File size: 8,059 Bytes
dce6100
 
 
 
 
bc22fc4
0f18146
7810536
 
bc22fc4
7810536
641ff3e
 
bc22fc4
 
2a4b347
 
641ff3e
 
 
 
 
 
bc22fc4
641ff3e
bc22fc4
641ff3e
0f18146
 
2807627
0f18146
bc22fc4
 
 
641ff3e
 
 
 
7810536
 
 
37d982e
 
641ff3e
 
7810536
 
 
 
 
641ff3e
 
 
 
 
0f18146
7810536
641ff3e
7810536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
641ff3e
7810536
 
 
 
 
2807627
0f18146
 
7810536
 
 
641ff3e
7810536
 
641ff3e
7810536
 
 
641ff3e
bc22fc4
641ff3e
7810536
bc22fc4
 
 
7810536
bc22fc4
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os

# By default TLDExtract will try to pull files from the internet. I have instead downloaded this file locally to avoid the requirement for an internet connection.
os.environ['TLDEXTRACT_CACHE'] = 'tld/.tld_set_snapshot'

from tools.helper_functions import ensure_output_folder_exists, add_folder_to_path, put_columns_in_df, get_connection_params, output_folder, get_or_create_env_var
from tools.file_redaction import choose_and_run_redactor
from tools.file_conversion import prepare_image_or_text_pdf
from tools.data_anonymise import do_anonymise
from tools.auth import authenticate_user
#from tools.aws_functions import load_data_from_aws
import gradio as gr

add_folder_to_path("tesseract/")
add_folder_to_path("poppler/poppler-24.02.0/Library/bin/")

ensure_output_folder_exists()

chosen_redact_entities = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE"] 
full_entity_list = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE", 'CREDIT_CARD', 'CRYPTO', 'DATE_TIME', 'IBAN_CODE', 'IP_ADDRESS', 'NRP', 'LOCATION', 'MEDICAL_LICENSE', 'URL', 'UK_NHS']
language = 'en'

# Create the gradio interface
app = gr.Blocks(theme = gr.themes.Base())

with app:

    prepared_pdf_state = gr.State([])
    output_image_files_state = gr.State([])
    output_file_list_state = gr.State([])

    session_hash_state = gr.State()
    s3_output_folder_state = gr.State()

    gr.Markdown(
    """

    # Document redaction



    Redact personal information from documents, open text, or xlsx/csv tabular data. See the 'Redaction settings' to change various settings such as which types of information to redact (e.g. people, places), or terms to exclude from redaction.



    WARNING: This is a beta product. It is not 100% accurate, and it will miss some personal information. It is essential that all outputs are checked **by a human** to ensure that all personal information has been removed.



    Other redaction entities are possible to include in this app easily, especially country-specific entities. If you want to use these, clone the repo locally and add entity names from [this link](https://microsoft.github.io/presidio/supported_entities/) to the 'full_entity_list' variable in app.py.

    """)

    with gr.Tab("PDFs/images"):

        with gr.Accordion("Redact document", open = True):
            in_file = gr.File(label="Choose document/image files (PDF, JPG, PNG)", file_count= "multiple", file_types=['.pdf', '.jpg', '.png'])
            redact_btn = gr.Button("Redact document(s)", variant="primary")
        
        with gr.Row():
            output_summary = gr.Textbox(label="Output summary")
            output_file = gr.File(label="Output file")

        with gr.Row():
            convert_text_pdf_to_img_btn = gr.Button(value="Convert pdf to image-based pdf to apply redactions", variant="secondary", visible=False)
    
    with gr.Tab(label="Open text or Excel/csv files"):
        gr.Markdown(
    """

    ### Choose open text or a tabular data file (xlsx or csv) to redact.

    """
        )    
        with gr.Accordion("Paste open text", open = False):
            in_text = gr.Textbox(label="Enter open text", lines=10)
        with gr.Accordion("Upload xlsx (first sheet read only) or csv file(s)", open = False):
            in_file_text = gr.File(label="Choose an xlsx (first sheet read only) or csv files", file_count= "multiple", file_types=['.xlsx', '.csv', '.parquet', '.csv.gz'])

        in_colnames = gr.Dropdown(choices=["Choose a column"], multiselect = True, label="Select columns that you want to anonymise. Ensure that at least one named column exists in all files.")
        
        match_btn = gr.Button("Anonymise text", variant="primary")
        
        with gr.Row():
            text_output_summary = gr.Textbox(label="Output result")
            text_output_file = gr.File(label="Output file")

    with gr.Tab(label="Redaction settings"):
        gr.Markdown(
    """

    Define redaction settings that affect both document and open text redaction.

    """)
        with gr.Accordion("Settings for documents", open = True):
            in_redaction_method = gr.Radio(label="Default document redaction method - text analysis is faster is not useful for image-based PDFs. Imaged-based is slightly less accurate in general.", value = "Text analysis", choices=["Text analysis", "Image analysis"])
        with gr.Accordion("Settings for open text or xlsx/csv files", open = True):
            anon_strat = gr.Radio(choices=["replace", "redact", "hash", "mask", "encrypt", "fake_first_name"], label="Select an anonymisation method.", value = "replace") 

        with gr.Accordion("Settings for documents and open text/xlsx/csv files", open = True):
            in_redact_entities = gr.Dropdown(value=chosen_redact_entities, choices=full_entity_list, multiselect=True, label="Entities to redact (click close to down arrow for full list)")
            with gr.Row():
                in_redact_language = gr.Dropdown(value = "en", choices = ["en"], label="Redaction language (only English currently supported)", multiselect=False)
                in_allow_list = gr.Dataframe(label="Allow list - enter a new term to ignore for redaction on each row e.g. Lambeth -> add new row -> Lambeth 2030", headers=["Allow list"], row_count=1, col_count=(1, 'fixed'), value=[[""]], type="array", column_widths=["100px"], datatype='str')
            
    # AWS options - not yet implemented
    # with gr.Tab(label="Advanced options"):
    #     with gr.Accordion(label = "AWS data access", open = True):
    #         aws_password_box = gr.Textbox(label="Password for AWS data access (ask the Data team if you don't have this)")
    #         with gr.Row():
    #             in_aws_file = gr.Dropdown(label="Choose file to load from AWS (only valid for API Gateway app)", choices=["None", "Lambeth borough plan"])
    #             load_aws_data_button = gr.Button(value="Load data from AWS", variant="secondary")
                
    #         aws_log_box = gr.Textbox(label="AWS data load status")
    
    # ### Loading AWS data ###
    # load_aws_data_button.click(fn=load_data_from_aws, inputs=[in_aws_file, aws_password_box], outputs=[in_file, aws_log_box])

   
    # Document redaction
    redact_btn.click(fn = prepare_image_or_text_pdf, inputs=[in_file, in_redaction_method, in_allow_list],
                    outputs=[output_summary, prepared_pdf_state], api_name="prepare").\
    then(fn = choose_and_run_redactor, inputs=[in_file, prepared_pdf_state, in_redact_language, in_redact_entities, in_redaction_method, in_allow_list],
                    outputs=[output_summary, output_file, output_file_list_state], api_name="redact_doc")#.\
                    #then(fn = convert_text_pdf_to_img_pdf, inputs=[in_file, output_file_list_state],
                    #outputs=[output_summary, output_file])
    
    #convert_text_pdf_to_img_btn.click(fn = convert_text_pdf_to_img_pdf, inputs=[in_file, output_file_list_state],
    #                outputs=[output_summary, output_file], api_name="convert_to_img")

     # Open text interaction            
    in_file_text.upload(fn=put_columns_in_df, inputs=[in_file_text], outputs=[in_colnames])    
    match_btn.click(fn=do_anonymise, inputs=[in_file_text, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list], outputs=[text_output_summary, text_output_file], api_name="redact_text")

    app.load(get_connection_params, inputs=None, outputs=[session_hash_state, s3_output_folder_state])

# Launch the Gradio app
COGNITO_AUTH = get_or_create_env_var('COGNITO_AUTH', '0')
print(f'The value of COGNITO_AUTH is {COGNITO_AUTH}')

if __name__ == "__main__":

    if os.environ['COGNITO_AUTH'] == "1":
        app.queue().launch(show_error=True, auth=authenticate_user)
    else:
        app.queue().launch(show_error=True, inbrowser=True)