File size: 20,135 Bytes
a265560 0ea8b9e a265560 ab04c92 0ea8b9e ab04c92 a265560 ab04c92 0ea8b9e a265560 ab04c92 a265560 0ea8b9e a265560 7907ad4 a265560 0ea8b9e a265560 0ea8b9e a265560 0ea8b9e a265560 0ea8b9e a265560 0ea8b9e a265560 0ea8b9e a265560 0ea8b9e a265560 0ea8b9e a265560 ab04c92 a265560 ab04c92 0ea8b9e ab04c92 a265560 ab04c92 0ea8b9e ab04c92 a265560 0ea8b9e ab04c92 0ea8b9e ab04c92 0ea8b9e ab04c92 a265560 ab04c92 0ea8b9e ab04c92 a265560 ab04c92 a265560 ab04c92 a265560 ab04c92 0ea8b9e ab04c92 0ea8b9e ab04c92 0ea8b9e ab04c92 0ea8b9e ab04c92 a265560 ab04c92 0ea8b9e ab04c92 0ea8b9e ab04c92 a265560 ab04c92 a265560 0ea8b9e a265560 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
import pandas as pd
import os
import re
from tools.helper_functions import OUTPUT_FOLDER
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import random
import string
from typing import List, Tuple
import gradio as gr
from gradio import Progress
from pathlib import Path
import en_core_web_lg
nlp = en_core_web_lg.load()
similarity_threshold = 0.95
def combine_ocr_output_text(input_files:List[str], output_folder:str=OUTPUT_FOLDER):
"""
Combines text from multiple CSV files containing page and text columns.
Groups text by file and page number, concatenating text within these groups.
Args:
input_files (list): List of paths to CSV files
Returns:
pd.DataFrame: Combined dataframe with columns [file, page, text]
"""
all_data = []
output_files = []
if isinstance(input_files, str):
file_paths_list = [input_files]
else:
file_paths_list = input_files
for file in file_paths_list:
if isinstance(file, str):
file_path = file
else:
file_path = file.name
# Read CSV file
df = pd.read_csv(file_path)
# Ensure required columns exist
if 'page' not in df.columns or 'text' not in df.columns:
print(f"Warning: Skipping {file_path} - missing required columns 'page' and 'text'")
continue
df['text'] = df['text'].fillna('').astype(str)
# Group by page and concatenate text
grouped = df.groupby('page')['text'].apply(' '.join).reset_index()
# Add filename column
grouped['file'] = os.path.basename(file_path)
all_data.append(grouped)
if not all_data:
raise ValueError("No valid CSV files were processed")
# Combine all dataframes
combined_df = pd.concat(all_data, ignore_index=True)
# Reorder columns
combined_df = combined_df[['file', 'page', 'text']]
output_combined_file_path = output_folder + "combined_ocr_output_files.csv"
combined_df.to_csv(output_combined_file_path, index=None)
output_files.append(output_combined_file_path)
return combined_df, output_files
def process_data(df:pd.DataFrame, column:str):
'''
Clean and stem text columns in a data frame
'''
def _clean_text(raw_text):
# Remove HTML tags
clean = re.sub(r'<.*?>', '', raw_text)
# clean = re.sub(r' ', ' ', clean)
# clean = re.sub(r'\r\n', ' ', clean)
# clean = re.sub(r'<', ' ', clean)
# clean = re.sub(r'>', ' ', clean)
# clean = re.sub(r'<strong>', ' ', clean)
# clean = re.sub(r'</strong>', ' ', clean)
# Replace non-breaking space \xa0 with a space
# clean = clean.replace(u'\xa0', u' ')
# Remove extra whitespace
clean = ' '.join(clean.split())
# # Tokenize the text
# words = word_tokenize(clean.lower())
# # Remove punctuation and numbers
# words = [word for word in words if word.isalpha()]
# # Remove stopwords
# words = [word for word in words if word not in stop_words]
# Join the cleaned words back into a string
return clean
# Function to apply lemmatization and remove stopwords
def _apply_lemmatization(text):
doc = nlp(text)
# Keep only alphabetic tokens and remove stopwords
lemmatized_words = [token.lemma_ for token in doc if token.is_alpha and not token.is_stop]
return ' '.join(lemmatized_words)
df['text_clean'] = df[column].apply(_clean_text)
df['text_clean'] = df['text_clean'].apply(_apply_lemmatization)
return df
def map_metadata_single_page(similarity_df, metadata_source_df):
"""Helper to map metadata for single page results."""
metadata_df = metadata_source_df[['file', 'page', 'text']]
results_df = similarity_df.merge(metadata_df, left_on='Page1_Index', right_index=True)\
.rename(columns={'file': 'Page1_File', 'page': 'Page1_Page', 'text': 'Page1_Text'})
results_df = results_df.merge(metadata_df, left_on='Page2_Index', right_index=True, suffixes=('_1', '_2'))\
.rename(columns={'file': 'Page2_File', 'page': 'Page2_Page', 'text': 'Page2_Text'})
results_df["Similarity_Score"] = results_df["Similarity_Score"].round(3)
final_df = results_df[['Page1_File', 'Page1_Page', 'Page2_File', 'Page2_Page', 'Similarity_Score', 'Page1_Text', 'Page2_Text']]
final_df = final_df.sort_values(["Page1_File", "Page1_Page", "Page2_File", "Page2_Page"])
final_df['Page1_Text'] = final_df['Page1_Text'].str[:200]
final_df['Page2_Text'] = final_df['Page2_Text'].str[:200]
return final_df
def map_metadata_subdocument(subdocument_df, metadata_source_df):
"""Helper to map metadata for subdocument results."""
metadata_df = metadata_source_df[['file', 'page', 'text']]
subdocument_df = subdocument_df.merge(metadata_df, left_on='Page1_Start_Index', right_index=True)\
.rename(columns={'file': 'Page1_File', 'page': 'Page1_Start_Page', 'text': 'Page1_Text'})
subdocument_df = subdocument_df.merge(metadata_df[['page']], left_on='Page1_End_Index', right_index=True)\
.rename(columns={'page': 'Page1_End_Page'})
subdocument_df = subdocument_df.merge(metadata_df, left_on='Page2_Start_Index', right_index=True)\
.rename(columns={'file': 'Page2_File', 'page': 'Page2_Start_Page', 'text': 'Page2_Text'})
subdocument_df = subdocument_df.merge(metadata_df[['page']], left_on='Page2_End_Index', right_index=True)\
.rename(columns={'page': 'Page2_End_Page'})
cols = ['Page1_File', 'Page1_Start_Page', 'Page1_End_Page',
'Page2_File', 'Page2_Start_Page', 'Page2_End_Page',
'Match_Length', 'Page1_Text', 'Page2_Text']
# Add Avg_Similarity if it exists (it won't for greedy match unless we add it)
if 'Avg_Similarity' in subdocument_df.columns:
subdocument_df['Avg_Similarity'] = subdocument_df['Avg_Similarity'].round(3)
cols.insert(7, 'Avg_Similarity')
final_df = subdocument_df[cols]
final_df = final_df.sort_values(['Page1_File', 'Page1_Start_Page', 'Page2_File', 'Page2_Start_Page'])
final_df['Page1_Text'] = final_df['Page1_Text'].str[:200]
final_df['Page2_Text'] = final_df['Page2_Text'].str[:200]
return final_df
def identify_similar_pages(
df_combined: pd.DataFrame,
similarity_threshold: float = 0.9,
min_word_count: int = 10,
min_consecutive_pages: int = 1,
greedy_match: bool = False, # NEW parameter
output_folder: str = OUTPUT_FOLDER,
progress=Progress(track_tqdm=True)
) -> Tuple[pd.DataFrame, List[str], pd.DataFrame]:
"""
Identifies similar pages with three possible strategies:
1. Single Page: If greedy_match=False and min_consecutive_pages=1.
2. Fixed-Length Subdocument: If greedy_match=False and min_consecutive_pages > 1.
3. Greedy Consecutive Match: If greedy_match=True.
"""
# ... (Initial setup: progress, data loading/processing, word count filter) ...
# This part remains the same as before.
output_paths = []
progress(0.1, desc="Processing and filtering text")
df = process_data(df_combined, 'text')
df['word_count'] = df['text_clean'].str.split().str.len().fillna(0)
original_row_count = len(df)
df_filtered = df[df['word_count'] >= min_word_count].copy()
df_filtered.reset_index(drop=True, inplace=True)
print(f"Filtered out {original_row_count - len(df_filtered)} pages with fewer than {min_word_count} words.")
if len(df_filtered) < 2:
return pd.DataFrame(), [], df_combined
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(df_filtered['text_clean'])
progress(0.3, desc="Calculating text similarity")
similarity_matrix = cosine_similarity(tfidf_matrix, dense_output=False)
coo_matrix = similarity_matrix.tocoo()
# Create a DataFrame of all individual page pairs above the threshold.
# This is the base for all three matching strategies.
similar_pages = [
(r, c, v) for r, c, v in zip(coo_matrix.row, coo_matrix.col, coo_matrix.data)
if r < c and v >= similarity_threshold
]
if not similar_pages:
return pd.DataFrame(), [], df_combined
base_similarity_df = pd.DataFrame(similar_pages, columns=['Page1_Index', 'Page2_Index', 'Similarity_Score'])
progress(0.6, desc="Aggregating results based on matching strategy")
# --- NEW: Logic to select matching strategy ---
if greedy_match:
# --- STRATEGY 3: Greedy Consecutive Matching ---
print("Finding matches using GREEDY consecutive strategy.")
# A set of pairs for fast lookups of (page1_idx, page2_idx)
valid_pairs_set = set(zip(base_similarity_df['Page1_Index'], base_similarity_df['Page2_Index']))
# Keep track of indices that have been used in a sequence
consumed_indices_1 = set()
consumed_indices_2 = set()
all_sequences = []
# Iterate through all potential starting pairs, sorted for consistent results
sorted_pairs = base_similarity_df.sort_values(['Page1_Index', 'Page2_Index'])
for _, row in sorted_pairs.iterrows():
start_idx1, start_idx2 = int(row['Page1_Index']), int(row['Page2_Index'])
# If this pair has already been consumed by a previous sequence, skip it
if start_idx1 in consumed_indices_1 or start_idx2 in consumed_indices_2:
continue
# This is a new sequence, start expanding it
current_sequence = [(start_idx1, start_idx2)]
k = 1
while True:
next_idx1 = start_idx1 + k
next_idx2 = start_idx2 + k
# Check if the next pair in the sequence is a valid match
if (next_idx1, next_idx2) in valid_pairs_set and \
next_idx1 not in consumed_indices_1 and \
next_idx2 not in consumed_indices_2:
current_sequence.append((next_idx1, next_idx2))
k += 1
else:
# The sequence has ended
break
# Record the found sequence and mark all its pages as consumed
sequence_indices_1 = [p[0] for p in current_sequence]
sequence_indices_2 = [p[1] for p in current_sequence]
all_sequences.append({
'Page1_Start_Index': sequence_indices_1[0], 'Page1_End_Index': sequence_indices_1[-1],
'Page2_Start_Index': sequence_indices_2[0], 'Page2_End_Index': sequence_indices_2[-1],
'Match_Length': len(current_sequence)
})
consumed_indices_1.update(sequence_indices_1)
consumed_indices_2.update(sequence_indices_2)
if not all_sequences:
return pd.DataFrame(), [], df_combined
subdocument_df = pd.DataFrame(all_sequences)
# We can add back the average similarity if needed, but it requires more lookups.
# For now, we'll omit it for simplicity in the greedy approach.
# ... (The rest is metadata mapping, same as the subdocument case)
elif min_consecutive_pages > 1:
# --- STRATEGY 2: Fixed-Length Subdocument Matching ---
print(f"Finding consecutive page matches (min_consecutive_pages > 1)")
similarity_df = base_similarity_df.copy()
similarity_df.sort_values(['Page1_Index', 'Page2_Index'], inplace=True)
is_consecutive = (similarity_df['Page1_Index'].diff() == 1) & (similarity_df['Page2_Index'].diff() == 1)
block_id = is_consecutive.eq(False).cumsum()
grouped = similarity_df.groupby(block_id)
agg_results = grouped.agg(
Page1_Start_Index=('Page1_Index', 'first'), Page2_Start_Index=('Page2_Index', 'first'),
Page1_End_Index=('Page1_Index', 'last'), Page2_End_Index=('Page2_Index', 'last'),
Match_Length=('Page1_Index', 'size'), Avg_Similarity=('Similarity_Score', 'mean')
).reset_index(drop=True)
subdocument_df = agg_results[agg_results['Match_Length'] >= min_consecutive_pages].copy()
if subdocument_df.empty: return pd.DataFrame(), [], df_combined
else:
# --- STRATEGY 1: Single Page Matching ---
print(f"Finding single page matches (min_consecutive_pages=1)")
final_df = map_metadata_single_page(base_similarity_df, df_filtered)
# The rest of the logic (saving files) is handled after this if/else block
pass # The final_df is already prepared
# --- Map metadata and format output ---
# This block now handles the output for both subdocument strategies (2 and 3)
if greedy_match or min_consecutive_pages > 1:
final_df = map_metadata_subdocument(subdocument_df, df_filtered)
progress(0.8, desc="Saving output files")
# If no matches were found, final_df could be empty.
if final_df.empty:
print("No matches found, no output files to save.")
return final_df, [], df_combined
# --- 1. Save the main results DataFrame ---
# This file contains the detailed summary of all matches found.
similarity_file_output_path = Path(output_folder) / 'page_similarity_results.csv'
final_df.to_csv(similarity_file_output_path, index=False)
output_paths.append(str(similarity_file_output_path))
print(f"Main results saved to {similarity_file_output_path}")
# --- 2. Save per-file redaction lists ---
# These files contain a simple list of page numbers to redact for each document
# that contains duplicate content.
# We group by the file containing the duplicates ('Page2_File')
for redact_file, group in final_df.groupby('Page2_File'):
output_file_name_stem = Path(redact_file).stem
output_file_path = Path(output_folder) / f"{output_file_name_stem}_pages_to_redact.csv"
all_pages_to_redact = set()
# Check if the results are for single pages or subdocuments
is_subdocument_match = 'Page2_Start_Page' in group.columns
if is_subdocument_match:
# For subdocument matches, create a range of pages for each match
for _, row in group.iterrows():
# Generate all page numbers from the start to the end of the match
pages_in_range = range(int(row['Page2_Start_Page']), int(row['Page2_End_Page']) + 1)
all_pages_to_redact.update(pages_in_range)
else:
# For single-page matches, just add the page number
pages = group['Page2_Page'].unique()
all_pages_to_redact.update(pages)
if all_pages_to_redact:
# Create a DataFrame from the sorted list of pages to redact
redaction_df = pd.DataFrame(sorted(list(all_pages_to_redact)), columns=['Page_to_Redact'])
redaction_df.to_csv(output_file_path, header=False, index=False)
output_paths.append(str(output_file_path))
print(f"Redaction list for {redact_file} saved to {output_file_path}")
# Note: The 'combined ocr output' csv was part of the original data loading function,
# not the analysis function itself. If you need that, it should be saved within
# your `combine_ocr_output_text` function.
return final_df, output_paths, df_combined
# ==============================================================================
# GRADIO HELPER FUNCTIONS
# ==============================================================================
def run_analysis(files, threshold, min_words, min_consecutive, greedy_match, progress=gr.Progress(track_tqdm=True)):
"""
Wrapper function updated to include the 'greedy_match' boolean.
"""
if not files:
gr.Warning("Please upload files to analyze.")
return None, None, None
progress(0, desc="Combining input files...")
df_combined, _ = combine_ocr_output_text(files)
if df_combined.empty:
gr.Warning("No data found in the uploaded files.")
return None, None, None
# Call the main analysis function with the new parameter
results_df, output_paths, full_df = identify_similar_pages(
df_combined=df_combined,
similarity_threshold=threshold,
min_word_count=min_words,
min_consecutive_pages=int(min_consecutive),
greedy_match=greedy_match, # Pass the new boolean
progress=progress
)
return results_df, output_paths, full_df
def show_page_previews(full_data, results_df, evt: gr.SelectData):
"""
Triggered when a user selects a row in the results DataFrame.
It uses the stored 'full_data' to find and display the complete text.
"""
if full_data is None or results_df is None:
return None, None # Return empty dataframes if no analysis has been run
selected_row = results_df.iloc[evt.index[0]]
# Determine if it's a single page or a multi-page (subdocument) match
is_subdocument_match = 'Page1_Start_Page' in selected_row
if is_subdocument_match:
# --- Handle Subdocument Match ---
file1, start1, end1 = selected_row['Page1_File'], selected_row['Page1_Start_Page'], selected_row['Page1_End_Page']
file2, start2, end2 = selected_row['Page2_File'], selected_row['Page2_Start_Page'], selected_row['Page2_End_Page']
page1_data = full_data[
(full_data['file'] == file1) &
(full_data['page'].between(start1, end1))
].sort_values('page')[['page', 'text']]
page2_data = full_data[
(full_data['file'] == file2) &
(full_data['page'].between(start2, end2))
].sort_values('page')[['page', 'text']]
else:
# --- Handle Single Page Match ---
file1, page1 = selected_row['Page1_File'], selected_row['Page1_Page']
file2, page2 = selected_row['Page2_File'], selected_row['Page2_Page']
page1_data = full_data[
(full_data['file'] == file1) & (full_data['page'] == page1)
][['page', 'text']]
page2_data = full_data[
(full_data['file'] == file2) & (full_data['page'] == page2)
][['page', 'text']]
return page1_data, page2_data
# Perturb text
# Apply the perturbation function with a 10% error probability
def perturb_text_with_errors(series:pd.Series):
def _perturb_text(text, error_probability=0.1):
words = text.split() # Split text into words
perturbed_words = []
for word in words:
if random.random() < error_probability: # Add a random error
perturbation_type = random.choice(['char_error', 'extra_space', 'extra_punctuation'])
if perturbation_type == 'char_error': # Introduce a character error
idx = random.randint(0, len(word) - 1)
char = random.choice(string.ascii_lowercase) # Add a random letter
word = word[:idx] + char + word[idx:]
elif perturbation_type == 'extra_space': # Add extra space around a word
word = ' ' + word + ' '
elif perturbation_type == 'extra_punctuation': # Add punctuation to the word
punctuation = random.choice(string.punctuation)
idx = random.randint(0, len(word)) # Insert punctuation randomly
word = word[:idx] + punctuation + word[idx:]
perturbed_words.append(word)
return ' '.join(perturbed_words)
series = series.apply(lambda x: _perturb_text(x, error_probability=0.1))
return series
|