File size: 158,393 Bytes
aa5c211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
import os
import pandas as pd
import gradio as gr
from gradio_image_annotation import image_annotator
from tools.config import DEFAULT_HANDWRITE_SIGNATURE_CHECKBOX, DEFAULT_TABULAR_ANONYMISATION_STRATEGY, OUTPUT_FOLDER, INPUT_FOLDER, RUN_DIRECT_MODE, MAX_QUEUE_SIZE, DEFAULT_CONCURRENCY_LIMIT, MAX_FILE_SIZE, GRADIO_SERVER_PORT, ROOT_PATH, GET_DEFAULT_ALLOW_LIST, ALLOW_LIST_PATH, S3_ALLOW_LIST_PATH, FEEDBACK_LOGS_FOLDER, ACCESS_LOGS_FOLDER, USAGE_LOGS_FOLDER, DEFAULT_LANGUAGE, GET_COST_CODES, COST_CODES_PATH, S3_COST_CODES_PATH, ENFORCE_COST_CODES, DISPLAY_FILE_NAMES_IN_LOGS, SHOW_COSTS, RUN_AWS_FUNCTIONS, DOCUMENT_REDACTION_BUCKET, SHOW_WHOLE_DOCUMENT_TEXTRACT_CALL_OPTIONS, TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_BUCKET, TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_INPUT_SUBFOLDER, TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_OUTPUT_SUBFOLDER, SESSION_OUTPUT_FOLDER, LOAD_PREVIOUS_TEXTRACT_JOBS_S3, TEXTRACT_JOBS_S3_LOC, TEXTRACT_JOBS_LOCAL_LOC, HOST_NAME, DEFAULT_COST_CODE, OUTPUT_COST_CODES_PATH, OUTPUT_ALLOW_LIST_PATH, COGNITO_AUTH, SAVE_LOGS_TO_CSV, SAVE_LOGS_TO_DYNAMODB, ACCESS_LOG_DYNAMODB_TABLE_NAME, DYNAMODB_ACCESS_LOG_HEADERS, CSV_ACCESS_LOG_HEADERS, FEEDBACK_LOG_DYNAMODB_TABLE_NAME, DYNAMODB_FEEDBACK_LOG_HEADERS, CSV_FEEDBACK_LOG_HEADERS, USAGE_LOG_DYNAMODB_TABLE_NAME, DYNAMODB_USAGE_LOG_HEADERS, CSV_USAGE_LOG_HEADERS, TEXTRACT_JOBS_S3_INPUT_LOC,  TEXTRACT_TEXT_EXTRACT_OPTION, NO_REDACTION_PII_OPTION, TEXT_EXTRACTION_MODELS, PII_DETECTION_MODELS, DEFAULT_TEXT_EXTRACTION_MODEL, DEFAULT_PII_DETECTION_MODEL, LOG_FILE_NAME, CHOSEN_COMPREHEND_ENTITIES, FULL_COMPREHEND_ENTITY_LIST, CHOSEN_REDACT_ENTITIES, FULL_ENTITY_LIST, FILE_INPUT_HEIGHT, TABULAR_PII_DETECTION_MODELS, USAGE_LOG_FILE_NAME, FEEDBACK_LOG_FILE_NAME, CONFIG_FOLDER, GRADIO_TEMP_DIR, MPLCONFIGDIR, S3_FEEDBACK_LOGS_FOLDER, S3_ACCESS_LOGS_FOLDER, S3_USAGE_LOGS_FOLDER, CHOSEN_LOCAL_OCR_MODEL, DEFAULT_LANGUAGE_FULL_NAME, SHOW_LANGUAGE_SELECTION, DO_INITIAL_TABULAR_DATA_CLEAN, DEFAULT_DUPLICATE_DETECTION_THRESHOLD, DIRECT_MODE_TASK, DIRECT_MODE_INPUT_FILE, DIRECT_MODE_OUTPUT_DIR, DIRECT_MODE_DUPLICATE_TYPE, LOCAL_PII_OPTION, TESSERACT_TEXT_EXTRACT_OPTION, AWS_ACCESS_KEY, AWS_SECRET_KEY, AWS_REGION, DOCUMENT_REDACTION_BUCKET, IMAGES_DPI, PREPROCESS_LOCAL_OCR_IMAGES, COMPRESS_REDACTED_PDF, RETURN_PDF_END_OF_REDACTION, OUTPUT_DENY_LIST_PATH, OUTPUT_WHOLE_PAGE_REDACTION_LIST_PATH, DEFAULT_HANDWRITE_SIGNATURE_CHECKBOX, DEFAULT_TABULAR_ANONYMISATION_STRATEGY, DEFAULT_FUZZY_SPELLING_MISTAKES_NUM, DEFAULT_PAGE_MIN, DEFAULT_PAGE_MAX, DEFAULT_EXCEL_SHEETS, USE_GREEDY_DUPLICATE_DETECTION, DEFAULT_MIN_CONSECUTIVE_PAGES, DEFAULT_COMBINE_PAGES, DEFAULT_MIN_WORD_COUNT, DEFAULT_TEXT_COLUMNS, DEFAULT_SEARCH_QUERY
from tools.helper_functions import put_columns_in_df, get_connection_params, reveal_feedback_buttons, custom_regex_load, reset_state_vars, load_in_default_allow_list, reset_review_vars, merge_csv_files, load_all_output_files, update_dataframe, check_for_existing_textract_file, load_in_default_cost_codes, enforce_cost_codes, calculate_aws_costs, calculate_time_taken, reset_base_dataframe, reset_ocr_base_dataframe, update_cost_code_dataframe_from_dropdown_select, check_for_relevant_ocr_output_with_words, reset_data_vars, reset_aws_call_vars, _get_env_list, ensure_folder_exists, reset_ocr_with_words_base_dataframe, update_language_dropdown, LANGUAGE_CHOICES, MAPPED_LANGUAGE_CHOICES
from tools.aws_functions import download_file_from_s3, upload_log_file_to_s3
from tools.file_redaction import choose_and_run_redactor
from tools.file_conversion import prepare_image_or_pdf, get_input_file_names
from tools.redaction_review import apply_redactions_to_review_df_and_files, update_all_page_annotation_object_based_on_previous_page, decrease_page, increase_page, update_annotator_object_and_filter_df, update_entities_df_recogniser_entities, update_entities_df_page, update_entities_df_text, df_select_callback_dataframe_row, convert_df_to_xfdf, convert_xfdf_to_dataframe, reset_dropdowns, exclude_selected_items_from_redaction, undo_last_removal, update_selected_review_df_row_colour, update_all_entity_df_dropdowns, df_select_callback_cost, update_other_annotator_number_from_current, update_annotator_page_from_review_df, df_select_callback_ocr, df_select_callback_textract_api, get_all_rows_with_same_text, increase_bottom_page_count_based_on_top,  create_annotation_objects_from_filtered_ocr_results_with_words, df_select_callback_dataframe_row_ocr_with_words, update_redact_choice_df_from_page_dropdown, get_all_rows_with_same_text_redact,get_and_merge_current_page_annotations
from tools.data_anonymise import anonymise_files_with_open_text
from tools.auth import authenticate_user
from tools.load_spacy_model_custom_recognisers import custom_entities
from tools.custom_csvlogger import CSVLogger_custom
from tools.find_duplicate_pages import run_duplicate_analysis, exclude_match, handle_selection_and_preview, apply_whole_page_redactions_from_list, create_annotation_objects_from_duplicates, run_full_search_and_analysis
from tools.find_duplicate_tabular import update_tabular_column_choices, run_tabular_duplicate_detection, handle_tabular_row_selection, clean_tabular_duplicates
from tools.textract_batch_call import analyse_document_with_textract_api, poll_whole_document_textract_analysis_progress_and_download, load_in_textract_job_details, check_for_provided_job_id, check_textract_outputs_exist, replace_existing_pdf_input_for_whole_document_outputs

# Suppress downcasting warnings
pd.set_option('future.no_silent_downcasting', True)

# Ensure that output folders exist
ensure_folder_exists(CONFIG_FOLDER)
ensure_folder_exists(OUTPUT_FOLDER)
ensure_folder_exists(INPUT_FOLDER)
ensure_folder_exists(GRADIO_TEMP_DIR)
ensure_folder_exists(MPLCONFIGDIR)
ensure_folder_exists(FEEDBACK_LOGS_FOLDER)
ensure_folder_exists(ACCESS_LOGS_FOLDER)
ensure_folder_exists(USAGE_LOGS_FOLDER)

# Convert string environment variables to string or list
if SAVE_LOGS_TO_CSV == "True": SAVE_LOGS_TO_CSV = True 
else: SAVE_LOGS_TO_CSV = False
if SAVE_LOGS_TO_DYNAMODB == "True": SAVE_LOGS_TO_DYNAMODB = True 
else: SAVE_LOGS_TO_DYNAMODB = False
if SHOW_LANGUAGE_SELECTION == "True": SHOW_LANGUAGE_SELECTION = True
else: SHOW_LANGUAGE_SELECTION = False
if DISPLAY_FILE_NAMES_IN_LOGS == "True": DISPLAY_FILE_NAMES_IN_LOGS = True 
else: DISPLAY_FILE_NAMES_IN_LOGS = False
if DO_INITIAL_TABULAR_DATA_CLEAN == "True": DO_INITIAL_TABULAR_DATA_CLEAN = True 
else: DO_INITIAL_TABULAR_DATA_CLEAN = False
if COMPRESS_REDACTED_PDF == "True": COMPRESS_REDACTED_PDF = True 
else: COMPRESS_REDACTED_PDF = False
if RETURN_PDF_END_OF_REDACTION == "True": RETURN_PDF_END_OF_REDACTION = True 
else: RETURN_PDF_END_OF_REDACTION = False
if USE_GREEDY_DUPLICATE_DETECTION == "True": USE_GREEDY_DUPLICATE_DETECTION = True 
else: USE_GREEDY_DUPLICATE_DETECTION = False
if DEFAULT_COMBINE_PAGES == "True": DEFAULT_COMBINE_PAGES = True 
else: DEFAULT_COMBINE_PAGES = False

if CSV_ACCESS_LOG_HEADERS: CSV_ACCESS_LOG_HEADERS = _get_env_list(CSV_ACCESS_LOG_HEADERS)
if CSV_FEEDBACK_LOG_HEADERS: CSV_FEEDBACK_LOG_HEADERS = _get_env_list(CSV_FEEDBACK_LOG_HEADERS)
if CSV_USAGE_LOG_HEADERS: CSV_USAGE_LOG_HEADERS = _get_env_list(CSV_USAGE_LOG_HEADERS)

if DYNAMODB_ACCESS_LOG_HEADERS: DYNAMODB_ACCESS_LOG_HEADERS = _get_env_list(DYNAMODB_ACCESS_LOG_HEADERS)
if DYNAMODB_FEEDBACK_LOG_HEADERS: DYNAMODB_FEEDBACK_LOG_HEADERS = _get_env_list(DYNAMODB_FEEDBACK_LOG_HEADERS)
if DYNAMODB_USAGE_LOG_HEADERS: DYNAMODB_USAGE_LOG_HEADERS = _get_env_list(DYNAMODB_USAGE_LOG_HEADERS)

if CHOSEN_COMPREHEND_ENTITIES: CHOSEN_COMPREHEND_ENTITIES = _get_env_list(CHOSEN_COMPREHEND_ENTITIES)
if FULL_COMPREHEND_ENTITY_LIST: FULL_COMPREHEND_ENTITY_LIST = _get_env_list(FULL_COMPREHEND_ENTITY_LIST)
if CHOSEN_REDACT_ENTITIES: CHOSEN_REDACT_ENTITIES = _get_env_list(CHOSEN_REDACT_ENTITIES)
if FULL_ENTITY_LIST: FULL_ENTITY_LIST = _get_env_list(FULL_ENTITY_LIST)

if DEFAULT_TEXT_COLUMNS: DEFAULT_TEXT_COLUMNS = _get_env_list(DEFAULT_TEXT_COLUMNS)
if DEFAULT_EXCEL_SHEETS: DEFAULT_EXCEL_SHEETS = _get_env_list(DEFAULT_EXCEL_SHEETS)

if DEFAULT_HANDWRITE_SIGNATURE_CHECKBOX: DEFAULT_HANDWRITE_SIGNATURE_CHECKBOX = _get_env_list(DEFAULT_HANDWRITE_SIGNATURE_CHECKBOX)

# Add custom spacy recognisers to the Comprehend list, so that local Spacy model can be used to pick up e.g. titles, streetnames, UK postcodes that are sometimes missed by comprehend
CHOSEN_COMPREHEND_ENTITIES.extend(custom_entities)
FULL_COMPREHEND_ENTITY_LIST.extend(custom_entities)

FILE_INPUT_HEIGHT = int(FILE_INPUT_HEIGHT)

# Create the gradio interface
app = gr.Blocks(theme = gr.themes.Default(primary_hue="blue"), fill_width=True) #gr.themes.Base()

with app:

    ###
    # STATE VARIABLES
    ###
    
    # Pymupdf doc needs to be stored as State objects as they do not have a standard Gradio component equivalent
    pdf_doc_state = gr.State(list())
    all_image_annotations_state = gr.Dropdown("", label="all_image_annotations_state", allow_custom_value=True, visible=False)
    
    all_decision_process_table_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"),  label="all_decision_process_table", visible=False, type="pandas", wrap=True)    

    all_page_line_level_ocr_results = gr.Dropdown("", label="all_page_line_level_ocr_results", allow_custom_value=True, visible=False)    
    all_page_line_level_ocr_results_with_words = gr.Dropdown("", label="all_page_line_level_ocr_results_with_words", allow_custom_value=True, visible=False)

    chosen_local_model_textbox = gr.Textbox(CHOSEN_LOCAL_OCR_MODEL, label="chosen_local_model_textbox", visible=False)

    session_hash_state = gr.Textbox(label= "session_hash_state", value="", visible=False)
    host_name_textbox = gr.Textbox(label= "host_name_textbox", value=HOST_NAME, visible=False)
    s3_output_folder_state = gr.Textbox(label= "s3_output_folder_state", value="", visible=False)
    session_output_folder_textbox = gr.Textbox(value = SESSION_OUTPUT_FOLDER, label="session_output_folder_textbox", visible=False)
    output_folder_textbox = gr.Textbox(value = OUTPUT_FOLDER, label="output_folder_textbox", visible=False)
    input_folder_textbox = gr.Textbox(value = INPUT_FOLDER, label="input_folder_textbox", visible=False)

    first_loop_state = gr.Checkbox(label="first_loop_state", value=True, visible=False)
    second_loop_state = gr.Checkbox(label="second_loop_state", value=False, visible=False)
    do_not_save_pdf_state = gr.Checkbox(label="do_not_save_pdf_state", value=False, visible=False)
    save_pdf_state = gr.Checkbox(label="save_pdf_state", value=True, visible=False)

    prepared_pdf_state = gr.Dropdown(label = "prepared_pdf_list", value="", allow_custom_value=True,visible=False)
    document_cropboxes = gr.Dropdown(label = "document_cropboxes", value="", allow_custom_value=True,visible=False)
    page_sizes = gr.Dropdown(label = "page_sizes", value="", allow_custom_value=True, visible=False)
    images_pdf_state = gr.Dropdown(label = "images_pdf_list", value="", allow_custom_value=True,visible=False)
    all_img_details_state = gr.Dropdown(label = "all_img_details_state", value="", allow_custom_value=True,visible=False)
    
    output_image_files_state = gr.Dropdown(label = "output_image_files_list", value="", allow_custom_value=True,visible=False)
    output_file_list_state = gr.Dropdown(label = "output_file_list", value="", allow_custom_value=True,visible=False)
    text_output_file_list_state = gr.Dropdown(label = "text_output_file_list", value="", allow_custom_value=True,visible=False)
    log_files_output_list_state = gr.Dropdown(label = "log_files_output_list", value="", allow_custom_value=True,visible=False)
    duplication_file_path_outputs_list_state = gr.Dropdown(label = "duplication_file_path_outputs_list", value=list(), multiselect=True, allow_custom_value=True,visible=False)

    # Backup versions of these objects in case you make a mistake
    backup_review_state = gr.State(pd.DataFrame())
    backup_image_annotations_state = gr.State(list())
    backup_recogniser_entity_dataframe_base = gr.State(pd.DataFrame())
    backup_all_page_line_level_ocr_results_with_words_df_base = gr.State(pd.DataFrame())    
    
    # Logging variables
    access_logs_state = gr.Textbox(label= "access_logs_state", value=ACCESS_LOGS_FOLDER + LOG_FILE_NAME, visible=False)
    access_s3_logs_loc_state = gr.Textbox(label= "access_s3_logs_loc_state", value=S3_ACCESS_LOGS_FOLDER, visible=False)
    feedback_logs_state = gr.Textbox(label= "feedback_logs_state", value=FEEDBACK_LOGS_FOLDER + FEEDBACK_LOG_FILE_NAME, visible=False)
    feedback_s3_logs_loc_state = gr.Textbox(label= "feedback_s3_logs_loc_state", value=S3_FEEDBACK_LOGS_FOLDER, visible=False)
    usage_logs_state = gr.Textbox(label= "usage_logs_state", value=USAGE_LOGS_FOLDER + USAGE_LOG_FILE_NAME, visible=False)
    usage_s3_logs_loc_state = gr.Textbox(label= "usage_s3_logs_loc_state", value=S3_USAGE_LOGS_FOLDER, visible=False)

    session_hash_textbox = gr.Textbox(label= "session_hash_textbox", value="", visible=False)
    textract_metadata_textbox = gr.Textbox(label = "textract_metadata_textbox", value="", visible=False)
    comprehend_query_number = gr.Number(label = "comprehend_query_number", value=0, visible=False)
    textract_query_number = gr.Number(label = "textract_query_number", value=0, visible=False)
    
    doc_full_file_name_textbox = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False)
    doc_file_name_no_extension_textbox = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False)
    blank_doc_file_name_no_extension_textbox_for_logs = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False)
    blank_data_file_name_no_extension_textbox_for_logs = gr.Textbox(label = "data_full_file_name_textbox", value="", visible=False)
    placeholder_doc_file_name_no_extension_textbox_for_logs = gr.Textbox(label = "doc_full_file_name_textbox", value="document", visible=False)
    placeholder_data_file_name_no_extension_textbox_for_logs = gr.Textbox(label = "data_full_file_name_textbox", value="data_file", visible=False)

    # Left blank for when user does not want to report file names
    doc_file_name_with_extension_textbox = gr.Textbox(label = "doc_file_name_with_extension_textbox", value="", visible=False)
    doc_file_name_textbox_list = gr.Dropdown(label = "doc_file_name_textbox_list", value="", allow_custom_value=True,visible=False)
    latest_review_file_path = gr.Textbox(label = "latest_review_file_path", value="", visible=False) # Latest review file path output from redaction
    latest_ocr_file_path = gr.Textbox(label = "latest_ocr_file_path", value="", visible=False) # Latest ocr file path output from text extraction

    data_full_file_name_textbox = gr.Textbox(label = "data_full_file_name_textbox", value="", visible=False)
    data_file_name_no_extension_textbox = gr.Textbox(label = "data_full_file_name_textbox", value="", visible=False)
    data_file_name_with_extension_textbox = gr.Textbox(label = "data_file_name_with_extension_textbox", value="", visible=False)
    data_file_name_textbox_list = gr.Dropdown(label = "data_file_name_textbox_list", value="", allow_custom_value=True,visible=False)

    # Constants just to use with the review dropdowns for filtering by various columns
    label_name_const = gr.Textbox(label="label_name_const", value="label", visible=False)
    text_name_const = gr.Textbox(label="text_name_const", value="text", visible=False)
    page_name_const = gr.Textbox(label="page_name_const", value="page", visible=False)
    
    actual_time_taken_number = gr.Number(label = "actual_time_taken_number", value=0.0, precision=1, visible=False) # This keeps track of the time taken to redact files for logging purposes.
    annotate_previous_page = gr.Number(value=0, label="Previous page", precision=0, visible=False) # Keeps track of the last page that the annotator was on
    s3_logs_output_textbox = gr.Textbox(label="Feedback submission logs", visible=False)

    ## Annotator zoom value
    annotator_zoom_number = gr.Number(label = "Current annotator zoom level", value=100, precision=0, visible=False)
    zoom_true_bool = gr.Checkbox(label="zoom_true_bool", value=True, visible=False)
    zoom_false_bool = gr.Checkbox(label="zoom_false_bool", value=False, visible=False)

    clear_all_page_redactions = gr.Checkbox(label="clear_all_page_redactions", value=True, visible=False)
    prepare_for_review_bool = gr.Checkbox(label="prepare_for_review_bool", value=True, visible=False)
    prepare_for_review_bool_false = gr.Checkbox(label="prepare_for_review_bool_false", value=False, visible=False)
    prepare_images_bool_false = gr.Checkbox(label="prepare_images_bool_false", value=False, visible=False)

    ## Settings page variables
    default_deny_list_file_name = "default_deny_list.csv"
    default_deny_list_loc = OUTPUT_FOLDER + "/" + default_deny_list_file_name    
    in_deny_list_text_in = gr.Textbox(value="deny_list", visible=False)

    fully_redacted_list_file_name = "default_fully_redacted_list.csv"
    fully_redacted_list_loc = OUTPUT_FOLDER + "/" + fully_redacted_list_file_name    
    in_fully_redacted_text_in = gr.Textbox(value="fully_redacted_pages_list", visible=False)

    # S3 settings for default allow list load
    s3_default_bucket = gr.Textbox(label = "Default S3 bucket", value=DOCUMENT_REDACTION_BUCKET, visible=False)
    s3_default_allow_list_file = gr.Textbox(label = "Default allow list file", value=S3_ALLOW_LIST_PATH, visible=False)
    default_allow_list_output_folder_location = gr.Textbox(label = "Output default allow list location", value=OUTPUT_ALLOW_LIST_PATH, visible=False)

    s3_whole_document_textract_default_bucket = gr.Textbox(label = "Default Textract whole_document S3 bucket", value=TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_BUCKET, visible=False)
    s3_whole_document_textract_input_subfolder = gr.Textbox(label = "Default Textract whole_document S3 input folder", value=TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_INPUT_SUBFOLDER, visible=False)
    s3_whole_document_textract_output_subfolder = gr.Textbox(label = "Default Textract whole_document S3 output folder", value=TEXTRACT_WHOLE_DOCUMENT_ANALYSIS_OUTPUT_SUBFOLDER, visible=False)
    successful_textract_api_call_number = gr.Number(precision=0, value=0, visible=False)
    no_redaction_method_drop = gr.Radio(label = """Placeholder for no redaction method after downloading Textract outputs""", value = NO_REDACTION_PII_OPTION, choices=[NO_REDACTION_PII_OPTION], visible=False)
    textract_only_method_drop = gr.Radio(label="""Placeholder for Textract method after downloading Textract outputs""", value = TEXTRACT_TEXT_EXTRACT_OPTION, choices=[TEXTRACT_TEXT_EXTRACT_OPTION], visible=False)

    load_s3_whole_document_textract_logs_bool = gr.Textbox(label = "Load Textract logs or not", value=LOAD_PREVIOUS_TEXTRACT_JOBS_S3, visible=False)    
    s3_whole_document_textract_logs_subfolder = gr.Textbox(label = "Default Textract whole_document S3 input folder", value=TEXTRACT_JOBS_S3_LOC, visible=False)
    local_whole_document_textract_logs_subfolder = gr.Textbox(label = "Default Textract whole_document S3 output folder", value=TEXTRACT_JOBS_LOCAL_LOC, visible=False)

    s3_default_cost_codes_file = gr.Textbox(label = "Default cost centre file", value=S3_COST_CODES_PATH, visible=False)
    default_cost_codes_output_folder_location = gr.Textbox(label = "Output default cost centre location", value=OUTPUT_COST_CODES_PATH, visible=False)
    enforce_cost_code_textbox = gr.Textbox(label = "Enforce cost code textbox", value=ENFORCE_COST_CODES, visible=False)
    default_cost_code_textbox = gr.Textbox(label = "Default cost code textbox", value=DEFAULT_COST_CODE, visible=False)

    # Base tables that are not modified subsequent to load
    recogniser_entity_dataframe_base = gr.State(pd.DataFrame(columns=["page", "label", "text", "id"]))
    all_page_line_level_ocr_results_df_base = gr.State(pd.DataFrame(columns=["page", "text", "left", "top", "width", "height", "line"]))
    all_line_level_ocr_results_df_placeholder = gr.State(pd.DataFrame(columns=["page", "text", "left", "top", "width", "height", "line"]))

    # Placeholder for selected entity dataframe row
    selected_entity_id = gr.Textbox(value="", label="selected_entity_id", visible=False)
    selected_entity_colour = gr.Textbox(value="", label="selected_entity_colour", visible=False)
    selected_entity_dataframe_row_text = gr.Textbox(value="", label="selected_entity_dataframe_row_text", visible=False)
    selected_entity_dataframe_row_text_redact = gr.Textbox(value="", label="selected_entity_dataframe_row_text_redact", visible=False)

    # This is an invisible dataframe that holds all items from the redaction outputs that have the same text as the selected row
    recogniser_entity_dataframe_same_text = gr.Dataframe(pd.DataFrame(data={"page":list(), "label":list(), "text":list(), "id":list()}), col_count=(4,"fixed"), type="pandas", label="Table rows with same text", headers=["page", "label", "text", "id"], show_fullscreen_button=True, wrap=True, max_height=400, static_columns=[0,1,2,3], visible=False)

    to_redact_dataframe_same_text = gr.Dataframe(pd.DataFrame(data={"page":list(), "line":list(), "word_text":list(), "word_x0":list(),	"word_y0":list(),"word_x1":list(),"word_y1":list(), "index":list()}), type="pandas", headers=["page", "line", "word_text", "word_x0","word_y0","word_x1","word_y1","index"], wrap=False, visible=False)

    # Duplicate page detection
    in_duplicate_pages_text = gr.Textbox(label="in_duplicate_pages_text", visible=False)
    duplicate_pages_df = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="duplicate_pages_df", visible=False, type="pandas", wrap=True)
    full_duplicated_data_df = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="full_duplicated_data_df", visible=False, type="pandas", wrap=True)
    selected_duplicate_data_row_index = gr.Number(value=None, label="selected_duplicate_data_row_index", visible=False)
    full_duplicate_data_by_file = gr.State() # A dictionary of the full duplicate data indexed by file

    # Tracking variables for current page (not visible)
    current_loop_page_number = gr.Number(value=0,precision=0, interactive=False, label = "Last redacted page in document", visible=False)
    page_break_return = gr.Checkbox(value = False, label="Page break reached", visible=False)

    # Placeholders for elements that may be made visible later below depending on environment variables
    cost_code_dataframe_base = gr.Dataframe(value=pd.DataFrame(), row_count = (0, "dynamic"), label="Cost codes", type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, show_search='filter', wrap=True, max_height=200, visible=False)
    cost_code_dataframe = gr.Dataframe(value=pd.DataFrame(), type="pandas", visible=False, wrap=True)
    cost_code_choice_drop = gr.Dropdown(value=DEFAULT_COST_CODE, label="Choose cost code for analysis. Please contact Finance if you can't find your cost code in the given list.", choices=[DEFAULT_COST_CODE], allow_custom_value=False, visible=False)

    textract_output_found_checkbox = gr.Checkbox(value= False, label="Existing Textract output file found", interactive=False, visible=False)
    relevant_ocr_output_with_words_found_checkbox = gr.Checkbox(value= False, label="Existing local OCR output file found", interactive=False, visible=False)
    total_pdf_page_count = gr.Number(label = "Total page count", value=0, visible=False)
    estimated_aws_costs_number = gr.Number(label = "Approximate AWS Textract and/or Comprehend cost ($)", value=0, visible=False, precision=2)
    estimated_time_taken_number = gr.Number(label = "Approximate time taken to extract text/redact (minutes)", value=0, visible=False, precision=2)

    only_extract_text_radio = gr.Checkbox(value=False, label="Only extract text (no redaction)", visible=False)

    # Textract API call placeholders in case option not selected in config
                
    job_name_textbox = gr.Textbox(value="", label="whole_document Textract call", visible=False)
    send_document_to_textract_api_btn = gr.Button("Analyse document with AWS Textract", variant="primary", visible=False)

    job_id_textbox = gr.Textbox(label = "Latest job ID for whole_document document analysis", value='', visible=False)              
    check_state_of_textract_api_call_btn = gr.Button("Check state of Textract document job and download", variant="secondary", visible=False)
    job_current_status = gr.Textbox(value="", label="Analysis job current status", visible=False)
    job_type_dropdown = gr.Dropdown(value="document_text_detection", choices=["document_text_detection", "document_analysis"], label="Job type of Textract analysis job", allow_custom_value=False, visible=False)
    textract_job_detail_df = gr.Dataframe(pd.DataFrame(columns=['job_id','file_name','job_type','signature_extraction','job_date_time']), label="Previous job details", visible=False, type="pandas", wrap=True)
    selected_job_id_row = gr.Dataframe(pd.DataFrame(columns=['job_id','file_name','job_type','signature_extraction','job_date_time']), label="Selected job id row", visible=False, type="pandas", wrap=True)
    is_a_textract_api_call = gr.Checkbox(value=False, label="is_this_a_textract_api_call", visible=False)
    job_output_textbox = gr.Textbox(value="", label="Textract call outputs", visible=False)
    job_input_textbox = gr.Textbox(value=TEXTRACT_JOBS_S3_INPUT_LOC, label="Textract call outputs", visible=False)

    textract_job_output_file = gr.File(label="Textract job output files", height=FILE_INPUT_HEIGHT, visible=False)
    convert_textract_outputs_to_ocr_results = gr.Button("Placeholder - Convert Textract job outputs to OCR results (needs relevant document file uploaded above)", variant="secondary", visible=False)

    ## Duplicate search object
    new_duplicate_search_annotation_object = gr.Dropdown(value=None, label="new_duplicate_search_annotation_object", allow_custom_value=True, visible=False)

    # Spacy analyser state
    updated_nlp_analyser_state = gr.State(list())
    tesseract_lang_data_file_path = gr.Textbox("", visible=False)

    ###
    # UI DESIGN
    ###

    gr.Markdown(
    """# Document redaction

    Redact personally identifiable information (PII) from documents (PDF, images), Word files (.docx), or tabular data (XLSX/CSV/Parquet). Please see the [User Guide](https://github.com/seanpedrick-case/doc_redaction/blob/main/README.md) for a walkthrough on how to use the app. Below is a very brief overview.
    
    To identify text in documents, the 'Local' text/OCR image analysis uses spaCy/Tesseract, and works well only for documents with typed text. If available, choose 'AWS Textract' to redact more complex elements e.g. signatures or handwriting. Then, choose a method for PII identification. 'Local' is quick and gives good results if you are primarily looking for a custom list of terms to redact (see Redaction settings). If available, AWS Comprehend gives better results at a small cost.
    
    After redaction, review suggested redactions on the 'Review redactions' tab. The original pdf can be uploaded here alongside a '...review_file.csv' to continue a previous redaction/review task. See the 'Redaction settings' tab to choose which pages to redact, the type of information to redact (e.g. people, places), or custom terms to always include/ exclude from redaction.

    NOTE: The app is not 100% accurate, and it will miss some personal information. It is essential that all outputs are reviewed **by a human** before using the final outputs.""")

    ###
    # REDACTION PDF/IMAGES TABLE
    ###
    with gr.Tab("Redact PDFs/images"):
        with gr.Accordion("Redact document", open = True):
            in_doc_files = gr.File(label="Choose a PDF document or image file (PDF, JPG, PNG)", file_count= "multiple", file_types=['.pdf', '.jpg', '.png', '.json', '.zip'], height=FILE_INPUT_HEIGHT)

            text_extract_method_radio = gr.Radio(label="""Choose text extraction method. Local options are lower quality but cost nothing - they may be worth a try if you are willing to spend some time reviewing outputs. AWS Textract has a cost per page - £2.66 ($3.50) per 1,000 pages with signature detection (default), £1.14 ($1.50) without. Change the settings in the tab below (AWS Textract signature detection) to change this.""", value = DEFAULT_TEXT_EXTRACTION_MODEL, choices=TEXT_EXTRACTION_MODELS)

            with gr.Accordion("Enable AWS Textract signature detection (default is off)", open = False):
                handwrite_signature_checkbox = gr.CheckboxGroup(label="AWS Textract extraction settings", choices=["Extract handwriting", "Extract signatures"], value=DEFAULT_HANDWRITE_SIGNATURE_CHECKBOX)

            with gr.Row(equal_height=True):
                pii_identification_method_drop = gr.Radio(label = """Choose personal information detection method. The local model is lower quality but costs nothing - it may be worth a try if you are willing to spend some time reviewing outputs, or if you are only interested in searching for custom search terms (see Redaction settings - custom deny list). AWS Comprehend has a cost of around £0.0075 ($0.01) per 10,000 characters.""", value = DEFAULT_PII_DETECTION_MODEL, choices=PII_DETECTION_MODELS)
            
            if SHOW_COSTS == "True":
                with gr.Accordion("Estimated costs and time taken. Note that costs shown only include direct usage of AWS services and do not include other running costs (e.g. storage, run-time costs)", open = True, visible=True):                        
                    with gr.Row(equal_height=True):
                        with gr.Column(scale=1):
                            textract_output_found_checkbox = gr.Checkbox(value= False, label="Existing Textract output file found", interactive=False, visible=True)
                            relevant_ocr_output_with_words_found_checkbox = gr.Checkbox(value= False, label="Existing local OCR output file found", interactive=False, visible=True)
                        with gr.Column(scale=4):
                            with gr.Row(equal_height=True):
                                total_pdf_page_count = gr.Number(label = "Total page count", value=0, visible=True, interactive=False)
                                estimated_aws_costs_number = gr.Number(label = "Approximate AWS Textract and/or Comprehend cost (£)", value=0.00, precision=2, visible=True, interactive=False)
                                estimated_time_taken_number = gr.Number(label = "Approximate time taken to extract text/redact (minutes)", value=0, visible=True, precision=2, interactive=False)       
                
            if GET_COST_CODES == "True" or ENFORCE_COST_CODES == "True":
                with gr.Accordion("Assign task to cost code", open = True, visible=True):
                    gr.Markdown("Please ensure that you have approval from your budget holder before using this app for redaction tasks that incur a cost.")
                    with gr.Row():
                        cost_code_dataframe = gr.Dataframe(value=pd.DataFrame(), row_count = (0, "dynamic"), label="Existing cost codes", type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, show_search='filter', visible=True, wrap=True, max_height=200)
                        with gr.Column():
                            reset_cost_code_dataframe_button = gr.Button(value="Reset code code table filter")
                            cost_code_choice_drop = gr.Dropdown(value=DEFAULT_COST_CODE, label="Choose cost code for analysis", choices=[DEFAULT_COST_CODE], allow_custom_value=False, visible=True)

            if SHOW_WHOLE_DOCUMENT_TEXTRACT_CALL_OPTIONS == "True":
                with gr.Accordion("Submit whole document to AWS Textract API (quickest text extraction for large documents)", open = False, visible=True):
                    with gr.Row(equal_height=True):
                        gr.Markdown("""Document will be submitted to AWS Textract API service to extract all text in the document. Processing will take place on (secure) AWS servers, and outputs will be stored on S3 for up to 7 days. To download the results, click 'Check status' below and they will be downloaded if ready.""")
                    with gr.Row(equal_height=True):
                        send_document_to_textract_api_btn = gr.Button("Analyse document with AWS Textract API call", variant="primary", visible=True)                        
                    with gr.Row(equal_height=False):
                        with gr.Column(scale=2):      
                            textract_job_detail_df = gr.Dataframe(label="Previous job details", visible=True, type="pandas", wrap=True, interactive=True, row_count=(0, 'fixed'), col_count=(5,'fixed'), static_columns=[0,1,2,3,4], max_height=400)
                        with gr.Column(scale=1):
                            job_id_textbox = gr.Textbox(label = "Job ID to check status", value='', visible=True)     
                            check_state_of_textract_api_call_btn = gr.Button("Check status of Textract job and download", variant="secondary", visible=True)
                    with gr.Row():
                        with gr.Column(): 
                            textract_job_output_file = gr.File(label="Textract job output files", height=100, visible=True)
                        with gr.Column():
                            job_current_status = gr.Textbox(value="", label="Analysis job current status", visible=True) 
                            convert_textract_outputs_to_ocr_results = gr.Button("Convert Textract job outputs to OCR results", variant="secondary", visible=True)                           

            gr.Markdown("""If you only want to redact certain pages, or certain entities (e.g. just email addresses, or a custom list of terms), please go to the Redaction Settings tab.""")      
            document_redact_btn = gr.Button("Extract text and redact document", variant="primary", scale = 4)
        
        with gr.Row(equal_height=True):
            redaction_output_summary_textbox = gr.Textbox(label="Output summary", scale=1)
            output_file = gr.File(label="Output files", scale = 2)#, height=FILE_INPUT_HEIGHT)
            latest_file_completed_num = gr.Number(value=0, label="Number of documents redacted", interactive=False, visible=False)

        # Feedback elements are invisible until revealed by redaction action
        pdf_feedback_title = gr.Markdown(value="## Please give feedback", visible=False)
        pdf_feedback_radio = gr.Radio(label = "Quality of results", choices=["The results were good", "The results were not good"], visible=False)
        pdf_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False)
        pdf_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False)
        
    ###
    # REVIEW REDACTIONS TAB
    ###
    with gr.Tab("Review redactions", id="tab_object_annotation"):

        all_page_line_level_ocr_results_with_words_df_base = gr.Dataframe(type="pandas", label="all_page_line_level_ocr_results_with_words_df_base", show_fullscreen_button=True, wrap=False, show_search="filter", visible=False)

        with gr.Accordion(label = "Review PDF redactions", open=True):
            with gr.Row(equal_height=True):
                with gr.Column(scale=2):
                    input_pdf_for_review = gr.File(label="Upload original PDF to begin review process.", file_count='multiple', height=FILE_INPUT_HEIGHT)
                    upload_pdf_for_review_btn = gr.Button("1. Upload original PDF", variant="secondary")
                with gr.Column(scale=1):
                    input_review_files = gr.File(label="Upload review files here to review suggested redactions. 'review_file' csv The 'ocr_results with words' file can also be provided for searching text and making new redactions.", file_count='multiple', height=FILE_INPUT_HEIGHT)
                    upload_review_files_btn = gr.Button("2. Upload review or OCR csv files", variant="secondary")                      
        with gr.Row():
            annotate_zoom_in = gr.Button("Zoom in", visible=False)
            annotate_zoom_out = gr.Button("Zoom out", visible=False)        
        with gr.Row():
            clear_all_redactions_on_page_btn = gr.Button("Clear all redactions on page", visible=False)

        with gr.Accordion(label = "View and edit review file data", open=False):
            review_file_df = gr.Dataframe(value=pd.DataFrame(), headers=['image', 'page', 'label', 'color', 'xmin', 'ymin', 'xmax', 'ymax', 'text', 'id'], row_count = (0, "dynamic"), label="Review file data", visible=True, type="pandas", wrap=True, show_search=True, show_fullscreen_button=True, show_copy_button=True)

        with gr.Row():
            with gr.Column(scale=2):
                with gr.Row(equal_height=True):                       
                    annotation_last_page_button = gr.Button("Previous page", scale = 4)
                    annotate_current_page = gr.Number(value=1, label="Current page", precision=0, scale = 2, min_width=50, minimum=1)
                    annotate_max_pages = gr.Number(value=1, label="Total pages", precision=0, interactive=False, scale = 2, min_width=50, minimum=1)
                    annotation_next_page_button = gr.Button("Next page", scale = 4)

                zoom_str = str(annotator_zoom_number) + '%'

                annotator = image_annotator(
                    label="Modify redaction boxes",
                    label_list=["Redaction"],
                    label_colors=[(0, 0, 0)],
                    show_label=False,
                    height=zoom_str,
                    width=zoom_str,
                    box_min_size=1,
                    box_selected_thickness=2,
                    handle_size=4,
                    sources=None,#["upload"],
                    show_clear_button=False,
                    show_share_button=False,
                    show_remove_button=False,
                    handles_cursor=True,
                    interactive=False
                )

                with gr.Row(equal_height=True):
                    annotation_last_page_button_bottom = gr.Button("Previous page", scale = 4)
                    annotate_current_page_bottom = gr.Number(value=1, label="Current page", precision=0, interactive=True, scale = 2, min_width=50, minimum=1)
                    annotate_max_pages_bottom = gr.Number(value=1, label="Total pages", precision=0, interactive=False, scale = 2, min_width=50, minimum=1)
                    annotation_next_page_button_bottom = gr.Button("Next page", scale = 4)

            with gr.Column(scale=1):
                annotation_button_apply = gr.Button("Apply revised redactions to PDF", variant="primary")
                update_current_page_redactions_btn = gr.Button(value="Save changes on current page to file", variant="primary")

                with gr.Tab("Modify existing redactions"):
                    with gr.Accordion("Search suggested redactions", open=True):
                        with gr.Row(equal_height=True):
                            recogniser_entity_dropdown = gr.Dropdown(label="Redaction category", value="ALL", allow_custom_value=True)
                            page_entity_dropdown = gr.Dropdown(label="Page", value="ALL", allow_custom_value=True)                    
                        text_entity_dropdown = gr.Dropdown(label="Text", value="ALL", allow_custom_value=True)
                        reset_dropdowns_btn = gr.Button(value="Reset filters")
                        recogniser_entity_dataframe = gr.Dataframe(pd.DataFrame(data={"page":list(), "label":list(), "text":list(), "id":list()}), col_count=(4,"fixed"), type="pandas", label="Click table row to select and go to page", headers=["page", "label", "text", "id"], show_fullscreen_button=True, wrap=True, max_height=400, static_columns=[0,1,2,3])

                        with gr.Row(equal_height=True):                        
                            exclude_selected_btn = gr.Button(value="Exclude all redactions in table")                  
                        
                        with gr.Accordion("Selected redaction row", open=True):
                            selected_entity_dataframe_row = gr.Dataframe(pd.DataFrame(data={"page":list(), "label":list(), "text":list(), "id":list()}), col_count=4, type="pandas", visible=True, headers=["page", "label", "text", "id"], wrap=True)
                            exclude_selected_row_btn = gr.Button(value="Exclude specific redaction row")
                            exclude_text_with_same_as_selected_row_btn = gr.Button(value="Exclude all redactions with same text as selected row")                                          
                            
                        undo_last_removal_btn = gr.Button(value="Undo last element removal", variant="primary")

                with gr.Tab("Search text to make new redactions"):
                    with gr.Accordion("Search text", open=True):
                        with gr.Row(equal_height=True):
                            page_entity_dropdown_redaction = gr.Dropdown(label="Page", value="1", allow_custom_value=True, scale=4)                 
                            reset_dropdowns_btn_new = gr.Button(value="Reset page filter", scale=1)

                        with gr.Row(equal_height=True):
                            multi_word_search_text = gr.Textbox(label="Multi-word text search", value="", scale=4)
                            multi_word_search_text_btn = gr.Button(value="Search", scale=1)

                        with gr.Accordion("Search options", open=False):
                            similarity_search_score_minimum = gr.Number(value=1.0, minimum=0.4, maximum=1.0, label="Minimum similarity score for match (max=1)", visible=False) # Not used anymore for this exact search
                            new_redaction_text_label = gr.Textbox(label="Label for new redactions", value="Redaction")
                            colour_label = gr.Textbox(label="Colour for labels (three number RGB format, max 255 with brackes)", value="(0, 0, 0)")

                        all_page_line_level_ocr_results_with_words_df = gr.Dataframe(pd.DataFrame(data={"page":list(), "line":list(), "word_text":list(), "word_x0":list(),	"word_y0":list(),"word_x1":list(),"word_y1":list()}), type="pandas", label="Click table row to select and go to page", headers=["page", "line", "word_text", "word_x0","word_y0","word_x1","word_y1"], show_fullscreen_button=True, wrap=False, max_height=400, show_search="filter")
                                                                    
                        redact_selected_btn = gr.Button(value="Redact all text in table")
                        reset_ocr_with_words_df_btn = gr.Button(value="Reset table to original state")
                        
                        with gr.Accordion("Selected row", open=True):
                            selected_entity_dataframe_row_redact = gr.Dataframe(pd.DataFrame(data={"page":list(), "line":list(), "word_text":list(), "word_x0":list(),"word_y0":list(),"word_x1":list(),"word_y1":list()}), type="pandas", headers=["page", "line", "word_text", "word_x0","word_y0","word_x1","word_y1"], wrap=False)
                            redact_selected_row_btn = gr.Button(value="Redact specific text row")
                            redact_text_with_same_as_selected_row_btn = gr.Button(value="Redact all words with same text as selected row")                                          
                            
                        undo_last_redact_btn = gr.Button(value="Undo latest redaction", variant="primary")

                with gr.Accordion("Search extracted text", open=True):               
                    all_page_line_level_ocr_results_df = gr.Dataframe(value=pd.DataFrame(), headers=["page", "line", "text"], col_count=(3, 'fixed'), row_count = (0, "dynamic"),  label="All OCR results", visible=True, type="pandas", wrap=True, show_fullscreen_button=True, show_search='filter', show_label=False, show_copy_button=True, max_height=400)
                    reset_all_ocr_results_btn = gr.Button(value="Reset OCR output table filter")
                    selected_ocr_dataframe_row = gr.Dataframe(pd.DataFrame(data={"page":list(), "line":list(), "text":list()}), col_count=3, type="pandas", visible=False, headers=["page", "line", "text"], wrap=True)
        
        with gr.Accordion("Convert review files loaded above to Adobe format, or convert from Adobe format to review file", open = False):
            convert_review_file_to_adobe_btn = gr.Button("Convert review file to Adobe comment format", variant="primary")
            adobe_review_files_out = gr.File(label="Output Adobe comment files will appear here. If converting from .xfdf file to review_file.csv, upload the original pdf with the xfdf file here then click Convert below.", file_count='multiple', file_types=['.csv', '.xfdf', '.pdf']) 
            convert_adobe_to_review_file_btn = gr.Button("Convert Adobe .xfdf comment file to review_file.csv", variant="secondary")

    ###
    # IDENTIFY DUPLICATE PAGES TAB
    ###
    with gr.Tab(label="Identify duplicate pages"):
        gr.Markdown("Search for duplicate pages/subdocuments in your ocr_output files. By default, this function will search for duplicate text across multiple pages, and then join consecutive matching pages together into matched 'subdocuments'. The results can be reviewed below, false positives removed, and then the verified results applied to a document you have loaded in on the 'Review redactions' tab.")

        with gr.Accordion("Step 1: Configure and run analysis", open = True):
            in_duplicate_pages = gr.File(
                label="Upload one or multiple 'ocr_output.csv' files to find duplicate pages and subdocuments",
                file_count="multiple", height=FILE_INPUT_HEIGHT, file_types=['.csv']
            )
            
            with gr.Accordion("Duplicate matching parameters", open = False):
                with gr.Row():
                    duplicate_threshold_input = gr.Number(value=DEFAULT_DUPLICATE_DETECTION_THRESHOLD, label="Similarity threshold", info="Score (0-1) to consider pages a match.")
                    min_word_count_input = gr.Number(value=DEFAULT_MIN_WORD_COUNT, label="Minimum word count", info="Pages with fewer words than this value are ignored.")
                    combine_page_text_for_duplicates_bool = gr.Checkbox(value=True, label="Analyse duplicate text by page (off for by line)")

                gr.Markdown("#### Matching Strategy")
                greedy_match_input = gr.Checkbox(
                    label="Enable 'subdocument' matching",
                    value=USE_GREEDY_DUPLICATE_DETECTION,
                    info="If checked, finds the longest possible sequence of matching pages (subdocuments), minimum length one page. Overrides the slider below."
                )
                min_consecutive_pages_input = gr.Slider(
                    minimum=1, maximum=20, value=DEFAULT_MIN_CONSECUTIVE_PAGES, step=1,
                    label="Minimum consecutive pages (modified subdocument match)",
                    info="If greedy matching option above is unticked, use this to find only subdocuments of a minimum number of consecutive pages."
                )

            find_duplicate_pages_btn = gr.Button(value="Identify duplicate pages/subdocuments", variant="primary")
        
        with gr.Accordion("Step 2: Review and refine results", open=True):
            gr.Markdown("### Analysis summary\nClick on a row to select it for preview or exclusion.")
            
            with gr.Row():
                results_df_preview = gr.Dataframe(
                    label="Similarity Results",
                    headers=["Page1_File",	"Page1_Start_Page",	"Page1_End_Page",	"Page2_File",	"Page2_Start_Page",	"Page2_End_Page",	"Match_Length",	"Avg_Similarity",	"Page1_Text",	"Page2_Text"],
                    wrap=True,
                    show_fullscreen_button=True,
                    show_search=True,
                    show_copy_button=True
                )
            with gr.Row():
                exclude_match_btn = gr.Button(
                    value="❌ Exclude Selected Match",
                    variant="stop"
                )
                gr.Markdown("Click a row in the table, then click this button to remove it from the results and update the downloadable files.")
            
            gr.Markdown("### Full Text Preview of Selected Match")
            with gr.Row():
                page1_text_preview = gr.Dataframe(label="Match Source (Document 1)", wrap=True, headers=["page", "text"], show_fullscreen_button=True, show_search=True, show_copy_button=True)
                page2_text_preview = gr.Dataframe(label="Match Duplicate (Document 2)", wrap=True, headers=["page", "text"], show_fullscreen_button=True, show_search=True, show_copy_button=True)

            gr.Markdown("### Downloadable Files")
            duplicate_files_out = gr.File(
                label="Download analysis summary and redaction lists (.csv)",
                file_count="multiple",
                height=FILE_INPUT_HEIGHT
            )

            with gr.Row():
                apply_match_btn = gr.Button(
                    value="Apply relevant duplicate page output to document currently under review",
                    variant="secondary")

    ###
    # WORD / TABULAR DATA TAB
    ###
    with gr.Tab(label="Word or Excel/csv files"):
        gr.Markdown("""Choose Word or a tabular data file (xlsx or csv) to redact. Note that when redacting complex Word files with e.g. images, some content/formatting will be removed, and it may not attempt to redact headers. You may prefer to convert the doc file to PDF in Word, and then run it through the first tab of this app (Print to PDF in print settings). Alternatively, an xlsx file output is provided when redacting docx files directly to allow for copying and pasting outputs back into the original document if preferred.""")

        with gr.Accordion("Redact Word or Excel/csv files", open = True):
            with gr.Accordion("Upload docx, xlsx, or csv files", open = True):
                in_data_files = gr.File(label="Choose Excel or csv files", file_count= "multiple", file_types=['.xlsx', '.xls', '.csv', '.parquet', '.docx'], height=FILE_INPUT_HEIGHT)
            with gr.Accordion("Redact open text", open = False):
                in_text = gr.Textbox(label="Enter open text", lines=10)
            
            in_excel_sheets = gr.Dropdown(choices=["Choose Excel sheets to anonymise"], multiselect = True, label="Select Excel sheets that you want to anonymise (showing sheets present across all Excel files).", visible=False, allow_custom_value=True)

            in_colnames = gr.Dropdown(choices=["Choose columns to anonymise"], multiselect = True, label="Select columns that you want to anonymise (showing columns present across all files).")

            pii_identification_method_drop_tabular = gr.Radio(label = "Choose PII detection method. AWS Comprehend has a cost of approximately $0.01 per 10,000 characters.", value = DEFAULT_PII_DETECTION_MODEL, choices=TABULAR_PII_DETECTION_MODELS)

            with gr.Accordion("Anonymisation output format - by default will replace PII with a blank space", open = False):
                with gr.Row():
                    anon_strat = gr.Radio(choices=["replace with 'REDACTED'", "replace with <ENTITY_NAME>", "redact completely", "hash", "mask"], label="Select an anonymisation method.", value = DEFAULT_TABULAR_ANONYMISATION_STRATEGY) # , "encrypt", "fake_first_name" are also available, but are not currently included as not that useful in current form
                    do_initial_clean = gr.Checkbox(label="Do initial clean of text (remove URLs, HTML tags, and non-ASCII characters)", value=DO_INITIAL_TABULAR_DATA_CLEAN)
            
            tabular_data_redact_btn = gr.Button("Redact text/data files", variant="primary")
            
            with gr.Row(equal_height=True):
                text_output_summary = gr.Textbox(label="Output result")
                text_output_file = gr.File(label="Output files")
                text_tabular_files_done = gr.Number(value=0, label="Number of tabular files redacted", interactive=False, visible=False)

        

        ###
        # TABULAR DUPLICATE DETECTION TAB
        ###
        with gr.Accordion(label="Find duplicate cells in tabular data", open=False):
            gr.Markdown("""Find duplicate cells or rows in CSV and Excel files. This tool analyzes text content across all columns to identify similar or identical entries that may be duplicates. You can review the results and choose to remove duplicate rows from your files.""")
            
            with gr.Accordion("Step 1: Upload files and configure analysis", open=True):
                in_tabular_duplicate_files = gr.File(
                    label="Upload CSV or Excel files to find duplicate cells/rows",
                    file_count="multiple", 
                    file_types=['.csv', '.xlsx', '.xls', '.parquet'],
                    height=FILE_INPUT_HEIGHT
                )
                
                with gr.Row():
                    tabular_duplicate_threshold = gr.Number(
                        value=DEFAULT_DUPLICATE_DETECTION_THRESHOLD, 
                        label="Similarity threshold", 
                        info="Score (0-1) to consider cells a match. Higher values = more strict matching."
                    )
                    tabular_min_word_count = gr.Number(
                        value=DEFAULT_MIN_WORD_COUNT, 
                        label="Minimum word count", 
                        info="Cells with fewer words than this are ignored."
                    )
                    do_initial_clean_dup = gr.Checkbox(label="Do initial clean of text (remove URLs, HTML tags, and non-ASCII characters)", value=DO_INITIAL_TABULAR_DATA_CLEAN)
                
                tabular_text_columns = gr.Dropdown(
                    choices=DEFAULT_TEXT_COLUMNS,
                    multiselect=True,
                    label="Select specific columns to analyse (leave empty to analyse all text columns)",
                    info="If no columns selected, all text columns will be analyzed"
                )
                
                find_tabular_duplicates_btn = gr.Button(
                    value="Find duplicate cells/rows", 
                    variant="primary"
                )
            
            with gr.Accordion("Step 2: Review results", open=True):
                gr.Markdown("### Duplicate Analysis Results\nClick on a row to see more details about the duplicate match.")
                
                tabular_results_df = gr.Dataframe(
                    label="Duplicate Cell Matches",
                    headers=["File1", "Row1", "File2", "Row2", "Similarity_Score", "Text1", "Text2"],
                    wrap=True,
                    show_fullscreen_button=True,
                    show_search=True,
                    show_copy_button=True
                )
                
                with gr.Row():
                    tabular_selected_row_index = gr.Number(value=None, visible=False)
                    tabular_text1_preview = gr.Textbox(
                        label="Text from File 1", 
                        lines=3, 
                        interactive=False
                    )
                    tabular_text2_preview = gr.Textbox(
                        label="Text from File 2", 
                        lines=3, 
                        interactive=False
                    )
            
            with gr.Accordion("Step 3: Remove duplicates", open=True):
                gr.Markdown("### Remove Duplicate Rows\nSelect a file and click to remove duplicate rows based on the analysis above.")
                
                with gr.Row():
                    tabular_file_to_clean = gr.Dropdown(
                        choices=list(),
                        label="Select file to clean",
                        info="Choose which file to remove duplicates from",
                        visible=False
                    )
                    clean_duplicates_btn = gr.Button(
                        value="Remove duplicate rows from selected file",
                        variant="secondary",
                        visible=False
                    )
                
                tabular_cleaned_file = gr.File(
                    label="Download cleaned file (duplicates removed)",
                    visible=True, interactive=False
                )
                
        # Feedback elements are invisible until revealed by redaction action
        data_feedback_title = gr.Markdown(value="## Please give feedback", visible=False)
        data_feedback_radio = gr.Radio(label="Please give some feedback about the results of the redaction. A reminder that the app is only expected to identify about 60% of personally identifiable information in a given (typed) document.",
                choices=["The results were good", "The results were not good"], visible=False, show_label=True)
        data_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False)
        data_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False)

    ###
    # SETTINGS TAB
    ###
    with gr.Tab(label="Redaction settings"):       
        with gr.Accordion("Custom allow, deny, and full page redaction lists", open = True):
            with gr.Row():
                with gr.Column():
                    in_allow_list = gr.File(label="Import allow list file - csv table with one column of a different word/phrase on each row (case insensitive). Terms in this file will not be redacted.", file_count="multiple", height=FILE_INPUT_HEIGHT)
                    in_allow_list_text = gr.Textbox(label="Custom allow list load status")
                with gr.Column():
                    in_deny_list = gr.File(label="Import custom deny list - csv table with one column of a different word/phrase on each row (case insensitive). Terms in this file will always be redacted.", file_count="multiple", height=FILE_INPUT_HEIGHT)
                    in_deny_list_text = gr.Textbox(label="Custom deny list load status")
                with gr.Column():
                    in_fully_redacted_list = gr.File(label="Import fully redacted pages list - csv table with one column of page numbers on each row. Page numbers in this file will be fully redacted.", file_count="multiple", height=FILE_INPUT_HEIGHT)
                    in_fully_redacted_list_text = gr.Textbox(label="Fully redacted page list load status")
            with gr.Accordion("Manually modify custom allow, deny, and full page redaction lists (NOTE: you need to press Enter after modifying/adding an entry to the lists to apply them)", open = False):
                with gr.Row():
                    in_allow_list_state = gr.Dataframe(value=pd.DataFrame(), headers=["allow_list"], col_count=(1, "fixed"), row_count = (0, "dynamic"), label="Allow list", visible=True, type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, wrap=True)
                    in_deny_list_state = gr.Dataframe(value=pd.DataFrame(), headers=["deny_list"], col_count=(1, "fixed"), row_count = (0, "dynamic"), label="Deny list", visible=True, type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, wrap=True)
                    in_fully_redacted_list_state = gr.Dataframe(value=pd.DataFrame(), headers=["fully_redacted_pages_list"], col_count=(1, "fixed"), row_count = (0, "dynamic"), label="Fully redacted pages", visible=True, type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, datatype='number', wrap=True)
                with gr.Row():
                    with gr.Column(scale=2):
                        markdown_placeholder = gr.Markdown("")
                    with gr.Column(scale=1):
                        apply_fully_redacted_list_btn = gr.Button(
                    value="Apply whole page redaction list to document currently under review",
                    variant="secondary")
            
        with gr.Accordion("Select entity types to redact", open = True):
                in_redact_entities = gr.Dropdown(value=CHOSEN_REDACT_ENTITIES, choices=FULL_ENTITY_LIST, multiselect=True, label="Local PII identification model (click empty space in box for full list)")
                in_redact_comprehend_entities = gr.Dropdown(value=CHOSEN_COMPREHEND_ENTITIES, choices=FULL_COMPREHEND_ENTITY_LIST, multiselect=True, label="AWS Comprehend PII identification model (click empty space in box for full list)")

                with gr.Row():
                    max_fuzzy_spelling_mistakes_num = gr.Number(label="Maximum number of spelling mistakes allowed for fuzzy matching (CUSTOM_FUZZY entity).", value=DEFAULT_FUZZY_SPELLING_MISTAKES_NUM, minimum=0, maximum=9, precision=0)
                    match_fuzzy_whole_phrase_bool = gr.Checkbox(label="Should fuzzy search match on entire phrases in deny list (as opposed to each word individually)?", value=True)

        with gr.Accordion("Redact only selected pages", open = False):
            with gr.Row():
                page_min = gr.Number(value=DEFAULT_PAGE_MIN, precision=0, minimum=0, maximum=9999, label="Lowest page to redact")
                page_max = gr.Number(value=DEFAULT_PAGE_MAX, precision=0, minimum=0, maximum=9999, label="Highest page to redact")

        if SHOW_LANGUAGE_SELECTION:
            with gr.Accordion("Language selection", open=False):
                gr.Markdown("""Note that AWS Textract is compatible with English, Spanish, Italian, Portuguese, French, and German, and handwriting detection is only available in English. AWS Comprehend for detecting PII is only compatible with English and Spanish.
                The local models (Tesseract and SpaCy) are compatible with the other languages in the list below. However, the language packs for these models need to be installed on your system. When you first run a document through the app, the language packs will be downloaded automatically, but please expect a delay as the models are large.""")
                with gr.Row():                    
                    chosen_language_full_name_drop = gr.Dropdown(value = DEFAULT_LANGUAGE_FULL_NAME, choices = MAPPED_LANGUAGE_CHOICES, label="Chosen language", multiselect=False, visible=True)
                    chosen_language_drop = gr.Dropdown(value = DEFAULT_LANGUAGE, choices = LANGUAGE_CHOICES, label="Chosen language short code", multiselect=False, visible=True, interactive=False)                    
        else:
            chosen_language_full_name_drop = gr.Dropdown(value = DEFAULT_LANGUAGE_FULL_NAME, choices = MAPPED_LANGUAGE_CHOICES, label="Chosen language", multiselect=False, visible=False)
            chosen_language_drop = gr.Dropdown(value = DEFAULT_LANGUAGE, choices = LANGUAGE_CHOICES, label="Chosen language short code", multiselect=False, visible=False)

        with gr.Accordion("Use API keys for AWS services", open = False):
            with gr.Row():
                aws_access_key_textbox = gr.Textbox(value='', label="AWS access key for account with permissions for AWS Textract and Comprehend", visible=True, type="password")
                aws_secret_key_textbox = gr.Textbox(value='', label="AWS secret key for account with permissions for AWS Textract and Comprehend", visible=True, type="password")

        with gr.Accordion("Log file outputs", open = False):
            log_files_output = gr.File(label="Log file output", interactive=False)

        with gr.Accordion("Combine multiple review files", open = False):
            multiple_review_files_in_out = gr.File(label="Combine multiple review_file.csv files together here.", file_count='multiple', file_types=['.csv']) 
            merge_multiple_review_files_btn = gr.Button("Merge multiple review files into one", variant="primary")

        with gr.Accordion("View all output files from this session", open = False):
            all_output_files_btn = gr.Button("Click here to view all output files", variant="secondary")
            all_output_files = gr.File(label="All files in output folder", file_count='multiple', file_types=['.csv'], interactive=False)

    ###
    # UI INTERACTION
    ###

    ###
    # PDF/IMAGE REDACTION
    ###
    # Recalculate estimated costs based on changes to inputs
    if SHOW_COSTS == 'True':
        # Calculate costs
        total_pdf_page_count.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
        text_extract_method_radio.change(fn=check_for_relevant_ocr_output_with_words, inputs=[doc_file_name_no_extension_textbox, text_extract_method_radio, output_folder_textbox], outputs=[relevant_ocr_output_with_words_found_checkbox]).\
            success(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
        pii_identification_method_drop.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox,  pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
        handwrite_signature_checkbox.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox,  pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
        textract_output_found_checkbox.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox,  pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
        only_extract_text_radio.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox,  pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
        textract_output_found_checkbox.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox,  pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])

        # Calculate time taken
        total_pdf_page_count.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio,          pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio, relevant_ocr_output_with_words_found_checkbox], outputs=[estimated_time_taken_number])
        text_extract_method_radio.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio, relevant_ocr_output_with_words_found_checkbox], outputs=[estimated_time_taken_number])
        pii_identification_method_drop.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio,  pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio, relevant_ocr_output_with_words_found_checkbox], outputs=[estimated_time_taken_number])
        handwrite_signature_checkbox.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio, relevant_ocr_output_with_words_found_checkbox], outputs=[estimated_time_taken_number])
        textract_output_found_checkbox.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox,  pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio, relevant_ocr_output_with_words_found_checkbox], outputs=[estimated_time_taken_number])
        only_extract_text_radio.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio, relevant_ocr_output_with_words_found_checkbox], outputs=[estimated_time_taken_number])
        textract_output_found_checkbox.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio, relevant_ocr_output_with_words_found_checkbox], outputs=[estimated_time_taken_number])
        relevant_ocr_output_with_words_found_checkbox.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio, relevant_ocr_output_with_words_found_checkbox], outputs=[estimated_time_taken_number])

    # Allow user to select items from cost code dataframe for cost code
    if SHOW_COSTS=="True" and (GET_COST_CODES == "True" or ENFORCE_COST_CODES == "True"):
        cost_code_dataframe.select(df_select_callback_cost, inputs=[cost_code_dataframe], outputs=[cost_code_choice_drop])
        reset_cost_code_dataframe_button.click(reset_base_dataframe, inputs=[cost_code_dataframe_base], outputs=[cost_code_dataframe])

        cost_code_choice_drop.select(update_cost_code_dataframe_from_dropdown_select, inputs=[cost_code_choice_drop, cost_code_dataframe_base], outputs=[cost_code_dataframe])

    in_doc_files.upload(fn=get_input_file_names, inputs=[in_doc_files], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\
    success(fn = prepare_image_or_pdf, inputs=[in_doc_files, text_extract_method_radio, all_page_line_level_ocr_results_df_base, all_page_line_level_ocr_results_with_words_df_base, latest_file_completed_num, redaction_output_summary_textbox, first_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool_false, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false, page_sizes, pdf_doc_state], outputs=[redaction_output_summary_textbox, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_df, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state, all_page_line_level_ocr_results_df_base, relevant_ocr_output_with_words_found_checkbox,  all_page_line_level_ocr_results_with_words_df_base], show_progress_on=[redaction_output_summary_textbox]).\
    success(fn=check_for_existing_textract_file, inputs=[doc_file_name_no_extension_textbox, output_folder_textbox], outputs=[textract_output_found_checkbox]).\
    success(fn=check_for_relevant_ocr_output_with_words, inputs=[doc_file_name_no_extension_textbox, text_extract_method_radio, output_folder_textbox], outputs=[relevant_ocr_output_with_words_found_checkbox])

    # Run redaction function
    document_redact_btn.click(fn = reset_state_vars, outputs=[all_image_annotations_state, all_page_line_level_ocr_results_df_base, all_decision_process_table_state, comprehend_query_number, textract_metadata_textbox, annotator, output_file_list_state, log_files_output_list_state, recogniser_entity_dataframe, recogniser_entity_dataframe_base, pdf_doc_state, duplication_file_path_outputs_list_state, redaction_output_summary_textbox, is_a_textract_api_call, textract_query_number, all_page_line_level_ocr_results_with_words]).\
        success(fn= enforce_cost_codes, inputs=[enforce_cost_code_textbox, cost_code_choice_drop, cost_code_dataframe_base]).\
        success(fn= choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_entities, in_redact_comprehend_entities, text_extract_method_radio, in_allow_list_state, in_deny_list_state, in_fully_redacted_list_state, latest_file_completed_num, redaction_output_summary_textbox, output_file_list_state, log_files_output_list_state, first_loop_state, page_min, page_max, actual_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_page_line_level_ocr_results_df_base, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number, max_fuzzy_spelling_mistakes_num, match_fuzzy_whole_phrase_bool, aws_access_key_textbox, aws_secret_key_textbox, annotate_max_pages, review_file_df, output_folder_textbox, document_cropboxes, page_sizes, textract_output_found_checkbox, only_extract_text_radio, duplication_file_path_outputs_list_state, latest_review_file_path, input_folder_textbox, textract_query_number, latest_ocr_file_path, all_page_line_level_ocr_results, all_page_line_level_ocr_results_with_words, all_page_line_level_ocr_results_with_words_df_base, chosen_local_model_textbox, chosen_language_drop],
                    outputs=[redaction_output_summary_textbox, output_file, output_file_list_state, latest_file_completed_num, log_files_output, log_files_output_list_state, actual_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_page_line_level_ocr_results_df_base, all_decision_process_table_state, comprehend_query_number, input_pdf_for_review, annotate_max_pages, annotate_max_pages_bottom, prepared_pdf_state, images_pdf_state, review_file_df, page_sizes, duplication_file_path_outputs_list_state, in_duplicate_pages, latest_review_file_path, textract_query_number, latest_ocr_file_path, all_page_line_level_ocr_results, all_page_line_level_ocr_results_with_words, all_page_line_level_ocr_results_with_words_df_base, backup_review_state], api_name="redact_doc", show_progress_on=[redaction_output_summary_textbox])
        
    # If a file has been completed, the function will continue onto the next document
    latest_file_completed_num.change(fn = choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_entities, in_redact_comprehend_entities, text_extract_method_radio, in_allow_list_state, in_deny_list_state, in_fully_redacted_list_state, latest_file_completed_num, redaction_output_summary_textbox, output_file_list_state, log_files_output_list_state, second_loop_state, page_min, page_max, actual_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_page_line_level_ocr_results_df_base, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number, max_fuzzy_spelling_mistakes_num, match_fuzzy_whole_phrase_bool, aws_access_key_textbox, aws_secret_key_textbox, annotate_max_pages, review_file_df, output_folder_textbox, document_cropboxes, page_sizes, textract_output_found_checkbox, only_extract_text_radio, duplication_file_path_outputs_list_state, latest_review_file_path, input_folder_textbox, textract_query_number, latest_ocr_file_path, all_page_line_level_ocr_results, all_page_line_level_ocr_results_with_words, all_page_line_level_ocr_results_with_words_df_base, chosen_local_model_textbox, chosen_language_drop],
                    outputs=[redaction_output_summary_textbox, output_file, output_file_list_state, latest_file_completed_num, log_files_output, log_files_output_list_state, actual_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_page_line_level_ocr_results_df_base, all_decision_process_table_state, comprehend_query_number, input_pdf_for_review, annotate_max_pages, annotate_max_pages_bottom, prepared_pdf_state, images_pdf_state, review_file_df, page_sizes, duplication_file_path_outputs_list_state, in_duplicate_pages, latest_review_file_path, textract_query_number, latest_ocr_file_path, all_page_line_level_ocr_results, all_page_line_level_ocr_results_with_words, all_page_line_level_ocr_results_with_words_df_base, backup_review_state], show_progress_on=[redaction_output_summary_textbox]).\
                    success(fn=update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, page_min, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
                    success(fn=check_for_existing_textract_file, inputs=[doc_file_name_no_extension_textbox, output_folder_textbox], outputs=[textract_output_found_checkbox]).\
                    success(fn=check_for_relevant_ocr_output_with_words, inputs=[doc_file_name_no_extension_textbox, text_extract_method_radio, output_folder_textbox], outputs=[relevant_ocr_output_with_words_found_checkbox]).\
                    success(fn=reveal_feedback_buttons, outputs=[pdf_feedback_radio, pdf_further_details_text, pdf_submit_feedback_btn, pdf_feedback_title]).\
                    success(fn=reset_aws_call_vars, outputs=[comprehend_query_number, textract_query_number])
    
    # If the line level ocr results are changed by load in by user or by a new redaction task, replace the ocr results displayed in the table    
    all_page_line_level_ocr_results_df_base.change(reset_ocr_base_dataframe, inputs=[all_page_line_level_ocr_results_df_base], outputs=[all_page_line_level_ocr_results_df])
    all_page_line_level_ocr_results_with_words_df_base.change(reset_ocr_with_words_base_dataframe, inputs=[all_page_line_level_ocr_results_with_words_df_base, page_entity_dropdown_redaction], outputs=[all_page_line_level_ocr_results_with_words_df, backup_all_page_line_level_ocr_results_with_words_df_base])

    # Send whole document to Textract for text extraction
    send_document_to_textract_api_btn.click(analyse_document_with_textract_api, inputs=[prepared_pdf_state, s3_whole_document_textract_input_subfolder, s3_whole_document_textract_output_subfolder, textract_job_detail_df, s3_whole_document_textract_default_bucket, output_folder_textbox, handwrite_signature_checkbox, successful_textract_api_call_number, total_pdf_page_count], outputs=[job_output_textbox, job_id_textbox, job_type_dropdown, successful_textract_api_call_number, is_a_textract_api_call, textract_query_number]).\
        success(check_for_provided_job_id, inputs=[job_id_textbox]).\
        success(poll_whole_document_textract_analysis_progress_and_download, inputs=[job_id_textbox, job_type_dropdown, s3_whole_document_textract_output_subfolder, doc_file_name_no_extension_textbox, textract_job_detail_df, s3_whole_document_textract_default_bucket, output_folder_textbox, s3_whole_document_textract_logs_subfolder, local_whole_document_textract_logs_subfolder], outputs = [textract_job_output_file, job_current_status, textract_job_detail_df, doc_file_name_no_extension_textbox]).\
        success(fn=check_for_existing_textract_file, inputs=[doc_file_name_no_extension_textbox, output_folder_textbox], outputs=[textract_output_found_checkbox])
    
    check_state_of_textract_api_call_btn.click(check_for_provided_job_id, inputs=[job_id_textbox]).\
        success(poll_whole_document_textract_analysis_progress_and_download, inputs=[job_id_textbox, job_type_dropdown, s3_whole_document_textract_output_subfolder, doc_file_name_no_extension_textbox, textract_job_detail_df, s3_whole_document_textract_default_bucket, output_folder_textbox, s3_whole_document_textract_logs_subfolder, local_whole_document_textract_logs_subfolder], outputs = [textract_job_output_file, job_current_status, textract_job_detail_df, doc_file_name_no_extension_textbox]).\
    success(fn=check_for_existing_textract_file, inputs=[doc_file_name_no_extension_textbox, output_folder_textbox], outputs=[textract_output_found_checkbox])

    textract_job_detail_df.select(df_select_callback_textract_api, inputs=[textract_output_found_checkbox], outputs=[job_id_textbox, job_type_dropdown, selected_job_id_row])

    convert_textract_outputs_to_ocr_results.click(replace_existing_pdf_input_for_whole_document_outputs, inputs = [s3_whole_document_textract_input_subfolder, doc_file_name_no_extension_textbox, output_folder_textbox, s3_whole_document_textract_default_bucket, in_doc_files, input_folder_textbox], outputs = [in_doc_files, doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\
        success(fn = prepare_image_or_pdf, inputs=[in_doc_files, text_extract_method_radio, all_page_line_level_ocr_results_df_base, all_page_line_level_ocr_results_with_words_df_base, latest_file_completed_num, redaction_output_summary_textbox, first_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool_false, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false, page_sizes, pdf_doc_state], outputs=[redaction_output_summary_textbox, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_df, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state, all_page_line_level_ocr_results_df_base, relevant_ocr_output_with_words_found_checkbox,  all_page_line_level_ocr_results_with_words_df_base], show_progress_on=[redaction_output_summary_textbox]).\
        success(fn=check_for_existing_textract_file, inputs=[doc_file_name_no_extension_textbox, output_folder_textbox], outputs=[textract_output_found_checkbox]).\
        success(fn=check_for_relevant_ocr_output_with_words, inputs=[doc_file_name_no_extension_textbox, text_extract_method_radio, output_folder_textbox], outputs=[relevant_ocr_output_with_words_found_checkbox]).\
        success(fn= check_textract_outputs_exist, inputs=[textract_output_found_checkbox]).\
        success(fn = reset_state_vars, outputs=[all_image_annotations_state, all_page_line_level_ocr_results_df_base, all_decision_process_table_state, comprehend_query_number, textract_metadata_textbox, annotator, output_file_list_state, log_files_output_list_state, recogniser_entity_dataframe, recogniser_entity_dataframe_base, pdf_doc_state, duplication_file_path_outputs_list_state, redaction_output_summary_textbox, is_a_textract_api_call, textract_query_number]).\
        success(fn= choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_entities, in_redact_comprehend_entities, textract_only_method_drop, in_allow_list_state, in_deny_list_state, in_fully_redacted_list_state, latest_file_completed_num, redaction_output_summary_textbox, output_file_list_state, log_files_output_list_state, first_loop_state, page_min, page_max, actual_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_page_line_level_ocr_results_df_base, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, no_redaction_method_drop, comprehend_query_number, max_fuzzy_spelling_mistakes_num, match_fuzzy_whole_phrase_bool, aws_access_key_textbox, aws_secret_key_textbox, annotate_max_pages, review_file_df, output_folder_textbox, document_cropboxes, page_sizes, textract_output_found_checkbox, only_extract_text_radio, duplication_file_path_outputs_list_state, latest_review_file_path, input_folder_textbox, textract_query_number, latest_ocr_file_path, all_page_line_level_ocr_results, all_page_line_level_ocr_results_with_words, all_page_line_level_ocr_results_with_words_df_base, chosen_local_model_textbox, chosen_language_drop],
                    outputs=[redaction_output_summary_textbox, output_file, output_file_list_state, latest_file_completed_num, log_files_output, log_files_output_list_state, actual_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_page_line_level_ocr_results_df_base, all_decision_process_table_state, comprehend_query_number, input_pdf_for_review, annotate_max_pages, annotate_max_pages_bottom, prepared_pdf_state, images_pdf_state, review_file_df, page_sizes, duplication_file_path_outputs_list_state, in_duplicate_pages, latest_review_file_path, textract_query_number, latest_ocr_file_path, all_page_line_level_ocr_results, all_page_line_level_ocr_results_with_words, all_page_line_level_ocr_results_with_words_df_base, backup_review_state], show_progress_on=[redaction_output_summary_textbox]).\
                    success(fn=update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, page_min, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator])
    
    ###
    # REVIEW PDF REDACTIONS
    ###
    
    # Upload previous PDF for modifying redactions
    upload_pdf_for_review_btn.click(fn=reset_review_vars, inputs=None, outputs=[recogniser_entity_dataframe, recogniser_entity_dataframe_base]).\
        success(fn=get_input_file_names, inputs=[input_pdf_for_review], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\
        success(fn = prepare_image_or_pdf, inputs=[input_pdf_for_review, text_extract_method_radio, all_page_line_level_ocr_results_df_base, all_page_line_level_ocr_results_with_words_df_base, latest_file_completed_num, redaction_output_summary_textbox, second_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false, page_sizes, pdf_doc_state], outputs=[redaction_output_summary_textbox, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_df, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state, all_page_line_level_ocr_results_df_base, relevant_ocr_output_with_words_found_checkbox,  all_page_line_level_ocr_results_with_words_df_base], api_name="prepare_doc", show_progress_on=[redaction_output_summary_textbox]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator])
    
    # Upload previous review CSV files for modifying redactions
    upload_review_files_btn.click(fn = prepare_image_or_pdf, inputs=[input_review_files, text_extract_method_radio, all_page_line_level_ocr_results_df_base, all_page_line_level_ocr_results_with_words_df_base, latest_file_completed_num, redaction_output_summary_textbox, second_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false, page_sizes, pdf_doc_state], outputs=[redaction_output_summary_textbox, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_df, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state, all_page_line_level_ocr_results_df_base, relevant_ocr_output_with_words_found_checkbox,  all_page_line_level_ocr_results_with_words_df_base], show_progress_on=[redaction_output_summary_textbox]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator])
    
    # Manual updates to review df
    review_file_df.input(update_annotator_page_from_review_df, inputs=[review_file_df, images_pdf_state, page_sizes, all_image_annotations_state, annotator, selected_entity_dataframe_row, input_folder_textbox, doc_full_file_name_textbox], outputs=[annotator, all_image_annotations_state, annotate_current_page, page_sizes, review_file_df, annotate_previous_page], show_progress_on=[annotator]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator])

    # Page number controls
    annotate_current_page.submit(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
        success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review])
    
    annotation_last_page_button.click(fn=decrease_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page, annotate_current_page_bottom]).\
        success(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
        success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review])

    annotation_next_page_button.click(fn=increase_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page, annotate_current_page_bottom]).\
        success(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
        success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review])        

    annotation_last_page_button_bottom.click(fn=decrease_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page, annotate_current_page_bottom]).\
        success(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
        success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review])

    annotation_next_page_button_bottom.click(fn=increase_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page, annotate_current_page_bottom]).\
        success(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
        success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review])

    annotate_current_page_bottom.submit(update_other_annotator_number_from_current, inputs=[annotate_current_page_bottom], outputs=[annotate_current_page]).\
        success(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
        success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review])

    # Apply page redactions
    annotation_button_apply.click(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_current_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
    success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
    success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], scroll_to_output=True, show_progress_on=[input_pdf_for_review])

    # Save current page manual redactions
    update_current_page_redactions_btn.click(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_current_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
    success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
    success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review])
    
    ###
    # Review and exclude suggested redactions
    ###

    # Review table controls
    recogniser_entity_dropdown.select(update_entities_df_recogniser_entities, inputs=[recogniser_entity_dropdown, recogniser_entity_dataframe_base, page_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dataframe, text_entity_dropdown, page_entity_dropdown])
    page_entity_dropdown.select(update_entities_df_page, inputs=[page_entity_dropdown, recogniser_entity_dataframe_base, recogniser_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dataframe, recogniser_entity_dropdown, text_entity_dropdown])
    text_entity_dropdown.select(update_entities_df_text, inputs=[text_entity_dropdown, recogniser_entity_dataframe_base, recogniser_entity_dropdown, page_entity_dropdown], outputs=[recogniser_entity_dataframe, recogniser_entity_dropdown, page_entity_dropdown])

    # Clicking on a cell in the recogniser entity dataframe will take you to that page, and also highlight the target redaction box in blue
    recogniser_entity_dataframe.select(df_select_callback_dataframe_row, inputs=[recogniser_entity_dataframe], outputs=[selected_entity_dataframe_row, selected_entity_dataframe_row_text]).\
        success(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_current_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
        success(get_and_merge_current_page_annotations, inputs=[page_sizes, annotate_current_page, all_image_annotations_state, review_file_df], outputs=[review_file_df]).\
        success(update_selected_review_df_row_colour, inputs=[selected_entity_dataframe_row, review_file_df, selected_entity_id, selected_entity_colour], outputs=[review_file_df, selected_entity_id, selected_entity_colour]).\
        success(update_annotator_page_from_review_df, inputs=[review_file_df, images_pdf_state, page_sizes, all_image_annotations_state, annotator, selected_entity_dataframe_row, input_folder_textbox, doc_full_file_name_textbox], outputs=[annotator, all_image_annotations_state, annotate_current_page, page_sizes, review_file_df, annotate_previous_page], show_progress_on=[annotator]).\
        success(increase_bottom_page_count_based_on_top, inputs=[annotate_current_page], outputs=[annotate_current_page_bottom])
   
    reset_dropdowns_btn.click(reset_dropdowns, inputs=[recogniser_entity_dataframe_base], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator])
    
    ### Exclude current selection from annotator and outputs
    # Exclude only selected row
    exclude_selected_row_btn.click(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_current_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
        success(get_and_merge_current_page_annotations, inputs=[page_sizes, annotate_current_page, all_image_annotations_state, review_file_df], outputs=[review_file_df]).\
        success(exclude_selected_items_from_redaction, inputs=[review_file_df, selected_entity_dataframe_row, images_pdf_state, page_sizes, all_image_annotations_state, recogniser_entity_dataframe_base], outputs=[review_file_df, all_image_annotations_state, recogniser_entity_dataframe_base, backup_review_state, backup_image_annotations_state, backup_recogniser_entity_dataframe_base]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
        success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review]).\
        success(update_all_entity_df_dropdowns, inputs=[recogniser_entity_dataframe_base, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown])
    
    # Exclude all items with same text as selected row
    exclude_text_with_same_as_selected_row_btn.click(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_current_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
        success(get_and_merge_current_page_annotations, inputs=[page_sizes, annotate_current_page, all_image_annotations_state, review_file_df], outputs=[review_file_df]).\
        success(get_all_rows_with_same_text, inputs=[recogniser_entity_dataframe_base, selected_entity_dataframe_row_text], outputs=[recogniser_entity_dataframe_same_text]).\
        success(exclude_selected_items_from_redaction, inputs=[review_file_df, recogniser_entity_dataframe_same_text, images_pdf_state, page_sizes, all_image_annotations_state, recogniser_entity_dataframe_base], outputs=[review_file_df, all_image_annotations_state, recogniser_entity_dataframe_base, backup_review_state, backup_image_annotations_state, backup_recogniser_entity_dataframe_base]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
        success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review]).\
        success(update_all_entity_df_dropdowns, inputs=[recogniser_entity_dataframe_base, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown])
    
    # Exclude everything visible in table
    exclude_selected_btn.click(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_current_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
        success(get_and_merge_current_page_annotations, inputs=[page_sizes, annotate_current_page, all_image_annotations_state, review_file_df], outputs=[review_file_df]).\
        success(exclude_selected_items_from_redaction, inputs=[review_file_df, recogniser_entity_dataframe, images_pdf_state, page_sizes, all_image_annotations_state, recogniser_entity_dataframe_base], outputs=[review_file_df, all_image_annotations_state, recogniser_entity_dataframe_base, backup_review_state, backup_image_annotations_state, backup_recogniser_entity_dataframe_base]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
        success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review]).\
        success(update_all_entity_df_dropdowns, inputs=[recogniser_entity_dataframe_base, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown])
    
    # Undo last redaction exclusion action
    undo_last_removal_btn.click(undo_last_removal, inputs=[backup_review_state, backup_image_annotations_state, backup_recogniser_entity_dataframe_base], outputs=[review_file_df, all_image_annotations_state, recogniser_entity_dataframe_base]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
        success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review])
    
    ###
    # Add new redactions with table selection
    ###
    page_entity_dropdown_redaction.select(update_redact_choice_df_from_page_dropdown, inputs=[page_entity_dropdown_redaction, all_page_line_level_ocr_results_with_words_df_base], outputs=[all_page_line_level_ocr_results_with_words_df])

    multi_word_search_text.submit(
    fn=run_full_search_and_analysis,
    inputs=[
        multi_word_search_text,
        all_page_line_level_ocr_results_with_words_df_base,
        similarity_search_score_minimum
    ],
    outputs=[
        all_page_line_level_ocr_results_with_words_df,
        duplicate_files_out,
        full_duplicate_data_by_file
    ])

    multi_word_search_text_btn.click(
    fn=run_full_search_and_analysis,
    inputs=[
        multi_word_search_text,
        all_page_line_level_ocr_results_with_words_df_base,
        similarity_search_score_minimum
    ],
    outputs=[
        all_page_line_level_ocr_results_with_words_df,
        duplicate_files_out,
        full_duplicate_data_by_file
    ])

    # Clicking on a cell in the redact items table will take you to that page
    all_page_line_level_ocr_results_with_words_df.select(df_select_callback_dataframe_row_ocr_with_words, inputs=[all_page_line_level_ocr_results_with_words_df], outputs=[selected_entity_dataframe_row_redact, selected_entity_dataframe_row_text_redact]).\
        success(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_current_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
        success(get_and_merge_current_page_annotations, inputs=[page_sizes, annotate_current_page, all_image_annotations_state, review_file_df], outputs=[review_file_df]).\
        success(update_annotator_page_from_review_df, inputs=[review_file_df, images_pdf_state, page_sizes, all_image_annotations_state, annotator, selected_entity_dataframe_row_redact, input_folder_textbox, doc_full_file_name_textbox], outputs=[annotator, all_image_annotations_state, annotate_current_page, page_sizes, review_file_df, annotate_previous_page], show_progress_on=[annotator]).\
        success(increase_bottom_page_count_based_on_top, inputs=[annotate_current_page], outputs=[annotate_current_page_bottom])
   
    # Reset dropdowns
    reset_dropdowns_btn_new.click(reset_dropdowns, inputs=[all_page_line_level_ocr_results_with_words_df_base], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown_redaction]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator])
    
    # Redact everything visible in table
    redact_selected_btn.click(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_current_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
        success(create_annotation_objects_from_filtered_ocr_results_with_words, inputs=[all_page_line_level_ocr_results_with_words_df,  all_page_line_level_ocr_results_with_words_df_base, page_sizes, review_file_df, all_image_annotations_state, recogniser_entity_dataframe_base, new_redaction_text_label, colour_label, annotate_current_page], outputs=[all_image_annotations_state, backup_image_annotations_state, review_file_df, backup_review_state, recogniser_entity_dataframe, backup_recogniser_entity_dataframe_base]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
        success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review]).\
        success(update_all_entity_df_dropdowns, inputs=[all_page_line_level_ocr_results_with_words_df_base, recogniser_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown_redaction])

    # Reset redaction table following filtering
    reset_ocr_with_words_df_btn.click(reset_ocr_with_words_base_dataframe, inputs=[all_page_line_level_ocr_results_with_words_df_base, page_entity_dropdown_redaction], outputs=[all_page_line_level_ocr_results_with_words_df, backup_all_page_line_level_ocr_results_with_words_df_base])
    
    # Redact current selection
    redact_selected_row_btn.click(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_current_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
        success(create_annotation_objects_from_filtered_ocr_results_with_words, inputs=[selected_entity_dataframe_row_redact,  all_page_line_level_ocr_results_with_words_df_base, page_sizes, review_file_df, all_image_annotations_state, recogniser_entity_dataframe_base, new_redaction_text_label, colour_label, annotate_current_page], outputs=[all_image_annotations_state, backup_image_annotations_state, review_file_df, backup_review_state, recogniser_entity_dataframe, backup_recogniser_entity_dataframe_base]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
        success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review]).\
        success(update_all_entity_df_dropdowns, inputs=[all_page_line_level_ocr_results_with_words_df_base, recogniser_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown_redaction])
    
    # Redact all items with same text as selected row
    redact_text_with_same_as_selected_row_btn.click(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_current_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
    success(get_all_rows_with_same_text_redact, inputs=[all_page_line_level_ocr_results_with_words_df_base, selected_entity_dataframe_row_text_redact], outputs=[to_redact_dataframe_same_text]).\
    success(create_annotation_objects_from_filtered_ocr_results_with_words, inputs=[to_redact_dataframe_same_text,  all_page_line_level_ocr_results_with_words_df_base, page_sizes, review_file_df, all_image_annotations_state, recogniser_entity_dataframe_base, new_redaction_text_label, colour_label, annotate_current_page], outputs=[all_image_annotations_state, backup_image_annotations_state, review_file_df, backup_review_state,recogniser_entity_dataframe, backup_recogniser_entity_dataframe_base]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
        success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review]).\
        success(update_all_entity_df_dropdowns, inputs=[all_page_line_level_ocr_results_with_words_df_base, recogniser_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown_redaction])
    
    # Undo last redaction action
    undo_last_redact_btn.click(undo_last_removal, inputs=[backup_review_state, backup_image_annotations_state, backup_recogniser_entity_dataframe_base], outputs=[review_file_df, all_image_annotations_state, recogniser_entity_dataframe_base]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator]).\
        success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_df, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, input_pdf_for_review, log_files_output, review_file_df], show_progress_on=[input_pdf_for_review])


    ###
    # Review OCR text
    ###
    all_page_line_level_ocr_results_df.select(df_select_callback_ocr, inputs=[all_page_line_level_ocr_results_df], outputs=[annotate_current_page, selected_ocr_dataframe_row]).\
        success(update_annotator_page_from_review_df, inputs=[review_file_df, images_pdf_state, page_sizes, all_image_annotations_state, annotator, selected_ocr_dataframe_row, input_folder_textbox, doc_full_file_name_textbox], outputs=[annotator, all_image_annotations_state, annotate_current_page, page_sizes, review_file_df, annotate_previous_page], show_progress_on=[annotator]).\
        success(increase_bottom_page_count_based_on_top, inputs=[annotate_current_page], outputs=[annotate_current_page_bottom])

    # Reset the OCR results filter
    reset_all_ocr_results_btn.click(reset_ocr_base_dataframe, inputs=[all_page_line_level_ocr_results_df_base], outputs=[all_page_line_level_ocr_results_df])
    
    # Convert review file to xfdf Adobe format
    convert_review_file_to_adobe_btn.click(fn=get_input_file_names, inputs=[input_pdf_for_review], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\
        success(fn = prepare_image_or_pdf, inputs=[input_pdf_for_review, text_extract_method_radio, all_page_line_level_ocr_results_df_base, all_page_line_level_ocr_results_with_words_df_base, latest_file_completed_num, redaction_output_summary_textbox, second_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false, page_sizes, pdf_doc_state], outputs=[redaction_output_summary_textbox, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_df, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state, all_line_level_ocr_results_df_placeholder, relevant_ocr_output_with_words_found_checkbox,  all_page_line_level_ocr_results_with_words_df_base], show_progress_on=[adobe_review_files_out]).\
        success(convert_df_to_xfdf, inputs=[input_pdf_for_review, pdf_doc_state, images_pdf_state, output_folder_textbox, document_cropboxes, page_sizes], outputs=[adobe_review_files_out])
    
    # Convert xfdf Adobe file back to review_file.csv
    convert_adobe_to_review_file_btn.click(fn=get_input_file_names, inputs=[adobe_review_files_out], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\
        success(fn = prepare_image_or_pdf, inputs=[adobe_review_files_out, text_extract_method_radio, all_page_line_level_ocr_results_df_base, all_page_line_level_ocr_results_with_words_df_base, latest_file_completed_num, redaction_output_summary_textbox, second_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false, page_sizes, pdf_doc_state], outputs=[redaction_output_summary_textbox, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_df, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state, all_line_level_ocr_results_df_placeholder, relevant_ocr_output_with_words_found_checkbox, all_page_line_level_ocr_results_with_words_df_base], show_progress_on=[adobe_review_files_out]).\
        success(fn=convert_xfdf_to_dataframe, inputs=[adobe_review_files_out, pdf_doc_state, images_pdf_state, output_folder_textbox], outputs=[input_pdf_for_review], scroll_to_output=True)
    
    ###
    # WORD/TABULAR DATA REDACTION
    ###
    in_data_files.upload(fn=put_columns_in_df, inputs=[in_data_files], outputs=[in_colnames, in_excel_sheets]).\
                  success(fn=get_input_file_names, inputs=[in_data_files], outputs=[data_file_name_no_extension_textbox, data_file_name_with_extension_textbox, data_full_file_name_textbox, data_file_name_textbox_list, total_pdf_page_count])

    tabular_data_redact_btn.click(reset_data_vars, outputs=[actual_time_taken_number, log_files_output_list_state, comprehend_query_number]).\
    success(fn=anonymise_files_with_open_text, inputs=[in_data_files, in_text, anon_strat, in_colnames,  in_redact_entities, in_allow_list_state, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, first_loop_state, output_folder_textbox, in_deny_list_state, max_fuzzy_spelling_mistakes_num, pii_identification_method_drop_tabular, in_redact_comprehend_entities, comprehend_query_number, aws_access_key_textbox, aws_secret_key_textbox, actual_time_taken_number, do_initial_clean, chosen_language_drop], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state, actual_time_taken_number], api_name="redact_data")

    # If the output file count text box changes, keep going with redacting each data file until done
    text_tabular_files_done.change(fn=anonymise_files_with_open_text, inputs=[in_data_files, in_text, anon_strat, in_colnames,  in_redact_entities, in_allow_list_state, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, second_loop_state, output_folder_textbox, in_deny_list_state, max_fuzzy_spelling_mistakes_num, pii_identification_method_drop_tabular, in_redact_comprehend_entities, comprehend_query_number, aws_access_key_textbox, aws_secret_key_textbox, actual_time_taken_number, do_initial_clean, chosen_language_drop], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state, actual_time_taken_number]).\
    success(fn = reveal_feedback_buttons, outputs=[data_feedback_radio, data_further_details_text, data_submit_feedback_btn, data_feedback_title])

    ###
    # IDENTIFY DUPLICATE PAGES
    ###

    find_duplicate_pages_btn.click(
        fn=run_duplicate_analysis,
        inputs=[
            in_duplicate_pages,
            duplicate_threshold_input,
            min_word_count_input,
            min_consecutive_pages_input,
            greedy_match_input,
            combine_page_text_for_duplicates_bool
        ],
        outputs=[
            results_df_preview,
            duplicate_files_out, 
            full_duplicate_data_by_file
        ]
    )

    # full_duplicated_data_df, 
    results_df_preview.select(
        fn=handle_selection_and_preview,
        inputs=[results_df_preview, full_duplicate_data_by_file],
        outputs=[selected_duplicate_data_row_index, page1_text_preview, page2_text_preview]
    )

    # When the user clicks the "Exclude" button
    exclude_match_btn.click(
        fn=exclude_match,
        inputs=[results_df_preview, selected_duplicate_data_row_index],
        outputs=[results_df_preview, duplicate_files_out, page1_text_preview, page2_text_preview]
    )

    apply_match_btn.click(fn=create_annotation_objects_from_duplicates, inputs=[results_df_preview, all_page_line_level_ocr_results_df_base, page_sizes, combine_page_text_for_duplicates_bool], outputs=[new_duplicate_search_annotation_object]).\
        success(fn=apply_whole_page_redactions_from_list,
        inputs=[in_fully_redacted_list_state, doc_file_name_with_extension_textbox, review_file_df, duplicate_files_out, pdf_doc_state, page_sizes, all_image_annotations_state, combine_page_text_for_duplicates_bool, new_duplicate_search_annotation_object],
        outputs=[review_file_df, all_image_annotations_state]).\
        success(update_annotator_page_from_review_df, inputs=[review_file_df, images_pdf_state, page_sizes, all_image_annotations_state, annotator, selected_entity_dataframe_row, input_folder_textbox, doc_full_file_name_textbox], outputs=[annotator, all_image_annotations_state, annotate_current_page, page_sizes, review_file_df, annotate_previous_page], show_progress_on=[annotator]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator])
       

    ###
    # TABULAR DUPLICATE DETECTION
    ###
    
    # Event handlers
    in_tabular_duplicate_files.upload(
        fn=update_tabular_column_choices,
        inputs=[in_tabular_duplicate_files],
        outputs=[tabular_text_columns]
    )
    
    find_tabular_duplicates_btn.click(
        fn=run_tabular_duplicate_detection,
        inputs=[in_tabular_duplicate_files, tabular_duplicate_threshold, tabular_min_word_count, tabular_text_columns, output_folder_textbox, do_initial_clean_dup],
        outputs=[tabular_results_df, tabular_cleaned_file, tabular_file_to_clean], api_name="tabular_clean_duplicates", show_progress_on=[tabular_results_df]
    )
    
    tabular_results_df.select(
        fn=handle_tabular_row_selection,
        inputs=[tabular_results_df],
        outputs=[tabular_selected_row_index, tabular_text1_preview, tabular_text2_preview]
    )
    
    clean_duplicates_btn.click(
        fn=clean_tabular_duplicates,
        inputs=[tabular_file_to_clean, tabular_results_df, output_folder_textbox],
        outputs=[tabular_cleaned_file]
    )

    ###
    # SETTINGS PAGE INPUT / OUTPUT
    ###
    # If a custom allow/deny/duplicate page list is uploaded
    in_allow_list.change(fn=custom_regex_load, inputs=[in_allow_list], outputs=[in_allow_list_text, in_allow_list_state])
    in_deny_list.change(fn=custom_regex_load, inputs=[in_deny_list, in_deny_list_text_in], outputs=[in_deny_list_text, in_deny_list_state])
    in_fully_redacted_list.change(fn=custom_regex_load, inputs=[in_fully_redacted_list, in_fully_redacted_text_in], outputs=[in_fully_redacted_list_text, in_fully_redacted_list_state])

    # The following allows for more reliable updates of the data in the custom list dataframes
    in_allow_list_state.input(update_dataframe, inputs=[in_allow_list_state], outputs=[in_allow_list_state])
    in_deny_list_state.input(update_dataframe, inputs=[in_deny_list_state], outputs=[in_deny_list_state])
    in_fully_redacted_list_state.input(update_dataframe, inputs=[in_fully_redacted_list_state], outputs=[in_fully_redacted_list_state])

    # Apply whole page redactions from the provided whole page redaction csv file upload/list of specific page numbers given by user
    apply_fully_redacted_list_btn.click(
        fn=apply_whole_page_redactions_from_list,
        inputs=[in_fully_redacted_list_state, doc_file_name_with_extension_textbox, review_file_df, duplicate_files_out, pdf_doc_state, page_sizes, all_image_annotations_state],
        outputs=[review_file_df, all_image_annotations_state]).\
        success(update_annotator_page_from_review_df, inputs=[review_file_df, images_pdf_state, page_sizes, all_image_annotations_state, annotator, selected_entity_dataframe_row, input_folder_textbox, doc_full_file_name_textbox], outputs=[annotator, all_image_annotations_state, annotate_current_page, page_sizes, review_file_df, annotate_previous_page], show_progress_on=[annotator]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_df, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_entity_dropdown_redaction, page_sizes, all_image_annotations_state], show_progress_on=[annotator])

    # Merge multiple review csv files together
    merge_multiple_review_files_btn.click(fn=merge_csv_files, inputs=multiple_review_files_in_out, outputs=multiple_review_files_in_out)

    #
    all_output_files_btn.click(fn=load_all_output_files, inputs=output_folder_textbox, outputs=all_output_files)    

    # Language selection dropdown
    chosen_language_full_name_drop.select(update_language_dropdown, inputs=[chosen_language_full_name_drop], outputs=[chosen_language_drop])
    
    ###
    # APP LOAD AND LOGGING
    ###

    # Get connection details on app load

    if SHOW_WHOLE_DOCUMENT_TEXTRACT_CALL_OPTIONS == "True":
        app.load(get_connection_params, inputs=[output_folder_textbox, input_folder_textbox, session_output_folder_textbox, s3_whole_document_textract_input_subfolder, s3_whole_document_textract_output_subfolder, s3_whole_document_textract_logs_subfolder, local_whole_document_textract_logs_subfolder], outputs=[session_hash_state, output_folder_textbox, session_hash_textbox, input_folder_textbox, s3_whole_document_textract_input_subfolder, s3_whole_document_textract_output_subfolder, s3_whole_document_textract_logs_subfolder, local_whole_document_textract_logs_subfolder]).\
        success(load_in_textract_job_details, inputs=[load_s3_whole_document_textract_logs_bool, s3_whole_document_textract_logs_subfolder, local_whole_document_textract_logs_subfolder], outputs=[textract_job_detail_df])
    else:
        app.load(get_connection_params, inputs=[output_folder_textbox, input_folder_textbox, session_output_folder_textbox, s3_whole_document_textract_input_subfolder, s3_whole_document_textract_output_subfolder, s3_whole_document_textract_logs_subfolder, local_whole_document_textract_logs_subfolder], outputs=[session_hash_state, output_folder_textbox, session_hash_textbox, input_folder_textbox, s3_whole_document_textract_input_subfolder, s3_whole_document_textract_output_subfolder, s3_whole_document_textract_logs_subfolder, local_whole_document_textract_logs_subfolder]) 
     

    # If relevant environment variable is set, load in the default allow list file from S3 or locally. Even when setting S3 path, need to local path to give a download location
    if GET_DEFAULT_ALLOW_LIST == "True" and (ALLOW_LIST_PATH or S3_ALLOW_LIST_PATH):
        if not os.path.exists(ALLOW_LIST_PATH) and S3_ALLOW_LIST_PATH and RUN_AWS_FUNCTIONS == "1":
            print("Downloading allow list from S3")
            app.load(download_file_from_s3, inputs=[s3_default_bucket, s3_default_allow_list_file, default_allow_list_output_folder_location]).\
            success(load_in_default_allow_list, inputs = [default_allow_list_output_folder_location], outputs=[in_allow_list])
            print("Successfully loaded allow list from S3")
        elif os.path.exists(ALLOW_LIST_PATH):
            print("Loading allow list from default allow list output path location:", ALLOW_LIST_PATH)
            app.load(load_in_default_allow_list, inputs = [default_allow_list_output_folder_location], outputs=[in_allow_list])
        else: print("Could not load in default allow list")

    # If relevant environment variable is set, load in the default cost code file from S3 or locally
    if GET_COST_CODES == "True" and (COST_CODES_PATH or S3_COST_CODES_PATH):
        if not os.path.exists(COST_CODES_PATH) and S3_COST_CODES_PATH and RUN_AWS_FUNCTIONS == "1":
            print("Downloading cost codes from S3")
            app.load(download_file_from_s3, inputs=[s3_default_bucket, s3_default_cost_codes_file, default_cost_codes_output_folder_location]).\
            success(load_in_default_cost_codes, inputs = [default_cost_codes_output_folder_location, default_cost_code_textbox], outputs=[cost_code_dataframe, cost_code_dataframe_base, cost_code_choice_drop])
            print("Successfully loaded cost codes from S3")
        elif os.path.exists(COST_CODES_PATH):
            print("Loading cost codes from default cost codes path location:", COST_CODES_PATH)
            app.load(load_in_default_cost_codes, inputs = [default_cost_codes_output_folder_location, default_cost_code_textbox], outputs=[cost_code_dataframe, cost_code_dataframe_base, cost_code_choice_drop])
        else: print("Could not load in cost code data")

    ###
    # LOGGING
    ###

    ### ACCESS LOGS
    # Log usernames and times of access to file (to know who is using the app when running on AWS)
    access_callback = CSVLogger_custom(dataset_file_name=LOG_FILE_NAME)

    access_callback.setup([session_hash_textbox, host_name_textbox], ACCESS_LOGS_FOLDER)    
    session_hash_textbox.change(lambda *args: access_callback.flag(list(args), save_to_csv=SAVE_LOGS_TO_CSV, save_to_dynamodb=SAVE_LOGS_TO_DYNAMODB, dynamodb_table_name=ACCESS_LOG_DYNAMODB_TABLE_NAME, dynamodb_headers=DYNAMODB_ACCESS_LOG_HEADERS, replacement_headers=CSV_ACCESS_LOG_HEADERS), [session_hash_textbox, host_name_textbox], None, preprocess=False).\
    success(fn = upload_log_file_to_s3, inputs=[access_logs_state, access_s3_logs_loc_state], outputs=[s3_logs_output_textbox])

    ### FEEDBACK LOGS
    pdf_callback = CSVLogger_custom(dataset_file_name=FEEDBACK_LOG_FILE_NAME)
    data_callback = CSVLogger_custom(dataset_file_name=FEEDBACK_LOG_FILE_NAME)

    if DISPLAY_FILE_NAMES_IN_LOGS == 'True':
        # User submitted feedback for pdf redactions
        pdf_callback.setup([pdf_feedback_radio, pdf_further_details_text, doc_file_name_no_extension_textbox], FEEDBACK_LOGS_FOLDER)
        pdf_submit_feedback_btn.click(lambda *args: pdf_callback.flag(list(args), save_to_csv=SAVE_LOGS_TO_CSV, save_to_dynamodb=SAVE_LOGS_TO_DYNAMODB, dynamodb_table_name=FEEDBACK_LOG_DYNAMODB_TABLE_NAME, dynamodb_headers=DYNAMODB_FEEDBACK_LOG_HEADERS, replacement_headers=CSV_FEEDBACK_LOG_HEADERS), [pdf_feedback_radio, pdf_further_details_text, doc_file_name_no_extension_textbox], None, preprocess=False).\
        success(fn = upload_log_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[pdf_further_details_text])

        # User submitted feedback for data redactions        
        data_callback.setup([data_feedback_radio, data_further_details_text, data_full_file_name_textbox], FEEDBACK_LOGS_FOLDER)
        data_submit_feedback_btn.click(lambda *args: data_callback.flag(list(args), save_to_csv=SAVE_LOGS_TO_CSV, save_to_dynamodb=SAVE_LOGS_TO_DYNAMODB, dynamodb_table_name=FEEDBACK_LOG_DYNAMODB_TABLE_NAME, dynamodb_headers=DYNAMODB_FEEDBACK_LOG_HEADERS, replacement_headers=CSV_FEEDBACK_LOG_HEADERS), [data_feedback_radio, data_further_details_text, data_full_file_name_textbox], None, preprocess=False).\
        success(fn = upload_log_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[data_further_details_text])
    else:
        # User submitted feedback for pdf redactions
        pdf_callback.setup([pdf_feedback_radio, pdf_further_details_text, doc_file_name_no_extension_textbox], FEEDBACK_LOGS_FOLDER)
        pdf_submit_feedback_btn.click(lambda *args: pdf_callback.flag(list(args), save_to_csv=SAVE_LOGS_TO_CSV, save_to_dynamodb=SAVE_LOGS_TO_DYNAMODB, dynamodb_table_name=FEEDBACK_LOG_DYNAMODB_TABLE_NAME, dynamodb_headers=DYNAMODB_FEEDBACK_LOG_HEADERS, replacement_headers=CSV_FEEDBACK_LOG_HEADERS), [pdf_feedback_radio, pdf_further_details_text, placeholder_doc_file_name_no_extension_textbox_for_logs], None, preprocess=False).\
        success(fn = upload_log_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[pdf_further_details_text])

        # User submitted feedback for data redactions
        data_callback.setup([data_feedback_radio, data_further_details_text, data_full_file_name_textbox], FEEDBACK_LOGS_FOLDER)
        data_submit_feedback_btn.click(lambda *args: data_callback.flag(list(args), save_to_csv=SAVE_LOGS_TO_CSV, save_to_dynamodb=SAVE_LOGS_TO_DYNAMODB, dynamodb_table_name=FEEDBACK_LOG_DYNAMODB_TABLE_NAME, dynamodb_headers=DYNAMODB_FEEDBACK_LOG_HEADERS, replacement_headers=CSV_FEEDBACK_LOG_HEADERS), [data_feedback_radio, data_further_details_text, placeholder_data_file_name_no_extension_textbox_for_logs], None, preprocess=False).\
        success(fn = upload_log_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[data_further_details_text])

    ### USAGE LOGS
    # Log processing usage - time taken for redaction queries, and also logs for queries to Textract/Comprehend
    usage_callback = CSVLogger_custom(dataset_file_name=USAGE_LOG_FILE_NAME)

    if DISPLAY_FILE_NAMES_IN_LOGS == 'True':
        usage_callback.setup([session_hash_textbox, doc_file_name_no_extension_textbox, data_full_file_name_textbox, total_pdf_page_count, actual_time_taken_number, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox, text_extract_method_radio, is_a_textract_api_call], USAGE_LOGS_FOLDER)

        latest_file_completed_num.change(lambda *args: usage_callback.flag(list(args), save_to_csv=SAVE_LOGS_TO_CSV, save_to_dynamodb=SAVE_LOGS_TO_DYNAMODB, dynamodb_table_name=USAGE_LOG_DYNAMODB_TABLE_NAME, dynamodb_headers=DYNAMODB_USAGE_LOG_HEADERS, replacement_headers=CSV_USAGE_LOG_HEADERS), [session_hash_textbox, doc_file_name_no_extension_textbox, data_full_file_name_textbox, total_pdf_page_count, actual_time_taken_number, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox, text_extract_method_radio, is_a_textract_api_call], None, preprocess=False, api_name="usage_logs").\
        success(fn = upload_log_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])

        text_tabular_files_done.change(lambda *args: usage_callback.flag(list(args), save_to_csv=SAVE_LOGS_TO_CSV, save_to_dynamodb=SAVE_LOGS_TO_DYNAMODB, dynamodb_table_name=USAGE_LOG_DYNAMODB_TABLE_NAME, dynamodb_headers=DYNAMODB_USAGE_LOG_HEADERS, replacement_headers=CSV_USAGE_LOG_HEADERS), [session_hash_textbox, doc_file_name_no_extension_textbox, data_full_file_name_textbox, total_pdf_page_count, actual_time_taken_number, textract_query_number, pii_identification_method_drop_tabular, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox, text_extract_method_radio, is_a_textract_api_call], None, preprocess=False).\
        success(fn = upload_log_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])

        successful_textract_api_call_number.change(lambda *args: usage_callback.flag(list(args), save_to_csv=SAVE_LOGS_TO_CSV, save_to_dynamodb=SAVE_LOGS_TO_DYNAMODB, dynamodb_table_name=USAGE_LOG_DYNAMODB_TABLE_NAME, dynamodb_headers=DYNAMODB_USAGE_LOG_HEADERS, replacement_headers=CSV_USAGE_LOG_HEADERS), [session_hash_textbox, doc_file_name_no_extension_textbox, data_full_file_name_textbox, total_pdf_page_count, actual_time_taken_number, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox, text_extract_method_radio, is_a_textract_api_call], None, preprocess=False).\
        success(fn = upload_log_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
    else:
        usage_callback.setup([session_hash_textbox, blank_doc_file_name_no_extension_textbox_for_logs, blank_data_file_name_no_extension_textbox_for_logs, total_pdf_page_count, actual_time_taken_number, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox, text_extract_method_radio, is_a_textract_api_call], USAGE_LOGS_FOLDER)

        latest_file_completed_num.change(lambda *args: usage_callback.flag(list(args), save_to_csv=SAVE_LOGS_TO_CSV, save_to_dynamodb=SAVE_LOGS_TO_DYNAMODB, dynamodb_table_name=USAGE_LOG_DYNAMODB_TABLE_NAME, dynamodb_headers=DYNAMODB_USAGE_LOG_HEADERS, replacement_headers=CSV_USAGE_LOG_HEADERS), [session_hash_textbox, placeholder_doc_file_name_no_extension_textbox_for_logs, blank_data_file_name_no_extension_textbox_for_logs, actual_time_taken_number, total_pdf_page_count, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox, text_extract_method_radio, is_a_textract_api_call], None, preprocess=False).\
        success(fn = upload_log_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])

        text_tabular_files_done.change(lambda *args: usage_callback.flag(list(args), save_to_csv=SAVE_LOGS_TO_CSV, save_to_dynamodb=SAVE_LOGS_TO_DYNAMODB, dynamodb_table_name=USAGE_LOG_DYNAMODB_TABLE_NAME, dynamodb_headers=DYNAMODB_USAGE_LOG_HEADERS, replacement_headers=CSV_USAGE_LOG_HEADERS), [session_hash_textbox, blank_doc_file_name_no_extension_textbox_for_logs, placeholder_data_file_name_no_extension_textbox_for_logs,  actual_time_taken_number, total_pdf_page_count, textract_query_number, pii_identification_method_drop_tabular, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox, text_extract_method_radio, is_a_textract_api_call], None, preprocess=False).\
        success(fn = upload_log_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])

        successful_textract_api_call_number.change(lambda *args: usage_callback.flag(list(args), save_to_csv=SAVE_LOGS_TO_CSV, save_to_dynamodb=SAVE_LOGS_TO_DYNAMODB, dynamodb_table_name=USAGE_LOG_DYNAMODB_TABLE_NAME, dynamodb_headers=DYNAMODB_USAGE_LOG_HEADERS, replacement_headers=CSV_USAGE_LOG_HEADERS), [session_hash_textbox, placeholder_doc_file_name_no_extension_textbox_for_logs, blank_data_file_name_no_extension_textbox_for_logs, actual_time_taken_number, total_pdf_page_count, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox, text_extract_method_radio, is_a_textract_api_call], None, preprocess=False).\
        success(fn = upload_log_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])

if __name__ == "__main__":
    if RUN_DIRECT_MODE == "0":
        
        if COGNITO_AUTH == "1":
            app.queue(max_size=int(MAX_QUEUE_SIZE), default_concurrency_limit=int(DEFAULT_CONCURRENCY_LIMIT)).launch(show_error=True, inbrowser=True, auth=authenticate_user, max_file_size=MAX_FILE_SIZE, server_port=GRADIO_SERVER_PORT, root_path=ROOT_PATH)
        else:
            app.queue(max_size=int(MAX_QUEUE_SIZE), default_concurrency_limit=int(DEFAULT_CONCURRENCY_LIMIT)).launch(show_error=True, inbrowser=True, max_file_size=MAX_FILE_SIZE, server_port=GRADIO_SERVER_PORT, root_path=ROOT_PATH)
    
    else:
        from cli_redact import main
        
        # Validate required direct mode configuration
        if not DIRECT_MODE_INPUT_FILE:
            print("Error: DIRECT_MODE_INPUT_FILE environment variable must be set for direct mode.")
            print("Please set DIRECT_MODE_INPUT_FILE to the path of your input file.")
            exit(1)
        
        # Prepare direct mode arguments based on environment variables
        direct_mode_args = {
            'task': DIRECT_MODE_TASK,
            'input_file': DIRECT_MODE_INPUT_FILE,
            'output_dir': DIRECT_MODE_OUTPUT_DIR,
            'language': DEFAULT_LANGUAGE,
            'allow_list': ALLOW_LIST_PATH,
            'pii_detector': LOCAL_PII_OPTION,
            'aws_access_key': AWS_ACCESS_KEY,
            'aws_secret_key': AWS_SECRET_KEY,
            'aws_region': AWS_REGION,
            's3_bucket': DOCUMENT_REDACTION_BUCKET,
            'do_initial_clean': DO_INITIAL_TABULAR_DATA_CLEAN,
            'save_logs_to_csv': SAVE_LOGS_TO_CSV,
            'display_file_names_in_logs': DISPLAY_FILE_NAMES_IN_LOGS,
            'ocr_method': TESSERACT_TEXT_EXTRACT_OPTION,
            'page_min': DEFAULT_PAGE_MIN,
            'page_max': DEFAULT_PAGE_MAX,
            'prepare_for_review': False,
            'prepare_images': True,
            'no_images': False,
            'images_dpi': IMAGES_DPI,
            'max_image_pixels': None,
            'load_truncated_images': True,
            'chosen_local_ocr_model': CHOSEN_LOCAL_OCR_MODEL,
            'preprocess_local_ocr_images': PREPROCESS_LOCAL_OCR_IMAGES,
            'compress_redacted_pdf': COMPRESS_REDACTED_PDF,
            'return_pdf_end_of_redaction': RETURN_PDF_END_OF_REDACTION,
            'in_allow_list': OUTPUT_ALLOW_LIST_PATH,
            'in_deny_list': OUTPUT_DENY_LIST_PATH,
            'redact_whole_page_list': OUTPUT_WHOLE_PAGE_REDACTION_LIST_PATH,
            'handwrite_signature_checkbox': DEFAULT_HANDWRITE_SIGNATURE_CHECKBOX,
            'anon_strat': DEFAULT_TABULAR_ANONYMISATION_STRATEGY,
            'columns': DEFAULT_TEXT_COLUMNS,
            'excel_sheets': DEFAULT_EXCEL_SHEETS,
            'deny_list': OUTPUT_DENY_LIST_PATH,
            'fuzzy_mistakes': DEFAULT_FUZZY_SPELLING_MISTAKES_NUM,
            'duplicate_type': DIRECT_MODE_DUPLICATE_TYPE,
            'similarity_threshold': DEFAULT_DUPLICATE_DETECTION_THRESHOLD,
            'min_word_count': DEFAULT_MIN_WORD_COUNT,
            'min_consecutive_pages': DEFAULT_MIN_CONSECUTIVE_PAGES,
            'greedy_match': USE_GREEDY_DUPLICATE_DETECTION,
            'combine_pages': DEFAULT_COMBINE_PAGES,
            'search_query': DEFAULT_SEARCH_QUERY if DEFAULT_SEARCH_QUERY else None,
            'text_columns': DEFAULT_TEXT_COLUMNS.split(',') if DEFAULT_TEXT_COLUMNS else []
        }
        
        print(f"Running in direct mode with task: {DIRECT_MODE_TASK}")
        print(f"Input file: {DIRECT_MODE_INPUT_FILE}")
        print(f"Output directory: {DIRECT_MODE_OUTPUT_DIR}")
        
        if DIRECT_MODE_TASK == 'deduplicate':
            print(f"Duplicate type: {DIRECT_MODE_DUPLICATE_TYPE}")
            print(f"Similarity threshold: {DEFAULT_DUPLICATE_DETECTION_THRESHOLD}")
            print(f"Min word count: {DEFAULT_MIN_WORD_COUNT}")
            if DEFAULT_SEARCH_QUERY:
                print(f"Search query: {DEFAULT_SEARCH_QUERY}")
            if DEFAULT_TEXT_COLUMNS:
                print(f"Text columns: {DEFAULT_TEXT_COLUMNS}")
        
        # Run the CLI main function with direct mode arguments
        main(direct_mode_args=direct_mode_args)