File size: 158,393 Bytes
aa5c211 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 |
import os
import pandas as pd
import gradio as gr
from gradio_image_annotation import image_annotator
from tools.config import DEFAULT_HANDWRITE_SIGNATURE_CHECKBOX, DEFAULT_TABULAR_ANONYMISATION_STRATEGY, OUTPUT_FOLDER, INPUT_FOLDER, RUN_DIRECT_MODE, MAX_QUEUE_SIZE, DEFAULT_CONCURRENCY_LIMIT, MAX_FILE_SIZE, GRADIO_SERVER_PORT, ROOT_PATH, GET_DEFAULT_ALLOW_LIST, ALLOW_LIST_PATH, S3_ALLOW_LIST_PATH, FEEDBACK_LOGS_FOLDER, ACCESS_LOGS_FOLDER, USAGE_LOGS_FOLDER, DEFAULT_LANGUAGE, GET_COST_CODES, COST_CODES_PATH, S3_COST_CODES_PATH, ENFORCE_COST_CODES, DISPLAY_FILE_NAMES_IN_LOGS, SHOW_COSTS, RUN_AWS_FUNCTIONS, DOCUMENT_REDACTION_BUCKET, SHOW_WHOLE_DOCUMENT_TEXTRACT_CALL_OPTIONS, TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_BUCKET, TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_INPUT_SUBFOLDER, TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_OUTPUT_SUBFOLDER, SESSION_OUTPUT_FOLDER, LOAD_PREVIOUS_TEXTRACT_JOBS_S3, TEXTRACT_JOBS_S3_LOC, TEXTRACT_JOBS_LOCAL_LOC, HOST_NAME, DEFAULT_COST_CODE, OUTPUT_COST_CODES_PATH, OUTPUT_ALLOW_LIST_PATH, COGNITO_AUTH, SAVE_LOGS_TO_CSV, SAVE_LOGS_TO_DYNAMODB, ACCESS_LOG_DYNAMODB_TABLE_NAME, DYNAMODB_ACCESS_LOG_HEADERS, CSV_ACCESS_LOG_HEADERS, FEEDBACK_LOG_DYNAMODB_TABLE_NAME, DYNAMODB_FEEDBACK_LOG_HEADERS, CSV_FEEDBACK_LOG_HEADERS, USAGE_LOG_DYNAMODB_TABLE_NAME, DYNAMODB_USAGE_LOG_HEADERS, CSV_USAGE_LOG_HEADERS, TEXTRACT_JOBS_S3_INPUT_LOC, TEXTRACT_TEXT_EXTRACT_OPTION, NO_REDACTION_PII_OPTION, TEXT_EXTRACTION_MODELS, PII_DETECTION_MODELS, DEFAULT_TEXT_EXTRACTION_MODEL, DEFAULT_PII_DETECTION_MODEL, LOG_FILE_NAME, CHOSEN_COMPREHEND_ENTITIES, FULL_COMPREHEND_ENTITY_LIST, CHOSEN_REDACT_ENTITIES, FULL_ENTITY_LIST, FILE_INPUT_HEIGHT, TABULAR_PII_DETECTION_MODELS, USAGE_LOG_FILE_NAME, FEEDBACK_LOG_FILE_NAME, CONFIG_FOLDER, GRADIO_TEMP_DIR, MPLCONFIGDIR, S3_FEEDBACK_LOGS_FOLDER, S3_ACCESS_LOGS_FOLDER, S3_USAGE_LOGS_FOLDER, CHOSEN_LOCAL_OCR_MODEL, DEFAULT_LANGUAGE_FULL_NAME, SHOW_LANGUAGE_SELECTION, DO_INITIAL_TABULAR_DATA_CLEAN, DEFAULT_DUPLICATE_DETECTION_THRESHOLD, DIRECT_MODE_TASK, DIRECT_MODE_INPUT_FILE, DIRECT_MODE_OUTPUT_DIR, DIRECT_MODE_DUPLICATE_TYPE, LOCAL_PII_OPTION, TESSERACT_TEXT_EXTRACT_OPTION, AWS_ACCESS_KEY, AWS_SECRET_KEY, AWS_REGION, DOCUMENT_REDACTION_BUCKET, IMAGES_DPI, PREPROCESS_LOCAL_OCR_IMAGES, COMPRESS_REDACTED_PDF, RETURN_PDF_END_OF_REDACTION, OUTPUT_DENY_LIST_PATH, OUTPUT_WHOLE_PAGE_REDACTION_LIST_PATH, DEFAULT_HANDWRITE_SIGNATURE_CHECKBOX, DEFAULT_TABULAR_ANONYMISATION_STRATEGY, DEFAULT_FUZZY_SPELLING_MISTAKES_NUM, DEFAULT_PAGE_MIN, DEFAULT_PAGE_MAX, DEFAULT_EXCEL_SHEETS, USE_GREEDY_DUPLICATE_DETECTION, DEFAULT_MIN_CONSECUTIVE_PAGES, DEFAULT_COMBINE_PAGES, DEFAULT_MIN_WORD_COUNT, DEFAULT_TEXT_COLUMNS, DEFAULT_SEARCH_QUERY
from tools.helper_functions import put_columns_in_df, get_connection_params, reveal_feedback_buttons, custom_regex_load, reset_state_vars, load_in_default_allow_list, reset_review_vars, merge_csv_files, load_all_output_files, update_dataframe, check_for_existing_textract_file, load_in_default_cost_codes, enforce_cost_codes, calculate_aws_costs, calculate_time_taken, reset_base_dataframe, reset_ocr_base_dataframe, update_cost_code_dataframe_from_dropdown_select, check_for_relevant_ocr_output_with_words, reset_data_vars, reset_aws_call_vars, _get_env_list, ensure_folder_exists, reset_ocr_with_words_base_dataframe, update_language_dropdown, LANGUAGE_CHOICES, MAPPED_LANGUAGE_CHOICES
from tools.aws_functions import download_file_from_s3, upload_log_file_to_s3
from tools.file_redaction import choose_and_run_redactor
from tools.file_conversion import prepare_image_or_pdf, get_input_file_names
from tools.redaction_review import apply_redactions_to_review_df_and_files, update_all_page_annotation_object_based_on_previous_page, decrease_page, increase_page, update_annotator_object_and_filter_df, update_entities_df_recogniser_entities, update_entities_df_page, update_entities_df_text, df_select_callback_dataframe_row, convert_df_to_xfdf, convert_xfdf_to_dataframe, reset_dropdowns, exclude_selected_items_from_redaction, undo_last_removal, update_selected_review_df_row_colour, update_all_entity_df_dropdowns, df_select_callback_cost, update_other_annotator_number_from_current, update_annotator_page_from_review_df, df_select_callback_ocr, df_select_callback_textract_api, get_all_rows_with_same_text, increase_bottom_page_count_based_on_top, create_annotation_objects_from_filtered_ocr_results_with_words, df_select_callback_dataframe_row_ocr_with_words, update_redact_choice_df_from_page_dropdown, get_all_rows_with_same_text_redact,get_and_merge_current_page_annotations
from tools.data_anonymise import anonymise_files_with_open_text
from tools.auth import authenticate_user
from tools.load_spacy_model_custom_recognisers import custom_entities
from tools.custom_csvlogger import CSVLogger_custom
from tools.find_duplicate_pages import run_duplicate_analysis, exclude_match, handle_selection_and_preview, apply_whole_page_redactions_from_list, create_annotation_objects_from_duplicates, run_full_search_and_analysis
from tools.find_duplicate_tabular import update_tabular_column_choices, run_tabular_duplicate_detection, handle_tabular_row_selection, clean_tabular_duplicates
from tools.textract_batch_call import analyse_document_with_textract_api, poll_whole_document_textract_analysis_progress_and_download, load_in_textract_job_details, check_for_provided_job_id, check_textract_outputs_exist, replace_existing_pdf_input_for_whole_document_outputs
# Suppress downcasting warnings
pd.set_option('future.no_silent_downcasting', True)
# Ensure that output folders exist
ensure_folder_exists(CONFIG_FOLDER)
ensure_folder_exists(OUTPUT_FOLDER)
ensure_folder_exists(INPUT_FOLDER)
ensure_folder_exists(GRADIO_TEMP_DIR)
ensure_folder_exists(MPLCONFIGDIR)
ensure_folder_exists(FEEDBACK_LOGS_FOLDER)
ensure_folder_exists(ACCESS_LOGS_FOLDER)
ensure_folder_exists(USAGE_LOGS_FOLDER)
# Convert string environment variables to string or list
if SAVE_LOGS_TO_CSV == "True": SAVE_LOGS_TO_CSV = True
else: SAVE_LOGS_TO_CSV = False
if SAVE_LOGS_TO_DYNAMODB == "True": SAVE_LOGS_TO_DYNAMODB = True
else: SAVE_LOGS_TO_DYNAMODB = False
if SHOW_LANGUAGE_SELECTION == "True": SHOW_LANGUAGE_SELECTION = True
else: SHOW_LANGUAGE_SELECTION = False
if DISPLAY_FILE_NAMES_IN_LOGS == "True": DISPLAY_FILE_NAMES_IN_LOGS = True
else: DISPLAY_FILE_NAMES_IN_LOGS = False
if DO_INITIAL_TABULAR_DATA_CLEAN == "True": DO_INITIAL_TABULAR_DATA_CLEAN = True
else: DO_INITIAL_TABULAR_DATA_CLEAN = False
if COMPRESS_REDACTED_PDF == "True": COMPRESS_REDACTED_PDF = True
else: COMPRESS_REDACTED_PDF = False
if RETURN_PDF_END_OF_REDACTION == "True": RETURN_PDF_END_OF_REDACTION = True
else: RETURN_PDF_END_OF_REDACTION = False
if USE_GREEDY_DUPLICATE_DETECTION == "True": USE_GREEDY_DUPLICATE_DETECTION = True
else: USE_GREEDY_DUPLICATE_DETECTION = False
if DEFAULT_COMBINE_PAGES == "True": DEFAULT_COMBINE_PAGES = True
else: DEFAULT_COMBINE_PAGES = False
if CSV_ACCESS_LOG_HEADERS: CSV_ACCESS_LOG_HEADERS = _get_env_list(CSV_ACCESS_LOG_HEADERS)
if CSV_FEEDBACK_LOG_HEADERS: CSV_FEEDBACK_LOG_HEADERS = _get_env_list(CSV_FEEDBACK_LOG_HEADERS)
if CSV_USAGE_LOG_HEADERS: CSV_USAGE_LOG_HEADERS = _get_env_list(CSV_USAGE_LOG_HEADERS)
if DYNAMODB_ACCESS_LOG_HEADERS: DYNAMODB_ACCESS_LOG_HEADERS = _get_env_list(DYNAMODB_ACCESS_LOG_HEADERS)
if DYNAMODB_FEEDBACK_LOG_HEADERS: DYNAMODB_FEEDBACK_LOG_HEADERS = _get_env_list(DYNAMODB_FEEDBACK_LOG_HEADERS)
if DYNAMODB_USAGE_LOG_HEADERS: DYNAMODB_USAGE_LOG_HEADERS = _get_env_list(DYNAMODB_USAGE_LOG_HEADERS)
if CHOSEN_COMPREHEND_ENTITIES: CHOSEN_COMPREHEND_ENTITIES = _get_env_list(CHOSEN_COMPREHEND_ENTITIES)
if FULL_COMPREHEND_ENTITY_LIST: FULL_COMPREHEND_ENTITY_LIST = _get_env_list(FULL_COMPREHEND_ENTITY_LIST)
if CHOSEN_REDACT_ENTITIES: CHOSEN_REDACT_ENTITIES = _get_env_list(CHOSEN_REDACT_ENTITIES)
if FULL_ENTITY_LIST: FULL_ENTITY_LIST = _get_env_list(FULL_ENTITY_LIST)
if DEFAULT_TEXT_COLUMNS: DEFAULT_TEXT_COLUMNS = _get_env_list(DEFAULT_TEXT_COLUMNS)
if DEFAULT_EXCEL_SHEETS: DEFAULT_EXCEL_SHEETS = _get_env_list(DEFAULT_EXCEL_SHEETS)
if DEFAULT_HANDWRITE_SIGNATURE_CHECKBOX: DEFAULT_HANDWRITE_SIGNATURE_CHECKBOX = _get_env_list(DEFAULT_HANDWRITE_SIGNATURE_CHECKBOX)
# Add custom spacy recognisers to the Comprehend list, so that local Spacy model can be used to pick up e.g. titles, streetnames, UK postcodes that are sometimes missed by comprehend
CHOSEN_COMPREHEND_ENTITIES.extend(custom_entities)
FULL_COMPREHEND_ENTITY_LIST.extend(custom_entities)
FILE_INPUT_HEIGHT = int(FILE_INPUT_HEIGHT)
# Create the gradio interface
app = gr.Blocks(theme = gr.themes.Default(primary_hue="blue"), fill_width=True) #gr.themes.Base()
with app:
###
# STATE VARIABLES
###
# Pymupdf doc needs to be stored as State objects as they do not have a standard Gradio component equivalent
pdf_doc_state = gr.State(list())
all_image_annotations_state = gr.Dropdown("", label="all_image_annotations_state", allow_custom_value=True, visible=False)
all_decision_process_table_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="all_decision_process_table", visible=False, type="pandas", wrap=True)
all_page_line_level_ocr_results = gr.Dropdown("", label="all_page_line_level_ocr_results", allow_custom_value=True, visible=False)
all_page_line_level_ocr_results_with_words = gr.Dropdown("", label="all_page_line_level_ocr_results_with_words", allow_custom_value=True, visible=False)
chosen_local_model_textbox = gr.Textbox(CHOSEN_LOCAL_OCR_MODEL, label="chosen_local_model_textbox", visible=False)
session_hash_state = gr.Textbox(label= "session_hash_state", value="", visible=False)
host_name_textbox = gr.Textbox(label= "host_name_textbox", value=HOST_NAME, visible=False)
s3_output_folder_state = gr.Textbox(label= "s3_output_folder_state", value="", visible=False)
session_output_folder_textbox = gr.Textbox(value = SESSION_OUTPUT_FOLDER, label="session_output_folder_textbox", visible=False)
output_folder_textbox = gr.Textbox(value = OUTPUT_FOLDER, label="output_folder_textbox", visible=False)
input_folder_textbox = gr.Textbox(value = INPUT_FOLDER, label="input_folder_textbox", visible=False)
first_loop_state = gr.Checkbox(label="first_loop_state", value=True, visible=False)
second_loop_state = gr.Checkbox(label="second_loop_state", value=False, visible=False)
do_not_save_pdf_state = gr.Checkbox(label="do_not_save_pdf_state", value=False, visible=False)
save_pdf_state = gr.Checkbox(label="save_pdf_state", value=True, visible=False)
prepared_pdf_state = gr.Dropdown(label = "prepared_pdf_list", value="", allow_custom_value=True,visible=False)
document_cropboxes = gr.Dropdown(label = "document_cropboxes", value="", allow_custom_value=True,visible=False)
page_sizes = gr.Dropdown(label = "page_sizes", value="", allow_custom_value=True, visible=False)
images_pdf_state = gr.Dropdown(label = "images_pdf_list", value="", allow_custom_value=True,visible=False)
all_img_details_state = gr.Dropdown(label = "all_img_details_state", value="", allow_custom_value=True,visible=False)
output_image_files_state = gr.Dropdown(label = "output_image_files_list", value="", allow_custom_value=True,visible=False)
output_file_list_state = gr.Dropdown(label = "output_file_list", value="", allow_custom_value=True,visible=False)
text_output_file_list_state = gr.Dropdown(label = "text_output_file_list", value="", allow_custom_value=True,visible=False)
log_files_output_list_state = gr.Dropdown(label = "log_files_output_list", value="", allow_custom_value=True,visible=False)
duplication_file_path_outputs_list_state = gr.Dropdown(label = "duplication_file_path_outputs_list", value=list(), multiselect=True, allow_custom_value=True,visible=False)
# Backup versions of these objects in case you make a mistake
backup_review_state = gr.State(pd.DataFrame())
backup_image_annotations_state = gr.State(list())
backup_recogniser_entity_dataframe_base = gr.State(pd.DataFrame())
backup_all_page_line_level_ocr_results_with_words_df_base = gr.State(pd.DataFrame())
# Logging variables
access_logs_state = gr.Textbox(label= "access_logs_state", value=ACCESS_LOGS_FOLDER + LOG_FILE_NAME, visible=False)
access_s3_logs_loc_state = gr.Textbox(label= "access_s3_logs_loc_state", value=S3_ACCESS_LOGS_FOLDER, visible=False)
feedback_logs_state = gr.Textbox(label= "feedback_logs_state", value=FEEDBACK_LOGS_FOLDER + FEEDBACK_LOG_FILE_NAME, visible=False)
feedback_s3_logs_loc_state = gr.Textbox(label= "feedback_s3_logs_loc_state", value=S3_FEEDBACK_LOGS_FOLDER, visible=False)
usage_logs_state = gr.Textbox(label= "usage_logs_state", value=USAGE_LOGS_FOLDER + USAGE_LOG_FILE_NAME, visible=False)
usage_s3_logs_loc_state = gr.Textbox(label= "usage_s3_logs_loc_state", value=S3_USAGE_LOGS_FOLDER, visible=False)
session_hash_textbox = gr.Textbox(label= "session_hash_textbox", value="", visible=False)
textract_metadata_textbox = gr.Textbox(label = "textract_metadata_textbox", value="", visible=False)
comprehend_query_number = gr.Number(label = "comprehend_query_number", value=0, visible=False)
textract_query_number = gr.Number(label = "textract_query_number", value=0, visible=False)
doc_full_file_name_textbox = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False)
doc_file_name_no_extension_textbox = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False)
blank_doc_file_name_no_extension_textbox_for_logs = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False)
blank_data_file_name_no_extension_textbox_for_logs = gr.Textbox(label = "data_full_file_name_textbox", value="", visible=False)
placeholder_doc_file_name_no_extension_textbox_for_logs = gr.Textbox(label = "doc_full_file_name_textbox", value="document", visible=False)
placeholder_data_file_name_no_extension_textbox_for_logs = gr.Textbox(label = "data_full_file_name_textbox", value="data_file", visible=False)
# Left blank for when user does not want to report file names
doc_file_name_with_extension_textbox = gr.Textbox(label = "doc_file_name_with_extension_textbox", value="", visible=False)
doc_file_name_textbox_list = gr.Dropdown(label = "doc_file_name_textbox_list", value="", allow_custom_value=True,visible=False)
latest_review_file_path = gr.Textbox(label = "latest_review_file_path", value="", visible=False) # Latest review file path output from redaction
latest_ocr_file_path = gr.Textbox(label = "latest_ocr_file_path", value="", visible=False) # Latest ocr file path output from text extraction
data_full_file_name_textbox = gr.Textbox(label = "data_full_file_name_textbox", value="", visible=False)
data_file_name_no_extension_textbox = gr.Textbox(label = "data_full_file_name_textbox", value="", visible=False)
data_file_name_with_extension_textbox = gr.Textbox(label = "data_file_name_with_extension_textbox", value="", visible=False)
data_file_name_textbox_list = gr.Dropdown(label = "data_file_name_textbox_list", value="", allow_custom_value=True,visible=False)
# Constants just to use with the review dropdowns for filtering by various columns
label_name_const = gr.Textbox(label="label_name_const", value="label", visible=False)
text_name_const = gr.Textbox(label="text_name_const", value="text", visible=False)
page_name_const = gr.Textbox(label="page_name_const", value="page", visible=False)
actual_time_taken_number = gr.Number(label = "actual_time_taken_number", value=0.0, precision=1, visible=False) # This keeps track of the time taken to redact files for logging purposes.
annotate_previous_page = gr.Number(value=0, label="Previous page", precision=0, visible=False) # Keeps track of the last page that the annotator was on
s3_logs_output_textbox = gr.Textbox(label="Feedback submission logs", visible=False)
## Annotator zoom value
annotator_zoom_number = gr.Number(label = "Current annotator zoom level", value=100, precision=0, visible=False)
zoom_true_bool = gr.Checkbox(label="zoom_true_bool", value=True, visible=False)
zoom_false_bool = gr.Checkbox(label="zoom_false_bool", value=False, visible=False)
clear_all_page_redactions = gr.Checkbox(label="clear_all_page_redactions", value=True, visible=False)
prepare_for_review_bool = gr.Checkbox(label="prepare_for_review_bool", value=True, visible=False)
prepare_for_review_bool_false = gr.Checkbox(label="prepare_for_review_bool_false", value=False, visible=False)
prepare_images_bool_false = gr.Checkbox(label="prepare_images_bool_false", value=False, visible=False)
## Settings page variables
default_deny_list_file_name = "default_deny_list.csv"
default_deny_list_loc = OUTPUT_FOLDER + "/" + default_deny_list_file_name
in_deny_list_text_in = gr.Textbox(value="deny_list", visible=False)
fully_redacted_list_file_name = "default_fully_redacted_list.csv"
fully_redacted_list_loc = OUTPUT_FOLDER + "/" + fully_redacted_list_file_name
in_fully_redacted_text_in = gr.Textbox(value="fully_redacted_pages_list", visible=False)
# S3 settings for default allow list load
s3_default_bucket = gr.Textbox(label = "Default S3 bucket", value=DOCUMENT_REDACTION_BUCKET, visible=False)
s3_default_allow_list_file = gr.Textbox(label = "Default allow list file", value=S3_ALLOW_LIST_PATH, visible=False)
default_allow_list_output_folder_location = gr.Textbox(label = "Output default allow list location", value=OUTPUT_ALLOW_LIST_PATH, visible=False)
s3_whole_document_textract_default_bucket = gr.Textbox(label = "Default Textract whole_document S3 bucket", value=TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_BUCKET, visible=False)
s3_whole_document_textract_input_subfolder = gr.Textbox(label = "Default Textract whole_document S3 input folder", value=TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_INPUT_SUBFOLDER, visible=False)
s3_whole_document_textract_output_subfolder = gr.Textbox(label = "Default Textract whole_document S3 output folder", value=TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_OUTPUT_SUBFOLDER, visible=False)
successful_textract_api_call_number = gr.Number(precision=0, value=0, visible=False)
no_redaction_method_drop = gr.Radio(label = """Placeholder for no redaction method after downloading Textract outputs""", value = NO_REDACTION_PII_OPTION, choices=[NO_REDACTION_PII_OPTION], visible=False)
textract_only_method_drop = gr.Radio(label="""Placeholder for Textract method after downloading Textract outputs""", value = TEXTRACT_TEXT_EXTRACT_OPTION, choices=[TEXTRACT_TEXT_EXTRACT_OPTION], visible=False)
load_s3_whole_document_textract_logs_bool = gr.Textbox(label = "Load Textract logs or not", value=LOAD_PREVIOUS_TEXTRACT_JOBS_S3, visible=False)
s3_whole_document_textract_logs_subfolder = gr.Textbox(label = "Default Textract whole_document S3 input folder", value=TEXTRACT_JOBS_S3_LOC, visible=False)
local_whole_document_textract_logs_subfolder = gr.Textbox(label = "Default Textract whole_document S3 output folder", value=TEXTRACT_JOBS_LOCAL_LOC, visible=False)
s3_default_cost_codes_file = gr.Textbox(label = "Default cost centre file", value=S3_COST_CODES_PATH, visible=False)
default_cost_codes_output_folder_location = gr.Textbox(label = "Output default cost centre location", value=OUTPUT_COST_CODES_PATH, visible=False)
enforce_cost_code_textbox = gr.Textbox(label = "Enforce cost code textbox", value=ENFORCE_COST_CODES, visible=False)
default_cost_code_textbox = gr.Textbox(label = "Default cost code textbox", value=DEFAULT_COST_CODE, visible=False)
# Base tables that are not modified subsequent to load
recogniser_entity_dataframe_base = gr.State(pd.DataFrame(columns=["page", "label", "text", "id"]))
all_page_line_level_ocr_results_df_base = gr.State(pd.DataFrame(columns=["page", "text", "left", "top", "width", "height", "line"]))
all_line_level_ocr_results_df_placeholder = gr.State(pd.DataFrame(columns=["page", "text", "left", "top", "width", "height", "line"]))
# Placeholder for selected entity dataframe row
selected_entity_id = gr.Textbox(value="", label="selected_entity_id", visible=False)
selected_entity_colour = gr.Textbox(value="", label="selected_entity_colour", visible=False)
selected_entity_dataframe_row_text = gr.Textbox(value="", label="selected_entity_dataframe_row_text", visible=False)
selected_entity_dataframe_row_text_redact = gr.Textbox(value="", label="selected_entity_dataframe_row_text_redact", visible=False)
# This is an invisible dataframe that holds all items from the redaction outputs that have the same text as the selected row
recogniser_entity_dataframe_same_text = gr.Dataframe(pd.DataFrame(data={"page":list(), "label":list(), "text":list(), "id":list()}), col_count=(4,"fixed"), type="pandas", label="Table rows with same text", headers=["page", "label", "text", "id"], show_fullscreen_button=True, wrap=True, max_height=400, static_columns=[0,1,2,3], visible=False)
to_redact_dataframe_same_text = gr.Dataframe(pd.DataFrame(data={"page":list(), "line":list(), "word_text":list(), "word_x0":list(), "word_y0":list(),"word_x1":list(),"word_y1":list(), "index":list()}), type="pandas", headers=["page", "line", "word_text", "word_x0","word_y0","word_x1","word_y1","index"], wrap=False, visible=False)
# Duplicate page detection
in_duplicate_pages_text = gr.Textbox(label="in_duplicate_pages_text", visible=False)
duplicate_pages_df = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="duplicate_pages_df", visible=False, type="pandas", wrap=True)
full_duplicated_data_df = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="full_duplicated_data_df", visible=False, type="pandas", wrap=True)
selected_duplicate_data_row_index = gr.Number(value=None, label="selected_duplicate_data_row_index", visible=False)
full_duplicate_data_by_file = gr.State() # A dictionary of the full duplicate data indexed by file
# Tracking variables for current page (not visible)
current_loop_page_number = gr.Number(value=0,precision=0, interactive=False, label = "Last redacted page in document", visible=False)
page_break_return = gr.Checkbox(value = False, label="Page break reached", visible=False)
# Placeholders for elements that may be made visible later below depending on environment variables
cost_code_dataframe_base = gr.Dataframe(value=pd.DataFrame(), row_count = (0, "dynamic"), label="Cost codes", type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, show_search='filter', wrap=True, max_height=200, visible=False)
cost_code_dataframe = gr.Dataframe(value=pd.DataFrame(), type="pandas", visible=False, wrap=True)
cost_code_choice_drop = gr.Dropdown(value=DEFAULT_COST_CODE, label="Choose cost code for analysis. Please contact Finance if you can't find your cost code in the given list.", choices=[DEFAULT_COST_CODE], allow_custom_value=False, visible=False)
textract_output_found_checkbox = gr.Checkbox(value= False, label="Existing Textract output file found", interactive=False, visible=False)
relevant_ocr_output_with_words_found_checkbox = gr.Checkbox(value= False, label="Existing local OCR output file found", interactive=False, visible=False)
total_pdf_page_count = gr.Number(label = "Total page count", value=0, visible=False)
estimated_aws_costs_number = gr.Number(label = "Approximate AWS Textract and/or Comprehend cost ($)", value=0, visible=False, precision=2)
estimated_time_taken_number = gr.Number(label = "Approximate time taken to extract text/redact (minutes)", value=0, visible=False, precision=2)
only_extract_text_radio = gr.Checkbox(value=False, label="Only extract text (no redaction)", visible=False)
# Textract API call placeholders in case option not selected in config
job_name_textbox = gr.Textbox(value="", label="whole_document Textract call", visible=False)
send_document_to_textract_api_btn = gr.Button("Analyse document with AWS Textract", variant="primary", visible=False)
job_id_textbox = gr.Textbox(label = "Latest job ID for whole_document document analysis", value='', visible=False)
check_state_of_textract_api_call_btn = gr.Button("Check state of Textract document job and download", variant="secondary", visible=False)
job_current_status = gr.Textbox(value="", label="Analysis job current status", visible=False)
job_type_dropdown = gr.Dropdown(value="document_text_detection", choices=["document_text_detection", "document_analysis"], label="Job type of Textract analysis job", allow_custom_value=False, visible=False)
textract_job_detail_df = gr.Dataframe(pd.DataFrame(columns=['job_id','file_name','job_type','signature_extraction','job_date_time']), label="Previous job details", visible=False, type="pandas", wrap=True)
selected_job_id_row = gr.Dataframe(pd.DataFrame(columns=['job_id','file_name','job_type','signature_extraction','job_date_time']), label="Selected job id row", visible=False, type="pandas", wrap=True)
is_a_textract_api_call = gr.Checkbox(value=False, label="is_this_a_textract_api_call", visible=False)
job_output_textbox = gr.Textbox(value="", label="Textract call outputs", visible=False)
job_input_textbox = gr.Textbox(value=TEXTRACT_JOBS_S3_INPUT_LOC, label="Textract call outputs", visible=False)
textract_job_output_file = gr.File(label="Textract job output files", height=FILE_INPUT_HEIGHT, visible=False)
convert_textract_outputs_to_ocr_results = gr.Button("Placeholder - Convert Textract job outputs to OCR results (needs relevant document file uploaded above)", variant="secondary", visible=False)
## Duplicate search object
new_duplicate_search_annotation_object = gr.Dropdown(value=None, label="new_duplicate_search_annotation_object", allow_custom_value=True, visible=False)
# Spacy analyser state
updated_nlp_analyser_state = gr.State(list())
tesseract_lang_data_file_path = gr.Textbox("", visible=False)
###
# UI DESIGN
###
gr.Markdown(
"""# Document redaction
Redact personally identifiable information (PII) from documents (PDF, images), Word files (.docx), or tabular data (XLSX/CSV/Parquet). Please see the [User Guide](https://github.com/seanpedrick-case/doc_redaction/blob/main/README.md) for a walkthrough on how to use the app. Below is a very brief overview.
To identify text in documents, the 'Local' text/OCR image analysis uses spaCy/Tesseract, and works well only for documents with typed text. If available, choose 'AWS Textract' to redact more complex elements e.g. signatures or handwriting. Then, choose a method for PII identification. 'Local' is quick and gives good results if you are primarily looking for a custom list of terms to redact (see Redaction settings). If available, AWS Comprehend gives better results at a small cost.
After redaction, review suggested redactions on the 'Review redactions' tab. The original pdf can be uploaded here alongside a '...review_file.csv' to continue a previous redaction/review task. See the 'Redaction settings' tab to choose which pages to redact, the type of information to redact (e.g. people, places), or custom terms to always include/ exclude from redaction.
NOTE: The app is not 100% accurate, and it will miss some personal information. It is essential that all outputs are reviewed **by a human** before using the final outputs.""")
###
# REDACTION PDF/IMAGES TABLE
###
with gr.Tab("Redact PDFs/images"):
with gr.Accordion("Redact document", open = True):
in_doc_files = gr.File(label="Choose a PDF document or image file (PDF, JPG, PNG)", file_count= "multiple", file_types=['.pdf', '.jpg', '.png', '.json', '.zip'], height=FILE_INPUT_HEIGHT)
text_extract_method_radio = gr.Radio(label="""Choose text extraction method. Local options are lower quality but cost nothing - they may be worth a try if you are willing to spend some time reviewing outputs. AWS Textract has a cost per page - £2.66 ($3.50) per 1,000 pages with signature detection (default), £1.14 ($1.50) without. Change the settings in the tab below (AWS Textract signature detection) to change this.""", value = DEFAULT_TEXT_EXTRACTION_MODEL, choices=TEXT_EXTRACTION_MODELS)
with gr.Accordion("Enable AWS Textract signature detection (default is off)", open = False):
handwrite_signature_checkbox = gr.CheckboxGroup(label="AWS Textract extraction settings", choices=["Extract handwriting", "Extract signatures"], value=DEFAULT_HANDWRITE_SIGNATURE_CHECKBOX)
with gr.Row(equal_height=True):
pii_identification_method_drop = gr.Radio(label = """Choose personal information detection method. The local model is lower quality but costs nothing - it may be worth a try if you are willing to spend some time reviewing outputs, or if you are only interested in searching for custom search terms (see Redaction settings - custom deny list). AWS Comprehend has a cost of around £0.0075 ($0.01) per 10,000 characters.""", value = DEFAULT_PII_DETECTION_MODEL, choices=PII_DETECTION_MODELS)
if SHOW_COSTS == "True":
with gr.Accordion("Estimated costs and time taken. Note that costs shown only include direct usage of AWS services and do not include other running costs (e.g. storage, run-time costs)", open = True, visible=True):
with gr.Row(equal_height=True):
with gr.Column(scale=1):
textract_output_found_checkbox = gr.Checkbox(value= False, label="Existing Textract output file found", interactive=False, visible=True)
relevant_ocr_output_with_words_found_checkbox = gr.Checkbox(value= False, label="Existing local OCR output file found", interactive=False, visible=True)
with gr.Column(scale=4):
with gr.Row(equal_height=True):
total_pdf_page_count = gr.Number(label = "Total page count", value=0, visible=True, interactive=False)
estimated_aws_costs_number = gr.Number(label = "Approximate AWS Textract and/or Comprehend cost (£)", value=0.00, precision=2, visible=True, interactive=False)
estimated_time_taken_number = gr.Number(label = "Approximate time taken to extract text/redact (minutes)", value=0, visible=True, precision=2, interactive=False)
if GET_COST_CODES == "True" or ENFORCE_COST_CODES == "True":
with gr.Accordion("Assign task to cost code", open = True, visible=True):
gr.Markdown("Please ensure that you have approval from your budget holder before using this app for redaction tasks that incur a cost.")
with gr.Row():
cost_code_dataframe = gr.Dataframe(value=pd.DataFrame(), row_count = (0, "dynamic"), label="Existing cost codes", type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, show_search='filter', visible=True, wrap=True, max_height=200)
with gr.Column():
reset_cost_code_dataframe_button = gr.Button(value="Reset code code table filter")
cost_code_choice_drop = gr.Dropdown(value=DEFAULT_COST_CODE, label="Choose cost code for analysis", choices=[DEFAULT_COST_CODE], allow_custom_value=False, visible=True)
if SHOW_WHOLE_DOCUMENT_TEXTRACT_CALL_OPTIONS == "True":
with gr.Accordion("Submit whole document to AWS Textract API (quickest text extraction for large documents)", open = False, visible=True):
with gr.Row(equal_height=True):
gr.Markdown("""Document will be submitted to AWS Textract API service to extract all text in the document. Processing will take place on (secure) AWS servers, and outputs will be stored on S3 for up to 7 days. To download the results, click 'Check status' below and they will be downloaded if ready.""")
with gr.Row(equal_height=True):
send_document_to_textract_api_btn = gr.Button("Analyse document with AWS Textract API call", variant="primary", visible=True)
with gr.Row(equal_height=False):
with gr.Column(scale=2):
textract_job_detail_df = gr.Dataframe(label="Previous job details", visible=True, type="pandas", wrap=True, interactive=True, row_count=(0, 'fixed'), col_count=(5,'fixed'), static_columns=[0,1,2,3,4], max_height=400)
with gr.Column(scale=1):
job_id_textbox = gr.Textbox(label = "Job ID to check status", value='', visible=True)
check_state_of_textract_api_call_btn = gr.Button("Check status of Textract job and download", variant="secondary", visible=True)
with gr.Row():
with gr.Column():
textract_job_output_file = gr.File(label="Textract job output files", height=100, visible=True)
with gr.Column():
job_current_status = gr.Textbox(value="", label="Analysis job current status", visible=True)
convert_textract_outputs_to_ocr_results = gr.Button("Convert Textract job outputs to OCR results", variant="secondary", visible=True)
gr.Markdown("""If you only want to redact certain pages, or certain entities (e.g. just email addresses, or a custom list of terms), please go to the Redaction Settings tab.""")
document_redact_btn = gr.Button("Extract text and redact document", variant="primary", scale = 4)
with gr.Row(equal_height=True):
redaction_output_summary_textbox = gr.Textbox(label="Output summary", scale=1)
output_file = gr.File(label="Output files", scale = 2)#, height=FILE_INPUT_HEIGHT)
latest_file_completed_num = gr.Number(value=0, label="Number of documents redacted", interactive=False, visible=False)
# Feedback elements are invisible until revealed by redaction action
pdf_feedback_title = gr.Markdown(value="## Please give feedback", visible=False)
pdf_feedback_radio = gr.Radio(label = "Quality of results", choices=["The results were good", "The results were not good"], visible=False)
pdf_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False)
pdf_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False)
###
# REVIEW REDACTIONS TAB
###
with gr.Tab("Review redactions", id="tab_object_annotation"):
all_page_line_level_ocr_results_with_words_df_base = gr.Dataframe(type="pandas", label="all_page_line_level_ocr_results_with_words_df_base", show_fullscreen_button=True, wrap=False, show_search="filter", visible=False)
with gr.Accordion(label = "Review PDF redactions", open=True):
with gr.Row(equal_height=True):
with gr.Column(scale=2):
input_pdf_for_review = gr.File(label="Upload original PDF to begin review process.", file_count='multiple', height=FILE_INPUT_HEIGHT)
upload_pdf_for_review_btn = gr.Button("1. Upload original PDF", variant="secondary")
with gr.Column(scale=1):
input_review_files = gr.File(label="Upload review files here to review suggested redactions. 'review_file' csv The 'ocr_results with words' file can also be provided for searching text and making new redactions.", file_count='multiple', height=FILE_INPUT_HEIGHT)
upload_review_files_btn = gr.Button("2. Upload review or OCR csv files", variant="secondary")
with gr.Row():
annotate_zoom_in = gr.Button("Zoom in", visible=False)
annotate_zoom_out = gr.Button("Zoom out", visible=False)
with gr.Row():
clear_all_redactions_on_page_btn = gr.Button("Clear all redactions on page", visible=False)
with gr.Accordion(label = "View and edit review file data", open=False):
review_file_df = gr.Dataframe(value=pd.DataFrame(), headers=['image', 'page', 'label', 'color', 'xmin', 'ymin', 'xmax', 'ymax', 'text', 'id'], row_count = (0, "dynamic"), label="Review file data", visible=True, type="pandas", wrap=True, show_search=True, show_fullscreen_button=True, show_copy_button=True)
with gr.Row():
with gr.Column(scale=2):
with gr.Row(equal_height=True):
annotation_last_page_button = gr.Button("Previous page", scale = 4)
annotate_current_page = gr.Number(value=1, label="Current page", precision=0, scale = 2, min_width=50, minimum=1)
annotate_max_pages = gr.Number(value=1, label="Total pages", precision=0, interactive=False, scale = 2, min_width=50, minimum=1)
annotation_next_page_button = gr.Button("Next page", scale = 4)
zoom_str = str(annotator_zoom_number) + '%'
annotator = image_annotator(
label="Modify redaction boxes",
label_list=["Redaction"],
label_colors=[(0, 0, 0)],
show_label=False,
height=zoom_str,
width=zoom_str,
box_min_size=1,
box_selected_thickness=2,
handle_size=4,
sources=None,#["upload"],
show_clear_button=False,
show_share_button=False,
show_remove_button=False,
handles_cursor=True,
interactive=False
)
with gr.Row(equal_height=True):
annotation_last_page_button_bottom = gr.Button("Previous page", scale = 4)
annotate_current_page_bottom = gr.Number(value=1, label="Current page", precision=0, interactive=True, scale = 2, min_width=50, minimum=1)
annotate_max_pages_bottom = gr.Number(value=1, label="Total pages", precision=0, interactive=False, scale = 2, min_width=50, minimum=1)
annotation_next_page_button_bottom = gr.Button("Next page", scale = 4)
with gr.Column(scale=1):
annotation_button_apply = gr.Button("Apply revised redactions to PDF", variant="primary")
update_current_page_redactions_btn = gr.Button(value="Save changes on current page to file", variant="primary")
with gr.Tab("Modify existing redactions"):
with gr.Accordion("Search suggested redactions", open=True):
with gr.Row(equal_height=True):
recogniser_entity_dropdown = gr.Dropdown(label="Redaction category", value="ALL", allow_custom_value=True)
page_entity_dropdown = gr.Dropdown(label="Page", value="ALL", allow_custom_value=True)
text_entity_dropdown = gr.Dropdown(label="Text", value="ALL", allow_custom_value=True)
reset_dropdowns_btn = gr.Button(value="Reset filters")
recogniser_entity_dataframe = gr.Dataframe(pd.DataFrame(data={"page":list(), "label":list(), "text":list(), "id":list()}), col_count=(4,"fixed"), type="pandas", label="Click table row to select and go to page", headers=["page", "label", "text", "id"], show_fullscreen_button=True, wrap=True, max_height=400, static_columns=[0,1,2,3])
with gr.Row(equal_height=True):
exclude_selected_btn = gr.Button(value="Exclude all redactions in table")
with gr.Accordion("Selected redaction row", open=True):
selected_entity_dataframe_row = gr.Dataframe(pd.DataFrame(data={"page":list(), "label":list(), "text":list(), "id":list()}), col_count=4, type="pandas", visible=True, headers=["page", "label", "text", "id"], wrap=True)
exclude_selected_row_btn = gr.Button(value="Exclude specific redaction row")
exclude_text_with_same_as_selected_row_btn = gr.Button(value="Exclude all redactions with same text as selected row")
undo_last_removal_btn = gr.Button(value="Undo last element removal", variant="primary")
with gr.Tab("Search text to make new redactions"):
with gr.Accordion("Search text", open=True):
with gr.Row(equal_height=True):
page_entity_dropdown_redaction = gr.Dropdown(label="Page", value="1", allow_custom_value=True, scale=4)
reset_dropdowns_btn_new = gr.Button(value="Reset page filter", scale=1)
with gr.Row(equal_height=True):
multi_word_search_text = gr.Textbox(label="Multi-word text search", value="", scale=4)
multi_word_search_text_btn = gr.Button(value="Search", scale=1)
with gr.Accordion("Search options", open=False):
similarity_search_score_minimum = gr.Number(value=1.0, minimum=0.4, maximum=1.0, label="Minimum similarity score for match (max=1)", visible=False) # Not used anymore for this exact search
new_redaction_text_label = gr.Textbox(label="Label for new redactions", value="Redaction")
colour_label = gr.Textbox(label="Colour for labels (three number RGB format, max 255 with brackes)", value="(0, 0, 0)")
all_page_line_level_ocr_results_with_words_df = gr.Dataframe(pd.DataFrame(data={"page":list(), "line":list(), "word_text":list(), "word_x0":list(), "word_y0":list(),"word_x1":list(),"word_y1":list()}), type="pandas", label="Click table row to select and go to page", headers=["page", "line", "word_text", "word_x0","word_y0","word_x1","word_y1"], show_fullscreen_button=True, wrap=False, max_height=400, show_search="filter")
redact_selected_btn = gr.Button(value="Redact all text in table")
reset_ocr_with_words_df_btn = gr.Button(value="Reset table to original state")
with gr.Accordion("Selected row", open=True):
selected_entity_dataframe_row_redact = gr.Dataframe(pd.DataFrame(data={"page":list(), "line":list(), "word_text":list(), "word_x0":list(),"word_y0":list(),"word_x1":list(),"word_y1":list()}), type="pandas", headers=["page", "line", "word_text", "word_x0","word_y0","word_x1","word_y1"], wrap=False)
redact_selected_row_btn = gr.Button(value="Redact specific text row")
redact_text_with_same_as_selected_row_btn = gr.Button(value="Redact all words with same text as selected row")
undo_last_redact_btn = gr.Button(value="Undo latest redaction", variant="primary")
with gr.Accordion("Search extracted text", open=True):
all_page_line_level_ocr_results_df = gr.Dataframe(value=pd.DataFrame(), headers=["page", "line", "text"], col_count=(3, 'fixed'), row_count = (0, "dynamic"), label="All OCR results", visible=True, type="pandas", wrap=True, show_fullscreen_button=True, show_search='filter', show_label=False, show_copy_button=True, max_height=400)
reset_all_ocr_results_btn = gr.Button(value="Reset OCR output table filter")
selected_ocr_dataframe_row = gr.Dataframe(pd.DataFrame(data={"page":list(), "line":list(), "text":list()}), col_count=3, type="pandas", visible=False, headers=["page", "line", "text"], wrap=True)
with gr.Accordion("Convert review files loaded above to Adobe format, or convert from Adobe format to review file", open = False):
convert_review_file_to_adobe_btn = gr.Button("Convert review file to Adobe comment format", variant="primary")
adobe_review_files_out = gr.File(label="Output Adobe comment files will appear here. If converting from .xfdf file to review_file.csv, upload the original pdf with the xfdf file here then click Convert below.", file_count='multiple', file_types=['.csv', '.xfdf', '.pdf'])
convert_adobe_to_review_file_btn = gr.Button("Convert Adobe .xfdf comment file to review_file.csv", variant="secondary")
###
# IDENTIFY DUPLICATE PAGES TAB
###
with gr.Tab(label="Identify duplicate pages"):
gr.Markdown("Search for duplicate pages/subdocuments in your ocr_output files. By default, this function will search for duplicate text across multiple pages, and then join consecutive matching pages together into matched 'subdocuments'. The results can be reviewed below, false positives removed, and then the verified results applied to a document you have loaded in on the 'Review redactions' tab.")
with gr.Accordion("Step 1: Configure and run analysis", open = True):
in_duplicate_pages = gr.File(
label="Upload one or multiple 'ocr_output.csv' files to find duplicate pages and subdocuments",
file_count="multiple", height=FILE_INPUT_HEIGHT, file_types=['.csv']
)
with gr.Accordion("Duplicate matching parameters", open = False):
with gr.Row():
duplicate_threshold_input = gr.Number(value=DEFAULT_DUPLICATE_DETECTION_THRESHOLD, label="Similarity threshold", info="Score (0-1) to consider pages a match.")
min_word_count_input = gr.Number(value=DEFAULT_MIN_WORD_COUNT, label="Minimum word count", info="Pages with fewer words than this value are ignored.")
combine_page_text_for_duplicates_bool = gr.Checkbox(value=True, label="Analyse duplicate text by page (off for by line)")
gr.Markdown("#### Matching Strategy")
greedy_match_input = gr.Checkbox(
label="Enable 'subdocument' matching",
value=USE_GREEDY_DUPLICATE_DETECTION,
info="If checked, finds the longest possible sequence of matching pages (subdocuments), minimum length one page. Overrides the slider below."
)
min_consecutive_pages_input = gr.Slider(
minimum=1, maximum=20, value=DEFAULT_MIN_CONSECUTIVE_PAGES, step=1,
label="Minimum consecutive pages (modified subdocument match)",
info="If greedy matching option above is unticked, use this to find only subdocuments of a minimum number of consecutive pages."
)
find_duplicate_pages_btn = gr.Button(value="Identify duplicate pages/subdocuments", variant="primary")
with gr.Accordion("Step 2: Review and refine results", open=True):
gr.Markdown("### Analysis summary\nClick on a row to select it for preview or exclusion.")
with gr.Row():
results_df_preview = gr.Dataframe(
label="Similarity Results",
headers=["Page1_File", "Page1_Start_Page", "Page1_End_Page", "Page2_File", "Page2_Start_Page", "Page2_End_Page", "Match_Length", "Avg_Similarity", "Page1_Text", "Page2_Text"],
wrap=True,
show_fullscreen_button=True,
show_search=True,
show_copy_button=True
)
with gr.Row():
exclude_match_btn = gr.Button(
value="❌ Exclude Selected Match",
variant="stop"
)
gr.Markdown("Click a row in the table, then click this button to remove it from the results and update the downloadable files.")
gr.Markdown("### Full Text Preview of Selected Match")
with gr.Row():
page1_text_preview = gr.Dataframe(label="Match Source (Document 1)", wrap=True, headers=["page", "text"], show_fullscreen_button=True, show_search=True, show_copy_button=True)
page2_text_preview = gr.Dataframe(label="Match Duplicate (Document 2)", wrap=True, headers=["page", "text"], show_fullscreen_button=True, show_search=True, show_copy_button=True)
gr.Markdown("### Downloadable Files")
duplicate_files_out = gr.File(
label="Download analysis summary and redaction lists (.csv)",
file_count="multiple",
height=FILE_INPUT_HEIGHT
)
with gr.Row():
apply_match_btn = gr.Button(
value="Apply relevant duplicate page output to document currently under review",
variant="secondary")
###
# WORD / TABULAR DATA TAB
###
with gr.Tab(label="Word or Excel/csv files"):
gr.Markdown("""Choose Word or a tabular data file (xlsx or csv) to redact. Note that when redacting complex Word files with e.g. images, some content/formatting will be removed, and it may not attempt to redact headers. You may prefer to convert the doc file to PDF in Word, and then run it through the first tab of this app (Print to PDF in print settings). Alternatively, an xlsx file output is provided when redacting docx files directly to allow for copying and pasting outputs back into the original document if preferred.""")
with gr.Accordion("Redact Word or Excel/csv files", open = True):
with gr.Accordion("Upload docx, xlsx, or csv files", open = True):
in_data_files = gr.File(label="Choose Excel or csv files", file_count= "multiple", file_types=['.xlsx', '.xls', '.csv', '.parquet', '.docx'], height=FILE_INPUT_HEIGHT)
with gr.Accordion("Redact open text", open = False):
in_text = gr.Textbox(label="Enter open text", lines=10)
in_excel_sheets = gr.Dropdown(choices=["Choose Excel sheets to anonymise"], multiselect = True, label="Select Excel sheets that you want to anonymise (showing sheets present across all Excel files).", visible=False, allow_custom_value=True)
in_colnames = gr.Dropdown(choices=["Choose columns to anonymise"], multiselect = True, label="Select columns that you want to anonymise (showing columns present across all files).")
pii_identification_method_drop_tabular = gr.Radio(label = "Choose PII detection method. AWS Comprehend has a cost of approximately $0.01 per 10,000 characters.", value = DEFAULT_PII_DETECTION_MODEL, choices=TABULAR_PII_DETECTION_MODELS)
with gr.Accordion("Anonymisation output format - by default will replace PII with a blank space", open = False):
with gr.Row():
anon_strat = gr.Radio(choices=["replace with 'REDACTED'", "replace with <ENTITY_NAME>", "redact completely", "hash", "mask"], label="Select an anonymisation method.", value = DEFAULT_TABULAR_ANONYMISATION_STRATEGY) # , "encrypt", "fake_first_name" are also available, but are not currently included as not that useful in current form
do_initial_clean = gr.Checkbox(label="Do initial clean of text (remove URLs, HTML tags, and non-ASCII characters)", value=DO_INITIAL_TABULAR_DATA_CLEAN)
tabular_data_redact_btn = gr.Button("Redact text/data files", variant="primary")
with gr.Row(equal_height=True):
text_output_summary = gr.Textbox(label="Output result")
text_output_file = gr.File(label="Output files")
text_tabular_files_done = gr.Number(value=0, label="Number of tabular files redacted", interactive=False, visible=False)
###
# TABULAR DUPLICATE DETECTION TAB
###
with gr.Accordion(label="Find duplicate cells in tabular data", open=False):
gr.Markdown("""Find duplicate cells or rows in CSV and Excel files. This tool analyzes text content across all columns to identify similar or identical entries that may be duplicates. You can review the results and choose to remove duplicate rows from your files.""")
with gr.Accordion("Step 1: Upload files and configure analysis", open=True):
in_tabular_duplicate_files = gr.File(
label="Upload CSV or Excel files to find duplicate cells/rows",
file_count="multiple",
file_types=['.csv', '.xlsx', '.xls', '.parquet'],
height=FILE_INPUT_HEIGHT
)
with gr.Row():
tabular_duplicate_threshold = gr.Number(
value=DEFAULT_DUPLICATE_DETECTION_THRESHOLD,
label="Similarity threshold",
info="Score (0-1) to consider cells a match. Higher values = more strict matching."
)
tabular_min_word_count = gr.Number(
value=DEFAULT_MIN_WORD_COUNT,
label="Minimum word count",
info="Cells with fewer words than this are ignored."
)
do_initial_clean_dup = gr.Checkbox(label="Do initial clean of text (remove URLs, HTML tags, and non-ASCII characters)", value=DO_INITIAL_TABULAR_DATA_CLEAN)
tabular_text_columns = gr.Dropdown(
choices=DEFAULT_TEXT_COLUMNS,
multiselect=True,
label="Select specific columns to analyse (leave empty to analyse all text columns)",
info="If no columns selected, all text columns will be analyzed"
)
find_tabular_duplicates_btn = gr.Button(
value="Find duplicate cells/rows",
variant="primary"
)
with gr.Accordion("Step 2: Review results", open=True):
gr.Markdown("### Duplicate Analysis Results\nClick on a row to see more details about the duplicate match.")
tabular_results_df = gr.Dataframe(
label="Duplicate Cell Matches",
headers=["File1", "Row1", "File2", "Row2", "Similarity_Score", "Text1", "Text2"],
wrap=True,
show_fullscreen_button=True,
show_search=True,
show_copy_button=True
)
with gr.Row():
tabular_selected_row_index = gr.Number(value=None, visible=False)
tabular_text1_preview = gr.Textbox(
label="Text from File 1",
lines=3,
interactive=False
)
tabular_text2_preview = gr.Textbox(
label="Text from File 2",
lines=3,
interactive=False
)
with gr.Accordion("Step 3: Remove duplicates", open=True):
gr.Markdown("### Remove Duplicate Rows\nSelect a file and click to remove duplicate rows based on the analysis above.")
with gr.Row():
tabular_file_to_clean = gr.Dropdown(
choices=list(),
label="Select file to clean",
info="Choose which file to remove duplicates from",
visible=False
)
clean_duplicates_btn = gr.Button(
value="Remove duplicate rows from selected file",
variant="secondary",
visible=False
)
tabular_cleaned_file = gr.File(
label="Download cleaned file (duplicates removed)",
visible=True, interactive=False
)
# Feedback elements are invisible until revealed by redaction action
data_feedback_title = gr.Markdown(value="## Please give feedback", visible=False)
data_feedback_radio = gr.Radio(label="Please give some feedback about the results of the redaction. A reminder that the app is only expected to identify about 60% of personally identifiable information in a given (typed) document.",
choices=["The results were good", "The results were not good"], visible=False, show_label=True)
data_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False)
data_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False)
###
# SETTINGS TAB
###
with gr.Tab(label="Redaction settings"):
with gr.Accordion("Custom allow, deny, and full page redaction lists", open = True):
with gr.Row():
with gr.Column():
in_allow_list = gr.File(label="Import allow list file - csv table with one column of a different word/phrase on each row (case insensitive). Terms in this file will not be redacted.", file_count="multiple", height=FILE_INPUT_HEIGHT)
in_allow_list_text = gr.Textbox(label="Custom allow list load status")
with gr.Column():
in_deny_list = gr.File(label="Import custom deny list - csv table with one column of a different word/phrase on each row (case insensitive). Terms in this file will always be redacted.", file_count="multiple", height=FILE_INPUT_HEIGHT)
in_deny_list_text = gr.Textbox(label="Custom deny list load status")
with gr.Column():
in_fully_redacted_list = gr.File(label="Import fully redacted pages list - csv table with one column of page numbers on each row. Page numbers in this file will be fully redacted.", file_count="multiple", height=FILE_INPUT_HEIGHT)
in_fully_redacted_list_text = gr.Textbox(label="Fully redacted page list load status")
with gr.Accordion("Manually modify custom allow, deny, and full page redaction lists (NOTE: you need to press Enter after modifying/adding an entry to the lists to apply them)", open = False):
with gr.Row():
in_allow_list_state = gr.Dataframe(value=pd.DataFrame(), headers=["allow_list"], col_count=(1, "fixed"), row_count = (0, "dynamic"), label="Allow list", visible=True, type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, wrap=True)
in_deny_list_state = gr.Dataframe(value=pd.DataFrame(), headers=["deny_list"], col_count=(1, "fixed"), row_count = (0, "dynamic"), label="Deny list", visible=True, type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, wrap=True)
in_fully_redacted_list_state = gr.Dataframe(value=pd.DataFrame(), headers=["fully_redacted_pages_list"], col_count=(1, "fixed"), row_count = (0, "dynamic"), label="Fully redacted pages", visible=True, type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, datatype='number', wrap=True)
with gr.Row():
with gr.Column(scale=2):
markdown_placeholder = gr.Markdown("")
with gr.Column(scale=1):
apply_fully_redacted_list_btn = gr.Button(
value="Apply whole page redaction list to document currently under review",
variant="secondary")
with gr.Accordion("Select entity types to redact", open = True):
in_redact_entities = gr.Dropdown(value=CHOSEN_REDACT_ENTITIES, choices=FULL_ENTITY_LIST, multiselect=True, label="Local PII identification model (click empty space in box for full list)")
in_redact_comprehend_entities = gr.Dropdown(value=CHOSEN_COMPREHEND_ENTITIES, choices=FULL_COMPREHEND_ENTITY_LIST, multiselect=True, label="AWS Comprehend PII identification model (click empty space in box for full list)")
with gr.Row():
max_fuzzy_spelling_mistakes_num = gr.Number(label="Maximum number of spelling mistakes allowed for fuzzy matching (CUSTOM_FUZZY entity).", value=DEFAULT_FUZZY_SPELLING_MISTAKES_NUM, minimum=0, maximum=9, precision=0)
match_fuzzy_whole_phrase_bool = gr.Checkbox(label="Should fuzzy search match on entire phrases in deny list (as opposed to each word individually)?", value=True)
with gr.Accordion("Redact only selected pages", open = False):
with gr.Row():
page_min = gr.Number(value=DEFAULT_PAGE_MIN, precision=0, minimum=0, maximum=9999, label="Lowest page to redact")
page_max = gr.Number(value=DEFAULT_PAGE_MAX, precision=0, minimum=0, maximum=9999, label="Highest page to redact")
if SHOW_LANGUAGE_SELECTION:
with gr.Accordion("Language selection", open=False):
gr.Markdown("""Note that AWS Textract is compatible with English, Spanish, Italian, Portuguese, French, and German, and handwriting detection is only available in English. AWS Comprehend for detecting PII is only compatible with English and Spanish.
The local models (Tesseract and SpaCy) are compatible with the other languages in the list below. However, the language packs for these models need to be installed on your system. When you first run a document through the app, the language packs will be downloaded automatically, but please expect a delay as the models are large.""")
with gr.Row():
chosen_language_full_name_drop = gr.Dropdown(value = DEFAULT_LANGUAGE_FULL_NAME, choices = MAPPED_LANGUAGE_CHOICES, label="Chosen language", multiselect=False, visible=True)
chosen_language_drop = gr.Dropdown(value = DEFAULT_LANGUAGE, choices = LANGUAGE_CHOICES, label="Chosen language short code", multiselect=False, visible=True, interactive=False)
else:
chosen_language_full_name_drop = gr.Dropdown(value = DEFAULT_LANGUAGE_FULL_NAME, choices = MAPPED_LANGUAGE_CHOICES, label="Chosen language", multiselect=False, visible=False)
chosen_language_drop = gr.Dropdown(value = DEFAULT_LANGUAGE, choices = LANGUAGE_CHOICES, label="Chosen language short code", multiselect=False, visible=False)
with gr.Accordion("Use API keys for AWS services", open = False):
with gr.Row():
aws_access_key_textbox = gr.Textbox(value='', label="AWS access key for account with permissions for AWS Textract and Comprehend", visible=True, type="password")
aws_secret_key_textbox = gr.Textbox(value='', label="AWS secret key for account with permissions for AWS Textract and Comprehend", visible=True, type="password")
with gr.Accordion("Log file outputs", open = False):
log_files_output = gr.File(label="Log file output", interactive=False)
with gr.Accordion("Combine multiple review files", open = False):
multiple_review_files_in_out = gr.File(label="Combine multiple review_file.csv files together here.", file_count='multiple', file_types=['.csv'])
merge_multiple_review_files_btn = gr.Button("Merge multiple review files into one", variant="primary")
with gr.Accordion("View all output files from this session", open = False):
all_output_files_btn = gr.Button("Click here to view all output files", variant="secondary")
all_output_files = gr.File(label="All files in output folder", file_count='multiple', file_types=['.csv'], interactive=False)
###
# UI INTERACTION
###
###
# PDF/IMAGE REDACTION
###
# Recalculate estimated costs based on changes to inputs
if SHOW_COSTS == 'True':
# Calculate costs
total_pdf_page_count.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
text_extract_method_radio.change(fn=check_for_relevant_ocr_output_with_words, inputs=[doc_file_name_no_extension_textbox, text_extract_method_radio, output_folder_textbox], outputs=[relevant_ocr_output_with_words_found_checkbox]).\
success(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
pii_identification_method_drop.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
handwrite_signature_checkbox.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
textract_output_found_checkbox.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
only_extract_text_radio.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
textract_output_found_checkbox.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
# Calculate time taken
total_pdf_page_count.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio, relevant_ocr_output_with_words_found_checkbox], outputs=[estimated_time_taken_number])
text_extract_method_radio.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio, relevant_ocr_output_with_words_found_checkbox], outputs=[estimated_time_taken_number])
pii_identification_method_drop.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio, relevant_ocr_output_with_words_found_checkbox], outputs=[estimated_time_taken_number])
handwrite_signature_checkbox.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio, relevant_ocr_output_with_words_found_checkbox], outputs=[estimated_time_taken_number])
textract_output_found_checkbox.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio, relevant_ocr_output_with_words_found_checkbox], outputs=[estimated_time_taken_number])
only_extract_text_radio.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio, relevant_ocr_output_with_words_found_checkbox], outputs=[estimated_time_taken_number])
textract_output_found_checkbox.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio, relevant_ocr_output_with_words_found_checkbox], outputs=[estimated_time_taken_number])
relevant_ocr_output_with_words_found_checkbox.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio, relevant_ocr_output_with_words_found_checkbox], outputs=[estimated_time_taken_number])
# Allow user to select items from cost code dataframe for cost code
if SHOW_COSTS=="True" and (GET_COST_CODES == "True" or ENFORCE_COST_CODES == "True"):
cost_code_dataframe.select(df_select_callback_cost, inputs=[cost_code_dataframe], outputs=[cost_code_choice_drop])
reset_cost_code_dataframe_button.click(reset_base_dataframe, inputs=[cost_code_dataframe_base], outputs=[cost_code_dataframe])
cost_code_choice_drop.select(update_cost_code_dataframe_from_dropdown_select, inputs=[cost_code_choice_drop, cost_code_dataframe_base], outputs=[cost_code_dataframe])
in_doc_files.upload(fn=get_input_file_names, inputs=[in_doc_files], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\
success(fn = prepare_image_or_pdf, inputs=[in_doc_files, text_extract_method_radio, all_page_line_level_ocr_results_df_base, all_page_line_level_ocr_results_with_words_df_base, latest_file_completed_num, redaction_output_summary_textbox, first_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool_false, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false, page_sizes, pdf_doc_state], outputs=[redaction_output_summary_textbox, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_df, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state, all_page_line_level_ocr_results_df_base, relevant_ocr_output_with_words_found_checkbox, all_page_line_level_ocr_results_with_words_df_base], show_progress_on=[redaction_output_summary_textbox]).\
success(fn=check_for_existing_textract_file, inputs=[doc_file_name_no_extension_textbox, output_folder_textbox], outputs=[textract_output_found_checkbox]).\
success(fn=check_for_relevant_ocr_output_with_words, inputs=[doc_file_name_no_extension_textbox, text_extract_method_radio, output_folder_textbox], outputs=[relevant_ocr_output_with_words_found_checkbox])
# Run redaction function
document_redact_btn.click(fn = reset_state_vars, outputs=[all_image_annotations_state, all_page_line_level_ocr_results_df_base, all_decision_process_table_state, comprehend_query_number, textract_metadata_textbox, annotator, output_file_list_state, log_files_output_list_state, recogniser_entity_dataframe, recogniser_entity_dataframe_base, pdf_doc_state, duplication_file_path_outputs_list_state, redaction_output_summary_textbox, is_a_textract_api_call, textract_query_number, all_page_line_level_ocr_results_with_words]).\
success(fn= enforce_cost_codes, inputs=[enforce_cost_code_textbox, cost_code_choice_drop, cost_code_dataframe_base]).\
success(fn= choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_entities, in_redact_comprehend_entities, text_extract_method_radio, in_allow_list_state, in_deny_list_state, in_fully_redacted_list_state, latest_file_completed_num, redaction_output_summary_textbox, output_file_list_state, log_files_output_list_state, first_loop_state, page_min, page_max, actual_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_page_line_level_ocr_results_df_base, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number, max_fuzzy_spelling_mistakes_num, match_fuzzy_whole_phrase_bool, aws_access_key_textbox, aws_secret_key_textbox, annotate_max_pages, review_file_df, output_folder_textbox, document_cropboxes, page_sizes, textract_output_found_checkbox, only_extract_text_radio, duplication_file_path_outputs_list_state, latest_review_file_path, input_folder_textbox, textract_query_number, latest_ocr_file_path, all_page_line_level_ocr_results, all_page_line_level_ocr_results_with_words, all_page_line_level_ocr_results_with_words_df_base, chosen_local_model_textbox, chosen_language_drop],
outputs=[redaction_output_summary_textbox, output_file, output_file_list_state, latest_file_completed_num, log_files_output, log_files_output_list_state, actual_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_page_line_level_ocr_results_df_base, all_decision_process_table_state, comprehend_query_number, input_pdf_for_review, annotate_max_pages, annotate_max_pages_bottom, prepared_pdf_state, images_pdf_state, review_file_df, page_sizes, duplication_file_path_outputs_list_state, in_duplicate_pages, latest_review_file_path, textract_query_number, latest_ocr_file_path, all_page_line_level_ocr_results, all_page_line_level_ocr_results_with_words, all_page_line_level_ocr_results_with_words_df_base, backup_review_state], api_name="redact_doc", show_progress_on=[redaction_output_summary_textbox])
# If a file has been completed, the function will continue onto the next document
latest_file_completed_num.change(fn = choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_entities, in_redact_comprehend_entities, text_extract_method_radio, in_allow_list_state, in_deny_list_state, in_fully_redacted_list_state, latest_file_completed_num, redaction_output_summary_textbox, output_file_list_state, log_files_output_list_state, second_loop_state, page_min, page_max, actual_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_page_line_level_ocr_results_df_base, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number, max_fuzzy_spelling_mistakes_num, match_fuzzy_whole_phrase_bool, aws_access_key_textbox, aws_secret_key_textbox, annotate_max_pages, review_file_df, output_folder_textbox, document_cropboxes, page_sizes, textract_output_found_checkbox, only_extract_text_radio, duplication_file_path_outputs_list_state, latest_review_file_path, input_folder_textbox, textract_query_number, latest_ocr_file_path, all_page_line_level_ocr_results, all_page_line_level_ocr_results_with_words, all_page_line_level_ocr_results_with_words_df_base, chosen_local_model_textbox, chosen_language_drop],
outputs=[redaction_output_summary_textbox, output_file, output_file_list_state, latest_file_completed_num, log_files_output, log_files_output_list_state, actual_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_page_line_level_ocr_results_df_base, all_decision_process_table_state, comprehend_query_number, input_pdf_for_review, annotate_max_pages, annotate_max_pages_bottom, prepared_pdf_state, images_pdf_state, review_file_df, page_sizes, duplication_file_path_outputs_list_state, in_duplicate_pages, latest_review_file_path, textract_query_number, latest_ocr_file_path, all_page_line_level_ocr_results, all_page_line_level_ocr_results_with_words, all_page_line_level_ocr_results_with_words_df_base, backup_review_state], show_progress_on=[redaction_output_summary_textbox]).\
success(fn=update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, page_min, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
success(fn=check_for_existing_textract_file, inputs=[doc_file_name_no_extension_textbox, output_folder_textbox], outputs=[textract_output_found_checkbox]).\
success(fn=check_for_relevant_ocr_output_with_words, inputs=[doc_file_name_no_extension_textbox, text_extract_method_radio, output_folder_textbox], outputs=[relevant_ocr_output_with_words_found_checkbox]).\
success(fn=reveal_feedback_buttons, outputs=[pdf_feedback_radio, pdf_further_details_text, pdf_submit_feedback_btn, pdf_feedback_title]).\
success(fn=reset_aws_call_vars, outputs=[comprehend_query_number, textract_query_number])
# If the line level ocr results are changed by load in by user or by a new redaction task, replace the ocr results displayed in the table
all_page_line_level_ocr_results_df_base.change(reset_ocr_base_dataframe, inputs=[all_page_line_level_ocr_results_df_base], outputs=[all_page_line_level_ocr_results_df])
all_page_line_level_ocr_results_with_words_df_base.change(reset_ocr_with_words_base_dataframe, inputs=[all_page_line_level_ocr_results_with_words_df_base, page_entity_dropdown_redaction], outputs=[all_page_line_level_ocr_results_with_words_df, backup_all_page_line_level_ocr_results_with_words_df_base])
# Send whole document to Textract for text extraction
send_document_to_textract_api_btn.click(analyse_document_with_textract_api, inputs=[prepared_pdf_state, s3_whole_document_textract_input_subfolder, s3_whole_document_textract_output_subfolder, textract_job_detail_df, s3_whole_document_textract_default_bucket, output_folder_textbox, handwrite_signature_checkbox, successful_textract_api_call_number, total_pdf_page_count], outputs=[job_output_textbox, job_id_textbox, job_type_dropdown, successful_textract_api_call_number, is_a_textract_api_call, textract_query_number]).\
success(check_for_provided_job_id, inputs=[job_id_textbox]).\
success(poll_whole_document_textract_analysis_progress_and_download, inputs=[job_id_textbox, job_type_dropdown, s3_whole_document_textract_output_subfolder, doc_file_name_no_extension_textbox, textract_job_detail_df, s3_whole_document_textract_default_bucket, output_folder_textbox, s3_whole_document_textract_logs_subfolder, local_whole_document_textract_logs_subfolder], outputs = [textract_job_output_file, job_current_status, textract_job_detail_df, doc_file_name_no_extension_textbox]).\
success(fn=check_for_existing_textract_file, inputs=[doc_file_name_no_extension_textbox, output_folder_textbox], outputs=[textract_output_found_checkbox])
check_state_of_textract_api_call_btn.click(check_for_provided_job_id, inputs=[job_id_textbox]).\
success(poll_whole_document_textract_analysis_progress_and_download, inputs=[job_id_textbox, job_type_dropdown, s3_whole_document_textract_output_subfolder, doc_file_name_no_extension_textbox, textract_job_detail_df, s3_whole_document_textract_default_bucket, output_folder_textbox, s3_whole_document_textract_logs_subfolder, local_whole_document_textract_logs_subfolder], outputs = [textract_job_output_file, job_current_status, textract_job_detail_df, doc_file_name_no_extension_textbox]).\
success(fn=check_for_existing_textract_file, inputs=[doc_file_name_no_extension_textbox, output_folder_textbox], outputs=[textract_output_found_checkbox])
textract_job_detail_df.select(df_select_callback_textract_api, inputs=[textract_output_found_checkbox], outputs=[job_id_textbox, job_type_dropdown, selected_job_id_row])
convert_textract_outputs_to_ocr_results.click(replace_existing_pdf_input_for_whole_document_outputs, inputs = [s3_whole_document_textract_input_subfolder, doc_file_name_no_extension_textbox, output_folder_textbox, s3_whole_document_textract_default_bucket, in_doc_files, input_folder_textbox], outputs = [in_doc_files, doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\
success(fn = prepare_image_or_pdf, inputs=[in_doc_files, text_extract_method_radio, all_page_line_level_ocr_results_df_base, all_page_line_level_ocr_results_with_words_df_base, latest_file_completed_num, redaction_output_summary_textbox, first_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool_false, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false, page_sizes, pdf_doc_state], outputs=[redaction_output_summary_textbox, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_df, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state, all_page_line_level_ocr_results_df_base, relevant_ocr_output_with_words_found_checkbox, all_page_line_level_ocr_results_with_words_df_base], show_progress_on=[redaction_output_summary_textbox]).\
success(fn=check_for_existing_textract_file, inputs=[doc_file_name_no_extension_textbox, output_folder_textbox], outputs=[textract_output_found_checkbox]).\
success(fn=check_for_relevant_ocr_output_with_words, inputs=[doc_file_name_no_extension_textbox, text_extract_method_radio, output_folder_textbox], outputs=[relevant_ocr_output_with_words_found_checkbox]).\
success(fn= check_textract_outputs_exist, inputs=[textract_output_found_checkbox]).\
success(fn = reset_state_vars, outputs=[all_image_annotations_state, all_page_line_level_ocr_results_df_base, all_decision_process_table_state, comprehend_query_number, textract_metadata_textbox, annotator, output_file_list_state, log_files_output_list_state, recogniser_entity_dataframe, recogniser_entity_dataframe_base, pdf_doc_state, duplication_file_path_outputs_list_state, redaction_output_summary_textbox, is_a_textract_api_call, textract_query_number]).\
success(fn= choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_entities, in_redact_comprehend_entities, textract_only_method_drop, in_allow_list_state, in_deny_list_state, in_fully_redacted_list_state, latest_file_completed_num, redaction_output_summary_textbox, output_file_list_state, log_files_output_list_state, first_loop_state, page_min, page_max, actual_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_page_line_level_ocr_results_df_base, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, no_redaction_method_drop, comprehend_query_number, max_fuzzy_spelling_mistakes_num, match_fuzzy_whole_phrase_bool, aws_access_key_textbox, aws_secret_key_textbox, annotate_max_pages, review_file_df, output_folder_textbox, document_cropboxes, page_sizes, textract_output_found_checkbox, only_extract_text_radio, duplication_file_path_outputs_list_state, latest_review_file_path, input_folder_textbox, textract_query_number, latest_ocr_file_path, all_page_line_level_ocr_results, all_page_line_level_ocr_results_with_words, all_page_line_level_ocr_results_with_words_df_base, chosen_local_model_textbox, chosen_language_drop],
outputs=[redaction_output_summary_textbox, output_file, output_file_list_state, latest_file_completed_num, log_files_output, log_files_output_list_state, actual_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_page_line_level_ocr_results_df_base, all_decision_process_table_state, comprehend_query_number, input_pdf_for_review, annotate_max_pages, annotate_max_pages_bottom, prepared_pdf_state, images_pdf_state, review_file_df, page_sizes, duplication_file_path_outputs_list_state, in_duplicate_pages, latest_review_file_path, textract_query_number, latest_ocr_file_path, all_page_line_level_ocr_results, all_page_line_level_ocr_results_with_words, all_page_line_level_ocr_results_with_words_df_base, backup_review_state], show_progress_on=[redaction_output_summary_textbox]).\
success(fn=update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, page_min, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator])
###
# REVIEW PDF REDACTIONS
###
# Upload previous PDF for modifying redactions
upload_pdf_for_review_btn.click(fn=reset_review_vars, inputs=None, outputs=[recogniser_entity_dataframe, recogniser_entity_dataframe_base]).\
success(fn=get_input_file_names, inputs=[input_pdf_for_review], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\
success(fn = prepare_image_or_pdf, inputs=[input_pdf_for_review, text_extract_method_radio, all_page_line_level_ocr_results_df_base, all_page_line_level_ocr_results_with_words_df_base, latest_file_completed_num, redaction_output_summary_textbox, second_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false, page_sizes, pdf_doc_state], outputs=[redaction_output_summary_textbox, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_df, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state, all_page_line_level_ocr_results_df_base, relevant_ocr_output_with_words_found_checkbox, all_page_line_level_ocr_results_with_words_df_base], api_name="prepare_doc", show_progress_on=[redaction_output_summary_textbox]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator])
# Upload previous review CSV files for modifying redactions
upload_review_files_btn.click(fn = prepare_image_or_pdf, inputs=[input_review_files, text_extract_method_radio, all_page_line_level_ocr_results_df_base, all_page_line_level_ocr_results_with_words_df_base, latest_file_completed_num, redaction_output_summary_textbox, second_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false, page_sizes, pdf_doc_state], outputs=[redaction_output_summary_textbox, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_df, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state, all_page_line_level_ocr_results_df_base, relevant_ocr_output_with_words_found_checkbox, all_page_line_level_ocr_results_with_words_df_base], show_progress_on=[redaction_output_summary_textbox]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator])
# Manual updates to review df
review_file_df.input(update_annotator_page_from_review_df, inputs=[review_file_df, images_pdf_state, page_sizes, all_image_annotations_state, annotator, selected_entity_dataframe_row, input_folder_textbox, doc_full_file_name_textbox], outputs=[annotator, all_image_annotations_state, annotate_current_page, page_sizes, review_file_df, annotate_previous_page], show_progress_on=[annotator]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator])
# Page number controls
annotate_current_page.submit(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review])
annotation_last_page_button.click(fn=decrease_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page, annotate_current_page_bottom]).\
success(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review])
annotation_next_page_button.click(fn=increase_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page, annotate_current_page_bottom]).\
success(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review])
annotation_last_page_button_bottom.click(fn=decrease_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page, annotate_current_page_bottom]).\
success(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review])
annotation_next_page_button_bottom.click(fn=increase_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page, annotate_current_page_bottom]).\
success(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review])
annotate_current_page_bottom.submit(update_other_annotator_number_from_current, inputs=[annotate_current_page_bottom], outputs=[annotate_current_page]).\
success(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review])
# Apply page redactions
annotation_button_apply.click(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_current_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], scroll_to_output=True, show_progress_on=[input_pdf_for_review])
# Save current page manual redactions
update_current_page_redactions_btn.click(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_current_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review])
###
# Review and exclude suggested redactions
###
# Review table controls
recogniser_entity_dropdown.select(update_entities_df_recogniser_entities, inputs=[recogniser_entity_dropdown, recogniser_entity_dataframe_base, page_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dataframe, text_entity_dropdown, page_entity_dropdown])
page_entity_dropdown.select(update_entities_df_page, inputs=[page_entity_dropdown, recogniser_entity_dataframe_base, recogniser_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dataframe, recogniser_entity_dropdown, text_entity_dropdown])
text_entity_dropdown.select(update_entities_df_text, inputs=[text_entity_dropdown, recogniser_entity_dataframe_base, recogniser_entity_dropdown, page_entity_dropdown], outputs=[recogniser_entity_dataframe, recogniser_entity_dropdown, page_entity_dropdown])
# Clicking on a cell in the recogniser entity dataframe will take you to that page, and also highlight the target redaction box in blue
recogniser_entity_dataframe.select(df_select_callback_dataframe_row, inputs=[recogniser_entity_dataframe], outputs=[selected_entity_dataframe_row, selected_entity_dataframe_row_text]).\
success(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_current_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
success(get_and_merge_current_page_annotations, inputs=[page_sizes, annotate_current_page, all_image_annotations_state, review_file_df], outputs=[review_file_df]).\
success(update_selected_review_df_row_colour, inputs=[selected_entity_dataframe_row, review_file_df, selected_entity_id, selected_entity_colour], outputs=[review_file_df, selected_entity_id, selected_entity_colour]).\
success(update_annotator_page_from_review_df, inputs=[review_file_df, images_pdf_state, page_sizes, all_image_annotations_state, annotator, selected_entity_dataframe_row, input_folder_textbox, doc_full_file_name_textbox], outputs=[annotator, all_image_annotations_state, annotate_current_page, page_sizes, review_file_df, annotate_previous_page], show_progress_on=[annotator]).\
success(increase_bottom_page_count_based_on_top, inputs=[annotate_current_page], outputs=[annotate_current_page_bottom])
reset_dropdowns_btn.click(reset_dropdowns, inputs=[recogniser_entity_dataframe_base], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator])
### Exclude current selection from annotator and outputs
# Exclude only selected row
exclude_selected_row_btn.click(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_current_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
success(get_and_merge_current_page_annotations, inputs=[page_sizes, annotate_current_page, all_image_annotations_state, review_file_df], outputs=[review_file_df]).\
success(exclude_selected_items_from_redaction, inputs=[review_file_df, selected_entity_dataframe_row, images_pdf_state, page_sizes, all_image_annotations_state, recogniser_entity_dataframe_base], outputs=[review_file_df, all_image_annotations_state, recogniser_entity_dataframe_base, backup_review_state, backup_image_annotations_state, backup_recogniser_entity_dataframe_base]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review]).\
success(update_all_entity_df_dropdowns, inputs=[recogniser_entity_dataframe_base, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown])
# Exclude all items with same text as selected row
exclude_text_with_same_as_selected_row_btn.click(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_current_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
success(get_and_merge_current_page_annotations, inputs=[page_sizes, annotate_current_page, all_image_annotations_state, review_file_df], outputs=[review_file_df]).\
success(get_all_rows_with_same_text, inputs=[recogniser_entity_dataframe_base, selected_entity_dataframe_row_text], outputs=[recogniser_entity_dataframe_same_text]).\
success(exclude_selected_items_from_redaction, inputs=[review_file_df, recogniser_entity_dataframe_same_text, images_pdf_state, page_sizes, all_image_annotations_state, recogniser_entity_dataframe_base], outputs=[review_file_df, all_image_annotations_state, recogniser_entity_dataframe_base, backup_review_state, backup_image_annotations_state, backup_recogniser_entity_dataframe_base]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review]).\
success(update_all_entity_df_dropdowns, inputs=[recogniser_entity_dataframe_base, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown])
# Exclude everything visible in table
exclude_selected_btn.click(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_current_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
success(get_and_merge_current_page_annotations, inputs=[page_sizes, annotate_current_page, all_image_annotations_state, review_file_df], outputs=[review_file_df]).\
success(exclude_selected_items_from_redaction, inputs=[review_file_df, recogniser_entity_dataframe, images_pdf_state, page_sizes, all_image_annotations_state, recogniser_entity_dataframe_base], outputs=[review_file_df, all_image_annotations_state, recogniser_entity_dataframe_base, backup_review_state, backup_image_annotations_state, backup_recogniser_entity_dataframe_base]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review]).\
success(update_all_entity_df_dropdowns, inputs=[recogniser_entity_dataframe_base, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown])
# Undo last redaction exclusion action
undo_last_removal_btn.click(undo_last_removal, inputs=[backup_review_state, backup_image_annotations_state, backup_recogniser_entity_dataframe_base], outputs=[review_file_df, all_image_annotations_state, recogniser_entity_dataframe_base]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review])
###
# Add new redactions with table selection
###
page_entity_dropdown_redaction.select(update_redact_choice_df_from_page_dropdown, inputs=[page_entity_dropdown_redaction, all_page_line_level_ocr_results_with_words_df_base], outputs=[all_page_line_level_ocr_results_with_words_df])
multi_word_search_text.submit(
fn=run_full_search_and_analysis,
inputs=[
multi_word_search_text,
all_page_line_level_ocr_results_with_words_df_base,
similarity_search_score_minimum
],
outputs=[
all_page_line_level_ocr_results_with_words_df,
duplicate_files_out,
full_duplicate_data_by_file
])
multi_word_search_text_btn.click(
fn=run_full_search_and_analysis,
inputs=[
multi_word_search_text,
all_page_line_level_ocr_results_with_words_df_base,
similarity_search_score_minimum
],
outputs=[
all_page_line_level_ocr_results_with_words_df,
duplicate_files_out,
full_duplicate_data_by_file
])
# Clicking on a cell in the redact items table will take you to that page
all_page_line_level_ocr_results_with_words_df.select(df_select_callback_dataframe_row_ocr_with_words, inputs=[all_page_line_level_ocr_results_with_words_df], outputs=[selected_entity_dataframe_row_redact, selected_entity_dataframe_row_text_redact]).\
success(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_current_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
success(get_and_merge_current_page_annotations, inputs=[page_sizes, annotate_current_page, all_image_annotations_state, review_file_df], outputs=[review_file_df]).\
success(update_annotator_page_from_review_df, inputs=[review_file_df, images_pdf_state, page_sizes, all_image_annotations_state, annotator, selected_entity_dataframe_row_redact, input_folder_textbox, doc_full_file_name_textbox], outputs=[annotator, all_image_annotations_state, annotate_current_page, page_sizes, review_file_df, annotate_previous_page], show_progress_on=[annotator]).\
success(increase_bottom_page_count_based_on_top, inputs=[annotate_current_page], outputs=[annotate_current_page_bottom])
# Reset dropdowns
reset_dropdowns_btn_new.click(reset_dropdowns, inputs=[all_page_line_level_ocr_results_with_words_df_base], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown_redaction]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator])
# Redact everything visible in table
redact_selected_btn.click(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_current_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
success(create_annotation_objects_from_filtered_ocr_results_with_words, inputs=[all_page_line_level_ocr_results_with_words_df, all_page_line_level_ocr_results_with_words_df_base, page_sizes, review_file_df, all_image_annotations_state, recogniser_entity_dataframe_base, new_redaction_text_label, colour_label, annotate_current_page], outputs=[all_image_annotations_state, backup_image_annotations_state, review_file_df, backup_review_state, recogniser_entity_dataframe, backup_recogniser_entity_dataframe_base]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review]).\
success(update_all_entity_df_dropdowns, inputs=[all_page_line_level_ocr_results_with_words_df_base, recogniser_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown_redaction])
# Reset redaction table following filtering
reset_ocr_with_words_df_btn.click(reset_ocr_with_words_base_dataframe, inputs=[all_page_line_level_ocr_results_with_words_df_base, page_entity_dropdown_redaction], outputs=[all_page_line_level_ocr_results_with_words_df, backup_all_page_line_level_ocr_results_with_words_df_base])
# Redact current selection
redact_selected_row_btn.click(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_current_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
success(create_annotation_objects_from_filtered_ocr_results_with_words, inputs=[selected_entity_dataframe_row_redact, all_page_line_level_ocr_results_with_words_df_base, page_sizes, review_file_df, all_image_annotations_state, recogniser_entity_dataframe_base, new_redaction_text_label, colour_label, annotate_current_page], outputs=[all_image_annotations_state, backup_image_annotations_state, review_file_df, backup_review_state, recogniser_entity_dataframe, backup_recogniser_entity_dataframe_base]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review]).\
success(update_all_entity_df_dropdowns, inputs=[all_page_line_level_ocr_results_with_words_df_base, recogniser_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown_redaction])
# Redact all items with same text as selected row
redact_text_with_same_as_selected_row_btn.click(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_current_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
success(get_all_rows_with_same_text_redact, inputs=[all_page_line_level_ocr_results_with_words_df_base, selected_entity_dataframe_row_text_redact], outputs=[to_redact_dataframe_same_text]).\
success(create_annotation_objects_from_filtered_ocr_results_with_words, inputs=[to_redact_dataframe_same_text, all_page_line_level_ocr_results_with_words_df_base, page_sizes, review_file_df, all_image_annotations_state, recogniser_entity_dataframe_base, new_redaction_text_label, colour_label, annotate_current_page], outputs=[all_image_annotations_state, backup_image_annotations_state, review_file_df, backup_review_state,recogniser_entity_dataframe, backup_recogniser_entity_dataframe_base]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review]).\
success(update_all_entity_df_dropdowns, inputs=[all_page_line_level_ocr_results_with_words_df_base, recogniser_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown_redaction])
# Undo last redaction action
undo_last_redact_btn.click(undo_last_removal, inputs=[backup_review_state, backup_image_annotations_state, backup_recogniser_entity_dataframe_base], outputs=[review_file_df, all_image_annotations_state, recogniser_entity_dataframe_base]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review])
###
# Review OCR text
###
all_page_line_level_ocr_results_df.select(df_select_callback_ocr, inputs=[all_page_line_level_ocr_results_df], outputs=[annotate_current_page, selected_ocr_dataframe_row]).\
success(update_annotator_page_from_review_df, inputs=[review_file_df, images_pdf_state, page_sizes, all_image_annotations_state, annotator, selected_ocr_dataframe_row, input_folder_textbox, doc_full_file_name_textbox], outputs=[annotator, all_image_annotations_state, annotate_current_page, page_sizes, review_file_df, annotate_previous_page], show_progress_on=[annotator]).\
success(increase_bottom_page_count_based_on_top, inputs=[annotate_current_page], outputs=[annotate_current_page_bottom])
# Reset the OCR results filter
reset_all_ocr_results_btn.click(reset_ocr_base_dataframe, inputs=[all_page_line_level_ocr_results_df_base], outputs=[all_page_line_level_ocr_results_df])
# Convert review file to xfdf Adobe format
convert_review_file_to_adobe_btn.click(fn=get_input_file_names, inputs=[input_pdf_for_review], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\
success(fn = prepare_image_or_pdf, inputs=[input_pdf_for_review, text_extract_method_radio, all_page_line_level_ocr_results_df_base, all_page_line_level_ocr_results_with_words_df_base, latest_file_completed_num, redaction_output_summary_textbox, second_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false, page_sizes, pdf_doc_state], outputs=[redaction_output_summary_textbox, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_df, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state, all_line_level_ocr_results_df_placeholder, relevant_ocr_output_with_words_found_checkbox, all_page_line_level_ocr_results_with_words_df_base], show_progress_on=[adobe_review_files_out]).\
success(convert_df_to_xfdf, inputs=[input_pdf_for_review, pdf_doc_state, images_pdf_state, output_folder_textbox, document_cropboxes, page_sizes], outputs=[adobe_review_files_out])
# Convert xfdf Adobe file back to review_file.csv
convert_adobe_to_review_file_btn.click(fn=get_input_file_names, inputs=[adobe_review_files_out], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\
success(fn = prepare_image_or_pdf, inputs=[adobe_review_files_out, text_extract_method_radio, all_page_line_level_ocr_results_df_base, all_page_line_level_ocr_results_with_words_df_base, latest_file_completed_num, redaction_output_summary_textbox, second_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false, page_sizes, pdf_doc_state], outputs=[redaction_output_summary_textbox, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_df, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state, all_line_level_ocr_results_df_placeholder, relevant_ocr_output_with_words_found_checkbox, all_page_line_level_ocr_results_with_words_df_base], show_progress_on=[adobe_review_files_out]).\
success(fn=convert_xfdf_to_dataframe, inputs=[adobe_review_files_out, pdf_doc_state, images_pdf_state, output_folder_textbox], outputs=[input_pdf_for_review], scroll_to_output=True)
###
# WORD/TABULAR DATA REDACTION
###
in_data_files.upload(fn=put_columns_in_df, inputs=[in_data_files], outputs=[in_colnames, in_excel_sheets]).\
success(fn=get_input_file_names, inputs=[in_data_files], outputs=[data_file_name_no_extension_textbox, data_file_name_with_extension_textbox, data_full_file_name_textbox, data_file_name_textbox_list, total_pdf_page_count])
tabular_data_redact_btn.click(reset_data_vars, outputs=[actual_time_taken_number, log_files_output_list_state, comprehend_query_number]).\
success(fn=anonymise_files_with_open_text, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_entities, in_allow_list_state, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, first_loop_state, output_folder_textbox, in_deny_list_state, max_fuzzy_spelling_mistakes_num, pii_identification_method_drop_tabular, in_redact_comprehend_entities, comprehend_query_number, aws_access_key_textbox, aws_secret_key_textbox, actual_time_taken_number, do_initial_clean, chosen_language_drop], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state, actual_time_taken_number], api_name="redact_data")
# If the output file count text box changes, keep going with redacting each data file until done
text_tabular_files_done.change(fn=anonymise_files_with_open_text, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_entities, in_allow_list_state, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, second_loop_state, output_folder_textbox, in_deny_list_state, max_fuzzy_spelling_mistakes_num, pii_identification_method_drop_tabular, in_redact_comprehend_entities, comprehend_query_number, aws_access_key_textbox, aws_secret_key_textbox, actual_time_taken_number, do_initial_clean, chosen_language_drop], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state, actual_time_taken_number]).\
success(fn = reveal_feedback_buttons, outputs=[data_feedback_radio, data_further_details_text, data_submit_feedback_btn, data_feedback_title])
###
# IDENTIFY DUPLICATE PAGES
###
find_duplicate_pages_btn.click(
fn=run_duplicate_analysis,
inputs=[
in_duplicate_pages,
duplicate_threshold_input,
min_word_count_input,
min_consecutive_pages_input,
greedy_match_input,
combine_page_text_for_duplicates_bool
],
outputs=[
results_df_preview,
duplicate_files_out,
full_duplicate_data_by_file
]
)
# full_duplicated_data_df,
results_df_preview.select(
fn=handle_selection_and_preview,
inputs=[results_df_preview, full_duplicate_data_by_file],
outputs=[selected_duplicate_data_row_index, page1_text_preview, page2_text_preview]
)
# When the user clicks the "Exclude" button
exclude_match_btn.click(
fn=exclude_match,
inputs=[results_df_preview, selected_duplicate_data_row_index],
outputs=[results_df_preview, duplicate_files_out, page1_text_preview, page2_text_preview]
)
apply_match_btn.click(fn=create_annotation_objects_from_duplicates, inputs=[results_df_preview, all_page_line_level_ocr_results_df_base, page_sizes, combine_page_text_for_duplicates_bool], outputs=[new_duplicate_search_annotation_object]).\
success(fn=apply_whole_page_redactions_from_list,
inputs=[in_fully_redacted_list_state, doc_file_name_with_extension_textbox, review_file_df, duplicate_files_out, pdf_doc_state, page_sizes, all_image_annotations_state, combine_page_text_for_duplicates_bool, new_duplicate_search_annotation_object],
outputs=[review_file_df, all_image_annotations_state]).\
success(update_annotator_page_from_review_df, inputs=[review_file_df, images_pdf_state, page_sizes, all_image_annotations_state, annotator, selected_entity_dataframe_row, input_folder_textbox, doc_full_file_name_textbox], outputs=[annotator, all_image_annotations_state, annotate_current_page, page_sizes, review_file_df, annotate_previous_page], show_progress_on=[annotator]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator])
###
# TABULAR DUPLICATE DETECTION
###
# Event handlers
in_tabular_duplicate_files.upload(
fn=update_tabular_column_choices,
inputs=[in_tabular_duplicate_files],
outputs=[tabular_text_columns]
)
find_tabular_duplicates_btn.click(
fn=run_tabular_duplicate_detection,
inputs=[in_tabular_duplicate_files, tabular_duplicate_threshold, tabular_min_word_count, tabular_text_columns, output_folder_textbox, do_initial_clean_dup],
outputs=[tabular_results_df, tabular_cleaned_file, tabular_file_to_clean], api_name="tabular_clean_duplicates", show_progress_on=[tabular_results_df]
)
tabular_results_df.select(
fn=handle_tabular_row_selection,
inputs=[tabular_results_df],
outputs=[tabular_selected_row_index, tabular_text1_preview, tabular_text2_preview]
)
clean_duplicates_btn.click(
fn=clean_tabular_duplicates,
inputs=[tabular_file_to_clean, tabular_results_df, output_folder_textbox],
outputs=[tabular_cleaned_file]
)
###
# SETTINGS PAGE INPUT / OUTPUT
###
# If a custom allow/deny/duplicate page list is uploaded
in_allow_list.change(fn=custom_regex_load, inputs=[in_allow_list], outputs=[in_allow_list_text, in_allow_list_state])
in_deny_list.change(fn=custom_regex_load, inputs=[in_deny_list, in_deny_list_text_in], outputs=[in_deny_list_text, in_deny_list_state])
in_fully_redacted_list.change(fn=custom_regex_load, inputs=[in_fully_redacted_list, in_fully_redacted_text_in], outputs=[in_fully_redacted_list_text, in_fully_redacted_list_state])
# The following allows for more reliable updates of the data in the custom list dataframes
in_allow_list_state.input(update_dataframe, inputs=[in_allow_list_state], outputs=[in_allow_list_state])
in_deny_list_state.input(update_dataframe, inputs=[in_deny_list_state], outputs=[in_deny_list_state])
in_fully_redacted_list_state.input(update_dataframe, inputs=[in_fully_redacted_list_state], outputs=[in_fully_redacted_list_state])
# Apply whole page redactions from the provided whole page redaction csv file upload/list of specific page numbers given by user
apply_fully_redacted_list_btn.click(
fn=apply_whole_page_redactions_from_list,
inputs=[in_fully_redacted_list_state, doc_file_name_with_extension_textbox, review_file_df, duplicate_files_out, pdf_doc_state, page_sizes, all_image_annotations_state],
outputs=[review_file_df, all_image_annotations_state]).\
success(update_annotator_page_from_review_df, inputs=[review_file_df, images_pdf_state, page_sizes, all_image_annotations_state, annotator, selected_entity_dataframe_row, input_folder_textbox, doc_full_file_name_textbox], outputs=[annotator, all_image_annotations_state, annotate_current_page, page_sizes, review_file_df, annotate_previous_page], show_progress_on=[annotator]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator])
# Merge multiple review csv files together
merge_multiple_review_files_btn.click(fn=merge_csv_files, inputs=multiple_review_files_in_out, outputs=multiple_review_files_in_out)
#
all_output_files_btn.click(fn=load_all_output_files, inputs=output_folder_textbox, outputs=all_output_files)
# Language selection dropdown
chosen_language_full_name_drop.select(update_language_dropdown, inputs=[chosen_language_full_name_drop], outputs=[chosen_language_drop])
###
# APP LOAD AND LOGGING
###
# Get connection details on app load
if SHOW_WHOLE_DOCUMENT_TEXTRACT_CALL_OPTIONS == "True":
app.load(get_connection_params, inputs=[output_folder_textbox, input_folder_textbox, session_output_folder_textbox, s3_whole_document_textract_input_subfolder, s3_whole_document_textract_output_subfolder, s3_whole_document_textract_logs_subfolder, local_whole_document_textract_logs_subfolder], outputs=[session_hash_state, output_folder_textbox, session_hash_textbox, input_folder_textbox, s3_whole_document_textract_input_subfolder, s3_whole_document_textract_output_subfolder, s3_whole_document_textract_logs_subfolder, local_whole_document_textract_logs_subfolder]).\
success(load_in_textract_job_details, inputs=[load_s3_whole_document_textract_logs_bool, s3_whole_document_textract_logs_subfolder, local_whole_document_textract_logs_subfolder], outputs=[textract_job_detail_df])
else:
app.load(get_connection_params, inputs=[output_folder_textbox, input_folder_textbox, session_output_folder_textbox, s3_whole_document_textract_input_subfolder, s3_whole_document_textract_output_subfolder, s3_whole_document_textract_logs_subfolder, local_whole_document_textract_logs_subfolder], outputs=[session_hash_state, output_folder_textbox, session_hash_textbox, input_folder_textbox, s3_whole_document_textract_input_subfolder, s3_whole_document_textract_output_subfolder, s3_whole_document_textract_logs_subfolder, local_whole_document_textract_logs_subfolder])
# If relevant environment variable is set, load in the default allow list file from S3 or locally. Even when setting S3 path, need to local path to give a download location
if GET_DEFAULT_ALLOW_LIST == "True" and (ALLOW_LIST_PATH or S3_ALLOW_LIST_PATH):
if not os.path.exists(ALLOW_LIST_PATH) and S3_ALLOW_LIST_PATH and RUN_AWS_FUNCTIONS == "1":
print("Downloading allow list from S3")
app.load(download_file_from_s3, inputs=[s3_default_bucket, s3_default_allow_list_file, default_allow_list_output_folder_location]).\
success(load_in_default_allow_list, inputs = [default_allow_list_output_folder_location], outputs=[in_allow_list])
print("Successfully loaded allow list from S3")
elif os.path.exists(ALLOW_LIST_PATH):
print("Loading allow list from default allow list output path location:", ALLOW_LIST_PATH)
app.load(load_in_default_allow_list, inputs = [default_allow_list_output_folder_location], outputs=[in_allow_list])
else: print("Could not load in default allow list")
# If relevant environment variable is set, load in the default cost code file from S3 or locally
if GET_COST_CODES == "True" and (COST_CODES_PATH or S3_COST_CODES_PATH):
if not os.path.exists(COST_CODES_PATH) and S3_COST_CODES_PATH and RUN_AWS_FUNCTIONS == "1":
print("Downloading cost codes from S3")
app.load(download_file_from_s3, inputs=[s3_default_bucket, s3_default_cost_codes_file, default_cost_codes_output_folder_location]).\
success(load_in_default_cost_codes, inputs = [default_cost_codes_output_folder_location, default_cost_code_textbox], outputs=[cost_code_dataframe, cost_code_dataframe_base, cost_code_choice_drop])
print("Successfully loaded cost codes from S3")
elif os.path.exists(COST_CODES_PATH):
print("Loading cost codes from default cost codes path location:", COST_CODES_PATH)
app.load(load_in_default_cost_codes, inputs = [default_cost_codes_output_folder_location, default_cost_code_textbox], outputs=[cost_code_dataframe, cost_code_dataframe_base, cost_code_choice_drop])
else: print("Could not load in cost code data")
###
# LOGGING
###
### ACCESS LOGS
# Log usernames and times of access to file (to know who is using the app when running on AWS)
access_callback = CSVLogger_custom(dataset_file_name=LOG_FILE_NAME)
access_callback.setup([session_hash_textbox, host_name_textbox], ACCESS_LOGS_FOLDER)
session_hash_textbox.change(lambda *args: access_callback.flag(list(args), save_to_csv=SAVE_LOGS_TO_CSV, save_to_dynamodb=SAVE_LOGS_TO_DYNAMODB, dynamodb_table_name=ACCESS_LOG_DYNAMODB_TABLE_NAME, dynamodb_headers=DYNAMODB_ACCESS_LOG_HEADERS, replacement_headers=CSV_ACCESS_LOG_HEADERS), [session_hash_textbox, host_name_textbox], None, preprocess=False).\
success(fn = upload_log_file_to_s3, inputs=[access_logs_state, access_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
### FEEDBACK LOGS
pdf_callback = CSVLogger_custom(dataset_file_name=FEEDBACK_LOG_FILE_NAME)
data_callback = CSVLogger_custom(dataset_file_name=FEEDBACK_LOG_FILE_NAME)
if DISPLAY_FILE_NAMES_IN_LOGS == 'True':
# User submitted feedback for pdf redactions
pdf_callback.setup([pdf_feedback_radio, pdf_further_details_text, doc_file_name_no_extension_textbox], FEEDBACK_LOGS_FOLDER)
pdf_submit_feedback_btn.click(lambda *args: pdf_callback.flag(list(args), save_to_csv=SAVE_LOGS_TO_CSV, save_to_dynamodb=SAVE_LOGS_TO_DYNAMODB, dynamodb_table_name=FEEDBACK_LOG_DYNAMODB_TABLE_NAME, dynamodb_headers=DYNAMODB_FEEDBACK_LOG_HEADERS, replacement_headers=CSV_FEEDBACK_LOG_HEADERS), [pdf_feedback_radio, pdf_further_details_text, doc_file_name_no_extension_textbox], None, preprocess=False).\
success(fn = upload_log_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[pdf_further_details_text])
# User submitted feedback for data redactions
data_callback.setup([data_feedback_radio, data_further_details_text, data_full_file_name_textbox], FEEDBACK_LOGS_FOLDER)
data_submit_feedback_btn.click(lambda *args: data_callback.flag(list(args), save_to_csv=SAVE_LOGS_TO_CSV, save_to_dynamodb=SAVE_LOGS_TO_DYNAMODB, dynamodb_table_name=FEEDBACK_LOG_DYNAMODB_TABLE_NAME, dynamodb_headers=DYNAMODB_FEEDBACK_LOG_HEADERS, replacement_headers=CSV_FEEDBACK_LOG_HEADERS), [data_feedback_radio, data_further_details_text, data_full_file_name_textbox], None, preprocess=False).\
success(fn = upload_log_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[data_further_details_text])
else:
# User submitted feedback for pdf redactions
pdf_callback.setup([pdf_feedback_radio, pdf_further_details_text, doc_file_name_no_extension_textbox], FEEDBACK_LOGS_FOLDER)
pdf_submit_feedback_btn.click(lambda *args: pdf_callback.flag(list(args), save_to_csv=SAVE_LOGS_TO_CSV, save_to_dynamodb=SAVE_LOGS_TO_DYNAMODB, dynamodb_table_name=FEEDBACK_LOG_DYNAMODB_TABLE_NAME, dynamodb_headers=DYNAMODB_FEEDBACK_LOG_HEADERS, replacement_headers=CSV_FEEDBACK_LOG_HEADERS), [pdf_feedback_radio, pdf_further_details_text, placeholder_doc_file_name_no_extension_textbox_for_logs], None, preprocess=False).\
success(fn = upload_log_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[pdf_further_details_text])
# User submitted feedback for data redactions
data_callback.setup([data_feedback_radio, data_further_details_text, data_full_file_name_textbox], FEEDBACK_LOGS_FOLDER)
data_submit_feedback_btn.click(lambda *args: data_callback.flag(list(args), save_to_csv=SAVE_LOGS_TO_CSV, save_to_dynamodb=SAVE_LOGS_TO_DYNAMODB, dynamodb_table_name=FEEDBACK_LOG_DYNAMODB_TABLE_NAME, dynamodb_headers=DYNAMODB_FEEDBACK_LOG_HEADERS, replacement_headers=CSV_FEEDBACK_LOG_HEADERS), [data_feedback_radio, data_further_details_text, placeholder_data_file_name_no_extension_textbox_for_logs], None, preprocess=False).\
success(fn = upload_log_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[data_further_details_text])
### USAGE LOGS
# Log processing usage - time taken for redaction queries, and also logs for queries to Textract/Comprehend
usage_callback = CSVLogger_custom(dataset_file_name=USAGE_LOG_FILE_NAME)
if DISPLAY_FILE_NAMES_IN_LOGS == 'True':
usage_callback.setup([session_hash_textbox, doc_file_name_no_extension_textbox, data_full_file_name_textbox, total_pdf_page_count, actual_time_taken_number, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox, text_extract_method_radio, is_a_textract_api_call], USAGE_LOGS_FOLDER)
latest_file_completed_num.change(lambda *args: usage_callback.flag(list(args), save_to_csv=SAVE_LOGS_TO_CSV, save_to_dynamodb=SAVE_LOGS_TO_DYNAMODB, dynamodb_table_name=USAGE_LOG_DYNAMODB_TABLE_NAME, dynamodb_headers=DYNAMODB_USAGE_LOG_HEADERS, replacement_headers=CSV_USAGE_LOG_HEADERS), [session_hash_textbox, doc_file_name_no_extension_textbox, data_full_file_name_textbox, total_pdf_page_count, actual_time_taken_number, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox, text_extract_method_radio, is_a_textract_api_call], None, preprocess=False, api_name="usage_logs").\
success(fn = upload_log_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
text_tabular_files_done.change(lambda *args: usage_callback.flag(list(args), save_to_csv=SAVE_LOGS_TO_CSV, save_to_dynamodb=SAVE_LOGS_TO_DYNAMODB, dynamodb_table_name=USAGE_LOG_DYNAMODB_TABLE_NAME, dynamodb_headers=DYNAMODB_USAGE_LOG_HEADERS, replacement_headers=CSV_USAGE_LOG_HEADERS), [session_hash_textbox, doc_file_name_no_extension_textbox, data_full_file_name_textbox, total_pdf_page_count, actual_time_taken_number, textract_query_number, pii_identification_method_drop_tabular, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox, text_extract_method_radio, is_a_textract_api_call], None, preprocess=False).\
success(fn = upload_log_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
successful_textract_api_call_number.change(lambda *args: usage_callback.flag(list(args), save_to_csv=SAVE_LOGS_TO_CSV, save_to_dynamodb=SAVE_LOGS_TO_DYNAMODB, dynamodb_table_name=USAGE_LOG_DYNAMODB_TABLE_NAME, dynamodb_headers=DYNAMODB_USAGE_LOG_HEADERS, replacement_headers=CSV_USAGE_LOG_HEADERS), [session_hash_textbox, doc_file_name_no_extension_textbox, data_full_file_name_textbox, total_pdf_page_count, actual_time_taken_number, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox, text_extract_method_radio, is_a_textract_api_call], None, preprocess=False).\
success(fn = upload_log_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
else:
usage_callback.setup([session_hash_textbox, blank_doc_file_name_no_extension_textbox_for_logs, blank_data_file_name_no_extension_textbox_for_logs, total_pdf_page_count, actual_time_taken_number, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox, text_extract_method_radio, is_a_textract_api_call], USAGE_LOGS_FOLDER)
latest_file_completed_num.change(lambda *args: usage_callback.flag(list(args), save_to_csv=SAVE_LOGS_TO_CSV, save_to_dynamodb=SAVE_LOGS_TO_DYNAMODB, dynamodb_table_name=USAGE_LOG_DYNAMODB_TABLE_NAME, dynamodb_headers=DYNAMODB_USAGE_LOG_HEADERS, replacement_headers=CSV_USAGE_LOG_HEADERS), [session_hash_textbox, placeholder_doc_file_name_no_extension_textbox_for_logs, blank_data_file_name_no_extension_textbox_for_logs, actual_time_taken_number, total_pdf_page_count, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox, text_extract_method_radio, is_a_textract_api_call], None, preprocess=False).\
success(fn = upload_log_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
text_tabular_files_done.change(lambda *args: usage_callback.flag(list(args), save_to_csv=SAVE_LOGS_TO_CSV, save_to_dynamodb=SAVE_LOGS_TO_DYNAMODB, dynamodb_table_name=USAGE_LOG_DYNAMODB_TABLE_NAME, dynamodb_headers=DYNAMODB_USAGE_LOG_HEADERS, replacement_headers=CSV_USAGE_LOG_HEADERS), [session_hash_textbox, blank_doc_file_name_no_extension_textbox_for_logs, placeholder_data_file_name_no_extension_textbox_for_logs, actual_time_taken_number, total_pdf_page_count, textract_query_number, pii_identification_method_drop_tabular, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox, text_extract_method_radio, is_a_textract_api_call], None, preprocess=False).\
success(fn = upload_log_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
successful_textract_api_call_number.change(lambda *args: usage_callback.flag(list(args), save_to_csv=SAVE_LOGS_TO_CSV, save_to_dynamodb=SAVE_LOGS_TO_DYNAMODB, dynamodb_table_name=USAGE_LOG_DYNAMODB_TABLE_NAME, dynamodb_headers=DYNAMODB_USAGE_LOG_HEADERS, replacement_headers=CSV_USAGE_LOG_HEADERS), [session_hash_textbox, placeholder_doc_file_name_no_extension_textbox_for_logs, blank_data_file_name_no_extension_textbox_for_logs, actual_time_taken_number, total_pdf_page_count, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox, text_extract_method_radio, is_a_textract_api_call], None, preprocess=False).\
success(fn = upload_log_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
if __name__ == "__main__":
if RUN_DIRECT_MODE == "0":
if COGNITO_AUTH == "1":
app.queue(max_size=int(MAX_QUEUE_SIZE), default_concurrency_limit=int(DEFAULT_CONCURRENCY_LIMIT)).launch(show_error=True, inbrowser=True, auth=authenticate_user, max_file_size=MAX_FILE_SIZE, server_port=GRADIO_SERVER_PORT, root_path=ROOT_PATH)
else:
app.queue(max_size=int(MAX_QUEUE_SIZE), default_concurrency_limit=int(DEFAULT_CONCURRENCY_LIMIT)).launch(show_error=True, inbrowser=True, max_file_size=MAX_FILE_SIZE, server_port=GRADIO_SERVER_PORT, root_path=ROOT_PATH)
else:
from cli_redact import main
# Validate required direct mode configuration
if not DIRECT_MODE_INPUT_FILE:
print("Error: DIRECT_MODE_INPUT_FILE environment variable must be set for direct mode.")
print("Please set DIRECT_MODE_INPUT_FILE to the path of your input file.")
exit(1)
# Prepare direct mode arguments based on environment variables
direct_mode_args = {
'task': DIRECT_MODE_TASK,
'input_file': DIRECT_MODE_INPUT_FILE,
'output_dir': DIRECT_MODE_OUTPUT_DIR,
'language': DEFAULT_LANGUAGE,
'allow_list': ALLOW_LIST_PATH,
'pii_detector': LOCAL_PII_OPTION,
'aws_access_key': AWS_ACCESS_KEY,
'aws_secret_key': AWS_SECRET_KEY,
'aws_region': AWS_REGION,
's3_bucket': DOCUMENT_REDACTION_BUCKET,
'do_initial_clean': DO_INITIAL_TABULAR_DATA_CLEAN,
'save_logs_to_csv': SAVE_LOGS_TO_CSV,
'display_file_names_in_logs': DISPLAY_FILE_NAMES_IN_LOGS,
'ocr_method': TESSERACT_TEXT_EXTRACT_OPTION,
'page_min': DEFAULT_PAGE_MIN,
'page_max': DEFAULT_PAGE_MAX,
'prepare_for_review': False,
'prepare_images': True,
'no_images': False,
'images_dpi': IMAGES_DPI,
'max_image_pixels': None,
'load_truncated_images': True,
'chosen_local_ocr_model': CHOSEN_LOCAL_OCR_MODEL,
'preprocess_local_ocr_images': PREPROCESS_LOCAL_OCR_IMAGES,
'compress_redacted_pdf': COMPRESS_REDACTED_PDF,
'return_pdf_end_of_redaction': RETURN_PDF_END_OF_REDACTION,
'in_allow_list': OUTPUT_ALLOW_LIST_PATH,
'in_deny_list': OUTPUT_DENY_LIST_PATH,
'redact_whole_page_list': OUTPUT_WHOLE_PAGE_REDACTION_LIST_PATH,
'handwrite_signature_checkbox': DEFAULT_HANDWRITE_SIGNATURE_CHECKBOX,
'anon_strat': DEFAULT_TABULAR_ANONYMISATION_STRATEGY,
'columns': DEFAULT_TEXT_COLUMNS,
'excel_sheets': DEFAULT_EXCEL_SHEETS,
'deny_list': OUTPUT_DENY_LIST_PATH,
'fuzzy_mistakes': DEFAULT_FUZZY_SPELLING_MISTAKES_NUM,
'duplicate_type': DIRECT_MODE_DUPLICATE_TYPE,
'similarity_threshold': DEFAULT_DUPLICATE_DETECTION_THRESHOLD,
'min_word_count': DEFAULT_MIN_WORD_COUNT,
'min_consecutive_pages': DEFAULT_MIN_CONSECUTIVE_PAGES,
'greedy_match': USE_GREEDY_DUPLICATE_DETECTION,
'combine_pages': DEFAULT_COMBINE_PAGES,
'search_query': DEFAULT_SEARCH_QUERY if DEFAULT_SEARCH_QUERY else None,
'text_columns': DEFAULT_TEXT_COLUMNS.split(',') if DEFAULT_TEXT_COLUMNS else []
}
print(f"Running in direct mode with task: {DIRECT_MODE_TASK}")
print(f"Input file: {DIRECT_MODE_INPUT_FILE}")
print(f"Output directory: {DIRECT_MODE_OUTPUT_DIR}")
if DIRECT_MODE_TASK == 'deduplicate':
print(f"Duplicate type: {DIRECT_MODE_DUPLICATE_TYPE}")
print(f"Similarity threshold: {DEFAULT_DUPLICATE_DETECTION_THRESHOLD}")
print(f"Min word count: {DEFAULT_MIN_WORD_COUNT}")
if DEFAULT_SEARCH_QUERY:
print(f"Search query: {DEFAULT_SEARCH_QUERY}")
if DEFAULT_TEXT_COLUMNS:
print(f"Text columns: {DEFAULT_TEXT_COLUMNS}")
# Run the CLI main function with direct mode arguments
main(direct_mode_args=direct_mode_args) |