app related to this page.
'''
page_zero_index = page - 1
if isinstance(all_image_annotations[page_zero_index]["image"], np.ndarray) or "placeholder_image" in all_image_annotations[page_zero_index]["image"] or isinstance(page_image_annotator_object['image'], np.ndarray):
page_sizes_df = pd.DataFrame(page_sizes)
page_sizes_df[["page"]] = page_sizes_df[["page"]].apply(pd.to_numeric, errors="coerce")
# Check for matching pages
matching_paths = page_sizes_df.loc[page_sizes_df['page'] == page, "image_path"].unique()
if matching_paths.size > 0:
image_path = matching_paths[0]
page_image_annotator_object['image'] = image_path
all_image_annotations[page_zero_index]["image"] = image_path
else:
print(f"No image path found for page {page}.")
return page_image_annotator_object, all_image_annotations
def update_all_page_annotation_object_based_on_previous_page(
page_image_annotator_object:AnnotatedImageData,
current_page:int,
previous_page:int,
all_image_annotations:List[AnnotatedImageData],
page_sizes:List[dict]=[],
clear_all:bool=False
):
'''
Overwrite image annotations on the page we are moving from with modifications.
'''
previous_page_zero_index = previous_page -1
if not current_page: current_page = 1
#print("page_image_annotator_object at start of update_all_page_annotation_object:", page_image_annotator_object)
page_image_annotator_object, all_image_annotations = replace_images_in_image_annotation_object(all_image_annotations, page_image_annotator_object, page_sizes, previous_page)
#print("page_image_annotator_object after replace_images in update_all_page_annotation_object:", page_image_annotator_object)
if clear_all == False: all_image_annotations[previous_page_zero_index] = page_image_annotator_object
else: all_image_annotations[previous_page_zero_index]["boxes"] = []
return all_image_annotations, current_page, current_page
def apply_redactions_to_review_df_and_files(page_image_annotator_object:AnnotatedImageData,
file_paths:List[str],
doc:Document,
all_image_annotations:List[AnnotatedImageData],
current_page:int,
review_file_state:pd.DataFrame,
output_folder:str = OUTPUT_FOLDER,
save_pdf:bool=True,
page_sizes:List[dict]=[],
progress=gr.Progress(track_tqdm=True)):
'''
Apply modified redactions to a pymupdf and export review files
'''
output_files = []
output_log_files = []
pdf_doc = []
review_df = review_file_state
page_image_annotator_object = all_image_annotations[current_page - 1]
# This replaces the numpy array image object with the image file path
page_image_annotator_object, all_image_annotations = replace_images_in_image_annotation_object(all_image_annotations, page_image_annotator_object, page_sizes, current_page)
page_image_annotator_object['image'] = all_image_annotations[current_page - 1]["image"]
if not page_image_annotator_object:
print("No image annotations object found for page")
return doc, all_image_annotations, output_files, output_log_files, review_df
if isinstance(file_paths, str):
file_paths = [file_paths]
for file_path in file_paths:
file_name_without_ext = get_file_name_without_type(file_path)
file_name_with_ext = os.path.basename(file_path)
file_extension = os.path.splitext(file_path)[1].lower()
if save_pdf == True:
# If working with image docs
if (is_pdf(file_path) == False) & (file_extension not in '.csv'):
image = Image.open(file_paths[-1])
draw = ImageDraw.Draw(image)
for img_annotation_box in page_image_annotator_object['boxes']:
coords = [img_annotation_box["xmin"],
img_annotation_box["ymin"],
img_annotation_box["xmax"],
img_annotation_box["ymax"]]
fill = img_annotation_box["color"]
# Ensure fill is a valid RGB tuple
if isinstance(fill, tuple) and len(fill) == 3:
# Check if all elements are integers in the range 0-255
if all(isinstance(c, int) and 0 <= c <= 255 for c in fill):
pass
#print("fill:", fill)
else:
print(f"Invalid color values: {fill}. Defaulting to black.")
fill = (0, 0, 0) # Default to black if invalid
else:
print(f"Invalid fill format: {fill}. Defaulting to black.")
fill = (0, 0, 0) # Default to black if not a valid tuple
# Ensure the image is in RGB mode
if image.mode not in ("RGB", "RGBA"):
image = image.convert("RGB")
draw = ImageDraw.Draw(image)
draw.rectangle(coords, fill=fill)
output_image_path = output_folder + file_name_without_ext + "_redacted.png"
image.save(output_folder + file_name_without_ext + "_redacted.png")
output_files.append(output_image_path)
doc = [image]
elif file_extension in '.csv':
#print("This is a csv")
pdf_doc = []
# If working with pdfs
elif is_pdf(file_path) == True:
pdf_doc = pymupdf.open(file_path)
orig_pdf_file_path = file_path
output_files.append(orig_pdf_file_path)
number_of_pages = pdf_doc.page_count
original_cropboxes = []
page_sizes_df = pd.DataFrame(page_sizes)
page_sizes_df[["page"]] = page_sizes_df[["page"]].apply(pd.to_numeric, errors="coerce")
for i in progress.tqdm(range(0, number_of_pages), desc="Saving redactions to file", unit = "pages"):
image_loc = all_image_annotations[i]['image']
# Load in image object
if isinstance(image_loc, np.ndarray):
image = Image.fromarray(image_loc.astype('uint8'))
elif isinstance(image_loc, Image.Image):
image = image_loc
elif isinstance(image_loc, str):
if not os.path.exists(image_loc):
image=page_sizes_df.loc[page_sizes_df['page']==i, "image_path"]
try:
image = Image.open(image_loc)
except Exception as e:
image = None
pymupdf_page = pdf_doc.load_page(i) #doc.load_page(current_page -1)
original_cropboxes.append(pymupdf_page.cropbox)
pymupdf_page.set_cropbox(pymupdf_page.mediabox)
pymupdf_page = redact_page_with_pymupdf(page=pymupdf_page, page_annotations=all_image_annotations[i], image=image, original_cropbox=original_cropboxes[-1], page_sizes_df= page_sizes_df) # image=image,
else:
print("File type not recognised.")
#try:
if pdf_doc:
out_pdf_file_path = output_folder + file_name_without_ext + "_redacted.pdf"
pdf_doc.save(out_pdf_file_path, garbage=4, deflate=True, clean=True)
output_files.append(out_pdf_file_path)
else:
print("PDF input not found. Outputs not saved to PDF.")
# If save_pdf is not true, then add the original pdf to the output files
else:
if is_pdf(file_path) == True:
orig_pdf_file_path = file_path
output_files.append(orig_pdf_file_path)
try:
#print("Saving review file.")
review_df = convert_annotation_json_to_review_df(all_image_annotations, review_file_state.copy(), page_sizes=page_sizes)[["image", "page", "label","color", "xmin", "ymin", "xmax", "ymax", "text"]]#.drop_duplicates(subset=["image", "page", "text", "label","color", "xmin", "ymin", "xmax", "ymax"])
out_review_file_file_path = output_folder + file_name_with_ext + '_review_file.csv'
review_df.to_csv(out_review_file_file_path, index=None)
output_files.append(out_review_file_file_path)
except Exception as e:
print("In apply redactions function, could not save annotations to csv file:", e)
return doc, all_image_annotations, output_files, output_log_files, review_df
def get_boxes_json(annotations:AnnotatedImageData):
return annotations["boxes"]
def update_all_entity_df_dropdowns(df:pd.DataFrame, label_dropdown_value:str, page_dropdown_value:str, text_dropdown_value:str):
'''
Update all dropdowns based on rows that exist in a dataframe
'''
if isinstance(label_dropdown_value, str):
label_dropdown_value = [label_dropdown_value]
if isinstance(page_dropdown_value, str):
page_dropdown_value = [page_dropdown_value]
if isinstance(text_dropdown_value, str):
text_dropdown_value = [text_dropdown_value]
filtered_df = df.copy()
# Apply filtering based on dropdown selections
# if not "ALL" in page_dropdown_value:
# filtered_df = filtered_df[filtered_df["page"].astype(str).isin(page_dropdown_value)]
# if not "ALL" in text_dropdown_value:
# filtered_df = filtered_df[filtered_df["text"].astype(str).isin(text_dropdown_value)]
# if not "ALL" in label_dropdown_value:
# filtered_df = filtered_df[filtered_df["label"].astype(str).isin(label_dropdown_value)]
recogniser_entities_for_drop = update_dropdown_list_based_on_dataframe(filtered_df, "label")
recogniser_entities_drop = gr.Dropdown(value=label_dropdown_value[0], choices=recogniser_entities_for_drop, allow_custom_value=True, interactive=True)
text_entities_for_drop = update_dropdown_list_based_on_dataframe(filtered_df, "text")
text_entities_drop = gr.Dropdown(value=text_dropdown_value[0], choices=text_entities_for_drop, allow_custom_value=True, interactive=True)
page_entities_for_drop = update_dropdown_list_based_on_dataframe(filtered_df, "page")
page_entities_drop = gr.Dropdown(value=page_dropdown_value[0], choices=page_entities_for_drop, allow_custom_value=True, interactive=True)
return recogniser_entities_drop, text_entities_drop, page_entities_drop
def update_entities_df_recogniser_entities(choice:str, df:pd.DataFrame, page_dropdown_value:str, text_dropdown_value:str):
'''
Update the rows in a dataframe depending on the user choice from a dropdown
'''
if isinstance(choice, str):
choice = [choice]
if isinstance(page_dropdown_value, str):
page_dropdown_value = [page_dropdown_value]
if isinstance(text_dropdown_value, str):
text_dropdown_value = [text_dropdown_value]
filtered_df = df.copy()
# Apply filtering based on dropdown selections
if not "ALL" in page_dropdown_value:
filtered_df = filtered_df[filtered_df["page"].astype(str).isin(page_dropdown_value)]
if not "ALL" in text_dropdown_value:
filtered_df = filtered_df[filtered_df["text"].astype(str).isin(text_dropdown_value)]
if not "ALL" in choice:
filtered_df = filtered_df[filtered_df["label"].astype(str).isin(choice)]
recogniser_entities_for_drop = update_dropdown_list_based_on_dataframe(filtered_df, "label")
recogniser_entities_drop = gr.Dropdown(value=choice[0], choices=recogniser_entities_for_drop, allow_custom_value=True, interactive=True)
text_entities_for_drop = update_dropdown_list_based_on_dataframe(filtered_df, "text")
text_entities_drop = gr.Dropdown(value=text_dropdown_value[0], choices=text_entities_for_drop, allow_custom_value=True, interactive=True)
page_entities_for_drop = update_dropdown_list_based_on_dataframe(filtered_df, "page")
page_entities_drop = gr.Dropdown(value=page_dropdown_value[0], choices=page_entities_for_drop, allow_custom_value=True, interactive=True)
return filtered_df, text_entities_drop, page_entities_drop
def update_entities_df_page(choice:str, df:pd.DataFrame, label_dropdown_value:str, text_dropdown_value:str):
'''
Update the rows in a dataframe depending on the user choice from a dropdown
'''
if isinstance(choice, str):
choice = [choice]
if isinstance(label_dropdown_value, str):
label_dropdown_value = [label_dropdown_value]
if isinstance(text_dropdown_value, str):
text_dropdown_value = [text_dropdown_value]
filtered_df = df.copy()
# Apply filtering based on dropdown selections
if not "ALL" in text_dropdown_value:
filtered_df = filtered_df[filtered_df["text"].astype(str).isin(text_dropdown_value)]
if not "ALL" in label_dropdown_value:
filtered_df = filtered_df[filtered_df["label"].astype(str).isin(label_dropdown_value)]
if not "ALL" in choice:
filtered_df = filtered_df[filtered_df["page"].astype(str).isin(choice)]
recogniser_entities_for_drop = update_dropdown_list_based_on_dataframe(filtered_df, "label")
recogniser_entities_drop = gr.Dropdown(value=label_dropdown_value[0], choices=recogniser_entities_for_drop, allow_custom_value=True, interactive=True)
text_entities_for_drop = update_dropdown_list_based_on_dataframe(filtered_df, "text")
text_entities_drop = gr.Dropdown(value=text_dropdown_value[0], choices=text_entities_for_drop, allow_custom_value=True, interactive=True)
page_entities_for_drop = update_dropdown_list_based_on_dataframe(filtered_df, "page")
page_entities_drop = gr.Dropdown(value=choice[0], choices=page_entities_for_drop, allow_custom_value=True, interactive=True)
return filtered_df, recogniser_entities_drop, text_entities_drop
def update_entities_df_text(choice:str, df:pd.DataFrame, label_dropdown_value:str, page_dropdown_value:str):
'''
Update the rows in a dataframe depending on the user choice from a dropdown
'''
if isinstance(choice, str):
choice = [choice]
if isinstance(label_dropdown_value, str):
label_dropdown_value = [label_dropdown_value]
if isinstance(page_dropdown_value, str):
page_dropdown_value = [page_dropdown_value]
filtered_df = df.copy()
# Apply filtering based on dropdown selections
if not "ALL" in page_dropdown_value:
filtered_df = filtered_df[filtered_df["page"].astype(str).isin(page_dropdown_value)]
if not "ALL" in label_dropdown_value:
filtered_df = filtered_df[filtered_df["label"].astype(str).isin(label_dropdown_value)]
if not "ALL" in choice:
filtered_df = filtered_df[filtered_df["text"].astype(str).isin(choice)]
recogniser_entities_for_drop = update_dropdown_list_based_on_dataframe(filtered_df, "label")
recogniser_entities_drop = gr.Dropdown(value=label_dropdown_value[0], choices=recogniser_entities_for_drop, allow_custom_value=True, interactive=True)
text_entities_for_drop = update_dropdown_list_based_on_dataframe(filtered_df, "text")
text_entities_drop = gr.Dropdown(value=choice[0], choices=text_entities_for_drop, allow_custom_value=True, interactive=True)
page_entities_for_drop = update_dropdown_list_based_on_dataframe(filtered_df, "page")
page_entities_drop = gr.Dropdown(value=page_dropdown_value[0], choices=page_entities_for_drop, allow_custom_value=True, interactive=True)
return filtered_df, recogniser_entities_drop, page_entities_drop
def reset_dropdowns(df:pd.DataFrame):
'''
Return Gradio dropdown objects with value 'ALL'.
'''
recogniser_entities_for_drop = update_dropdown_list_based_on_dataframe(df, "label")
recogniser_entities_drop = gr.Dropdown(value="ALL", choices=recogniser_entities_for_drop, allow_custom_value=True, interactive=True)
text_entities_for_drop = update_dropdown_list_based_on_dataframe(df, "text")
text_entities_drop = gr.Dropdown(value="ALL", choices=text_entities_for_drop, allow_custom_value=True, interactive=True)
page_entities_for_drop = update_dropdown_list_based_on_dataframe(df, "page")
page_entities_drop = gr.Dropdown(value="ALL", choices=page_entities_for_drop, allow_custom_value=True, interactive=True)
return recogniser_entities_drop, text_entities_drop, page_entities_drop
def df_select_callback(df: pd.DataFrame, evt: gr.SelectData):
row_value_page = evt.row_value[0] # This is the page number value
row_value_label = evt.row_value[1] # This is the label number value
row_value_text = evt.row_value[2] # This is the text number value
row_value_df = pd.DataFrame(data={"page":[row_value_page], "label":[row_value_label], "text":[row_value_text]})
return row_value_page, row_value_df
def df_select_callback_textract_api(df: pd.DataFrame, evt: gr.SelectData):
#print("evt.data:", evt._data)
row_value_job_id = evt.row_value[0] # This is the page number value
# row_value_label = evt.row_value[1] # This is the label number value
row_value_job_type = evt.row_value[2] # This is the text number value
row_value_df = pd.DataFrame(data={"job_id":[row_value_job_id], "label":[row_value_job_type]})
return row_value_job_id, row_value_job_type, row_value_df
def df_select_callback_cost(df: pd.DataFrame, evt: gr.SelectData):
row_value_code = evt.row_value[0] # This is the value for cost code
#row_value_label = evt.row_value[1] # This is the label number value
#row_value_df = pd.DataFrame(data={"page":[row_value_code], "label":[row_value_label]})
return row_value_code
def df_select_callback_ocr(df: pd.DataFrame, evt: gr.SelectData):
row_value_page = evt.row_value[0] # This is the page_number value
row_value_text = evt.row_value[1] # This is the text contents
row_value_df = pd.DataFrame(data={"page":[row_value_page], "text":[row_value_text]})
return row_value_page, row_value_df
def update_selected_review_df_row_colour(redaction_row_selection:pd.DataFrame, review_df:pd.DataFrame, colour:tuple=(0,0,255)):
'''
Update the colour of a single redaction box based on the values in a selection row
'''
colour_tuple = str(tuple(colour))
if "color" not in review_df.columns: review_df["color"] = None
# Reset existing highlight colours
review_df.loc[review_df["color"]==colour_tuple, "color"] = review_df.loc[review_df["color"]==colour_tuple, "color"].apply(lambda _: '(0, 0, 0)')
review_df = review_df.merge(redaction_row_selection, on=["page", "label", "text"], indicator=True, how="left")
review_df.loc[review_df["_merge"]=="both", "color"] = review_df.loc[review_df["_merge"] == "both", "color"].apply(lambda _: '(0, 0, 255)')
review_df.drop("_merge", axis=1, inplace=True)
review_df.to_csv(OUTPUT_FOLDER + "review_df_in_update_selected_review.csv")
return review_df
def update_boxes_color(images: list, redaction_row_selection: pd.DataFrame, colour: tuple = (0, 255, 0)):
"""
Update the color of bounding boxes in the images list based on redaction_row_selection.
Parameters:
- images (list): List of dictionaries containing image paths and box metadata.
- redaction_row_selection (pd.DataFrame): DataFrame with 'page', 'label', and optionally 'text' columns.
- colour (tuple): RGB tuple for the new color.
Returns:
- Updated list with modified colors.
"""
# Convert DataFrame to a set for fast lookup
selection_set = set(zip(redaction_row_selection["page"], redaction_row_selection["label"]))
for page_idx, image_obj in enumerate(images):
if "boxes" in image_obj:
for box in image_obj["boxes"]:
if (page_idx, box["label"]) in selection_set:
box["color"] = colour # Update color
return images
def update_other_annotator_number_from_current(page_number_first_counter:int):
return page_number_first_counter
def convert_image_coords_to_adobe(pdf_page_width:float, pdf_page_height:float, image_width:float, image_height:float, x1:float, y1:float, x2:float, y2:float):
'''
Converts coordinates from image space to Adobe PDF space.
Parameters:
- pdf_page_width: Width of the PDF page
- pdf_page_height: Height of the PDF page
- image_width: Width of the source image
- image_height: Height of the source image
- x1, y1, x2, y2: Coordinates in image space
- page_sizes: List of dicts containing sizes of page as pymupdf page or PIL image
Returns:
- Tuple of converted coordinates (x1, y1, x2, y2) in Adobe PDF space
'''
# Calculate scaling factors
scale_width = pdf_page_width / image_width
scale_height = pdf_page_height / image_height
# Convert coordinates
pdf_x1 = x1 * scale_width
pdf_x2 = x2 * scale_width
# Convert Y coordinates (flip vertical axis)
# Adobe coordinates start from bottom-left
pdf_y1 = pdf_page_height - (y1 * scale_height)
pdf_y2 = pdf_page_height - (y2 * scale_height)
# Make sure y1 is always less than y2 for Adobe's coordinate system
if pdf_y1 > pdf_y2:
pdf_y1, pdf_y2 = pdf_y2, pdf_y1
return pdf_x1, pdf_y1, pdf_x2, pdf_y2
def convert_pymupdf_coords_to_adobe(x1: float, y1: float, x2: float, y2: float, pdf_page_height: float):
"""
Converts coordinates from PyMuPDF (fitz) space to Adobe PDF space.
Parameters:
- x1, y1, x2, y2: Coordinates in PyMuPDF space
- pdf_page_height: Total height of the PDF page
Returns:
- Tuple of converted coordinates (x1, y1, x2, y2) in Adobe PDF space
"""
# PyMuPDF uses (0,0) at the bottom-left, while Adobe uses (0,0) at the top-left
adobe_y1 = pdf_page_height - y2 # Convert top coordinate
adobe_y2 = pdf_page_height - y1 # Convert bottom coordinate
return x1, adobe_y1, x2, adobe_y2
def create_xfdf(review_file_df:pd.DataFrame, pdf_path:str, pymupdf_doc:object, image_paths:List[str], document_cropboxes:List=[], page_sizes:List[dict]=[]):
'''
Create an xfdf file from a review csv file and a pdf
'''
pages_are_images = True
# Create root element
xfdf = Element('xfdf', xmlns="http://ns.adobe.com/xfdf/", xml_space="preserve")
# Add header
header = SubElement(xfdf, 'header')
header.set('pdf-filepath', pdf_path)
# Add annots
annots = SubElement(xfdf, 'annots')
# Check if page size object exists, and if current coordinates are in relative format or image coordinates format.
if page_sizes:
page_sizes_df = pd.DataFrame(page_sizes)
# If there are no image coordinates, then convert coordinates to pymupdf coordinates prior to export
#print("Using pymupdf coordinates for conversion.")
pages_are_images = False
if "mediabox_width" not in review_file_df.columns:
review_file_df = review_file_df.merge(page_sizes_df, how="left", on = "page")
# If all coordinates are less or equal to one, this is a relative page scaling - change back to image coordinates
if review_file_df["xmin"].max() <= 1 and review_file_df["xmax"].max() <= 1 and review_file_df["ymin"].max() <= 1 and review_file_df["ymax"].max() <= 1:
review_file_df["xmin"] = review_file_df["xmin"] * review_file_df["mediabox_width"]
review_file_df["xmax"] = review_file_df["xmax"] * review_file_df["mediabox_width"]
review_file_df["ymin"] = review_file_df["ymin"] * review_file_df["mediabox_height"]
review_file_df["ymax"] = review_file_df["ymax"] * review_file_df["mediabox_height"]
# If all nulls, then can do image coordinate conversion
if len(page_sizes_df.loc[page_sizes_df["mediabox_width"].isnull(),"mediabox_width"]) == len(page_sizes_df["mediabox_width"]):
pages_are_images = True
review_file_df = multiply_coordinates_by_page_sizes(review_file_df, page_sizes_df, xmin="xmin", xmax="xmax", ymin="ymin", ymax="ymax")
# if "image_width" not in review_file_df.columns:
# review_file_df = review_file_df.merge(page_sizes_df, how="left", on = "page")
# # If all coordinates are less or equal to one, this is a relative page scaling - change back to image coordinates
# if review_file_df["xmin"].max() <= 1 and review_file_df["xmax"].max() <= 1 and review_file_df["ymin"].max() <= 1 and review_file_df["ymax"].max() <= 1:
# review_file_df["xmin"] = review_file_df["xmin"] * review_file_df["image_width"]
# review_file_df["xmax"] = review_file_df["xmax"] * review_file_df["image_width"]
# review_file_df["ymin"] = review_file_df["ymin"] * review_file_df["image_height"]
# review_file_df["ymax"] = review_file_df["ymax"] * review_file_df["image_height"]
# Go through each row of the review_file_df, create an entry in the output Adobe xfdf file.
for _, row in review_file_df.iterrows():
page_num_reported = row["page"]
page_python_format = int(row["page"])-1
pymupdf_page = pymupdf_doc.load_page(page_python_format)
# Load cropbox sizes. Set cropbox to the original cropbox sizes from when the document was loaded into the app.
if document_cropboxes:
# Extract numbers safely using regex
match = re.findall(r"[-+]?\d*\.\d+|\d+", document_cropboxes[page_python_format])
if match and len(match) == 4:
rect_values = list(map(float, match)) # Convert extracted strings to floats
pymupdf_page.set_cropbox(Rect(*rect_values))
else:
raise ValueError(f"Invalid cropbox format: {document_cropboxes[page_python_format]}")
else:
print("Document cropboxes not found.")
pdf_page_height = pymupdf_page.mediabox.height
pdf_page_width = pymupdf_page.mediabox.width
# Check if image dimensions for page exist in page_sizes_df
# image_dimensions = {}
# image_dimensions['image_width'] = page_sizes_df.loc[page_sizes_df['page']==page_num_reported, "image_width"].max()
# image_dimensions['image_height'] = page_sizes_df.loc[page_sizes_df['page']==page_num_reported, "image_height"].max()
# if pd.isna(image_dimensions['image_width']):
# image_dimensions = {}
# image = image_paths[page_python_format]
# if image_dimensions:
# image_page_width, image_page_height = image_dimensions["image_width"], image_dimensions["image_height"]
# if isinstance(image, str) and 'placeholder' not in image:
# image = Image.open(image)
# image_page_width, image_page_height = image.size
# else:
# try:
# image = Image.open(image)
# image_page_width, image_page_height = image.size
# except Exception as e:
# print("Could not get image sizes due to:", e)
# Create redaction annotation
redact_annot = SubElement(annots, 'redact')
# Generate unique ID
annot_id = str(uuid.uuid4())
redact_annot.set('name', annot_id)
# Set page number (subtract 1 as PDF pages are 0-based)
redact_annot.set('page', str(int(row['page']) - 1))
# # Convert coordinates
# if pages_are_images == True:
# x1, y1, x2, y2 = convert_image_coords_to_adobe(
# pdf_page_width,
# pdf_page_height,
# image_page_width,
# image_page_height,
# row['xmin'],
# row['ymin'],
# row['xmax'],
# row['ymax']
# )
# else:
x1, y1, x2, y2 = convert_pymupdf_coords_to_adobe(row['xmin'],
row['ymin'],
row['xmax'],
row['ymax'], pdf_page_height)
if CUSTOM_BOX_COLOUR == "grey":
colour_str = "0.5,0.5,0.5"
else:
colour_str = row['color'].strip('()').replace(' ', '')
# Set coordinates
redact_annot.set('rect', f"{x1:.2f},{y1:.2f},{x2:.2f},{y2:.2f}")
# Set redaction properties
redact_annot.set('title', row['label']) # The type of redaction (e.g., "PERSON")
redact_annot.set('contents', row['text']) # The redacted text
redact_annot.set('subject', row['label']) # The redacted text
redact_annot.set('mimetype', "Form")
# Set appearance properties
redact_annot.set('border-color', colour_str) # Black border
redact_annot.set('repeat', 'false')
redact_annot.set('interior-color', colour_str)
#redact_annot.set('fill-color', colour_str)
#redact_annot.set('outline-color', colour_str)
#redact_annot.set('overlay-color', colour_str)
#redact_annot.set('overlay-text', row['label'])
redact_annot.set('opacity', "0.5")
# Add appearance dictionary
# appearanceDict = SubElement(redact_annot, 'appearancedict')
# # Normal appearance
# normal = SubElement(appearanceDict, 'normal')
# #normal.set('appearance', 'redact')
# # Color settings for the mark (before applying redaction)
# markAppearance = SubElement(redact_annot, 'markappearance')
# markAppearance.set('stroke-color', colour_str) # Red outline
# markAppearance.set('fill-color', colour_str) # Light red fill
# markAppearance.set('opacity', '0.5') # 50% opacity
# # Final redaction appearance (after applying)
# redactAppearance = SubElement(redact_annot, 'redactAppearance')
# redactAppearance.set('fillColor', colour_str) # Black fill
# redactAppearance.set('fontName', 'Helvetica')
# redactAppearance.set('fontSize', '12')
# redactAppearance.set('textAlignment', 'left')
# redactAppearance.set('textColor', colour_str) # White text
# Convert to pretty XML string
xml_str = minidom.parseString(tostring(xfdf)).toprettyxml(indent=" ")
return xml_str
def convert_df_to_xfdf(input_files:List[str], pdf_doc:Document, image_paths:List[str], output_folder:str = OUTPUT_FOLDER, document_cropboxes:List=[], page_sizes:List[dict]=[]):
'''
Load in files to convert a review file into an Adobe comment file format
'''
output_paths = []
pdf_name = ""
file_path_name = ""
if isinstance(input_files, str):
file_paths_list = [input_files]
else:
file_paths_list = input_files
# Sort the file paths so that the pdfs come first
file_paths_list = sorted(file_paths_list, key=lambda x: (os.path.splitext(x)[1] != '.pdf', os.path.splitext(x)[1] != '.json'))
for file in file_paths_list:
if isinstance(file, str):
file_path = file
else:
file_path = file.name
file_path_name = get_file_name_without_type(file_path)
file_path_end = detect_file_type(file_path)
if file_path_end == "pdf":
pdf_name = os.path.basename(file_path)
if file_path_end == "csv":
# If no pdf name, just get the name of the file path
if not pdf_name:
pdf_name = file_path_name
# Read CSV file
review_file_df = pd.read_csv(file_path)
review_file_df.fillna('', inplace=True) # Replace NaN in review file with an empty string
xfdf_content = create_xfdf(review_file_df, pdf_name, pdf_doc, image_paths, document_cropboxes, page_sizes)
output_path = output_folder + file_path_name + "_adobe.xfdf"
with open(output_path, 'w', encoding='utf-8') as f:
f.write(xfdf_content)
output_paths.append(output_path)
return output_paths
### Convert xfdf coordinates back to image for app
def convert_adobe_coords_to_image(pdf_page_width:float, pdf_page_height:float, image_width:float, image_height:float, x1:float, y1:float, x2:float, y2:float):
'''
Converts coordinates from Adobe PDF space to image space.
Parameters:
- pdf_page_width: Width of the PDF page
- pdf_page_height: Height of the PDF page
- image_width: Width of the source image
- image_height: Height of the source image
- x1, y1, x2, y2: Coordinates in Adobe PDF space
Returns:
- Tuple of converted coordinates (x1, y1, x2, y2) in image space
'''
# Calculate scaling factors
scale_width = image_width / pdf_page_width
scale_height = image_height / pdf_page_height
# Convert coordinates
image_x1 = x1 * scale_width
image_x2 = x2 * scale_width
# Convert Y coordinates (flip vertical axis)
# Adobe coordinates start from bottom-left
image_y1 = (pdf_page_height - y1) * scale_height
image_y2 = (pdf_page_height - y2) * scale_height
# Make sure y1 is always less than y2 for image's coordinate system
if image_y1 > image_y2:
image_y1, image_y2 = image_y2, image_y1
return image_x1, image_y1, image_x2, image_y2
def parse_xfdf(xfdf_path:str):
'''
Parse the XFDF file and extract redaction annotations.
Parameters:
- xfdf_path: Path to the XFDF file
Returns:
- List of dictionaries containing redaction information
'''
tree = parse(xfdf_path)
root = tree.getroot()
# Define the namespace
namespace = {'xfdf': 'http://ns.adobe.com/xfdf/'}
redactions = []
# Find all redact elements using the namespace
for redact in root.findall('.//xfdf:redact', namespaces=namespace):
redaction_info = {
'image': '', # Image will be filled in later
'page': int(redact.get('page')) + 1, # Convert to 1-based index
'xmin': float(redact.get('rect').split(',')[0]),
'ymin': float(redact.get('rect').split(',')[1]),
'xmax': float(redact.get('rect').split(',')[2]),
'ymax': float(redact.get('rect').split(',')[3]),
'label': redact.get('title'),
'text': redact.get('contents'),
'color': redact.get('border-color', '(0, 0, 0)') # Default to black if not specified
}
redactions.append(redaction_info)
return redactions
def convert_xfdf_to_dataframe(file_paths_list:List[str], pymupdf_doc, image_paths:List[str], output_folder:str=OUTPUT_FOLDER):
'''
Convert redaction annotations from XFDF and associated images into a DataFrame.
Parameters:
- xfdf_path: Path to the XFDF file
- pdf_doc: PyMuPDF document object
- image_paths: List of PIL Image objects corresponding to PDF pages
Returns:
- DataFrame containing redaction information
'''
output_paths = []
xfdf_paths = []
df = pd.DataFrame()
# Sort the file paths so that the pdfs come first
file_paths_list = sorted(file_paths_list, key=lambda x: (os.path.splitext(x)[1] != '.pdf', os.path.splitext(x)[1] != '.json'))
for file in file_paths_list:
if isinstance(file, str):
file_path = file
else:
file_path = file.name
file_path_name = get_file_name_without_type(file_path)
file_path_end = detect_file_type(file_path)
if file_path_end == "pdf":
pdf_name = os.path.basename(file_path)
# Add pdf to outputs
output_paths.append(file_path)
if file_path_end == "xfdf":
if not pdf_name:
message = "Original PDF needed to convert from .xfdf format"
print(message)
raise ValueError(message)
xfdf_path = file
file_path_name = get_file_name_without_type(xfdf_path)
# Parse the XFDF file
redactions = parse_xfdf(xfdf_path)
# Create a DataFrame from the redaction information
df = pd.DataFrame(redactions)
df.fillna('', inplace=True) # Replace NaN with an empty string
for _, row in df.iterrows():
page_python_format = int(row["page"])-1
pymupdf_page = pymupdf_doc.load_page(page_python_format)
pdf_page_height = pymupdf_page.rect.height
pdf_page_width = pymupdf_page.rect.width
image_path = image_paths[page_python_format]
if isinstance(image_path, str):
image = Image.open(image_path)
image_page_width, image_page_height = image.size
# Convert to image coordinates
image_x1, image_y1, image_x2, image_y2 = convert_adobe_coords_to_image(pdf_page_width, pdf_page_height, image_page_width, image_page_height, row['xmin'], row['ymin'], row['xmax'], row['ymax'])
df.loc[_, ['xmin', 'ymin', 'xmax', 'ymax']] = [image_x1, image_y1, image_x2, image_y2]
# Optionally, you can add the image path or other relevant information
df.loc[_, 'image'] = image_path
#print('row:', row)
out_file_path = output_folder + file_path_name + "_review_file.csv"
df.to_csv(out_file_path, index=None)
output_paths.append(out_file_path)
return output_paths |