File size: 9,341 Bytes
e9c4101 6ea0852 e9c4101 6ea0852 8652429 e9c4101 6ea0852 e9c4101 6ea0852 e9c4101 6ea0852 e9c4101 8652429 e9c4101 8652429 e9c4101 8652429 6ea0852 8652429 6ea0852 8652429 6ea0852 8652429 6ea0852 e9c4101 8652429 e9c4101 6ea0852 8652429 e9c4101 6ea0852 e9c4101 6ea0852 e9c4101 6ea0852 e9c4101 8652429 6ea0852 e9c4101 8652429 6ea0852 8652429 e9c4101 6ea0852 e9c4101 6ea0852 e9c4101 8652429 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import boto3
from PIL import Image
import io
import json
import pikepdf
# Example: converting this single page to an image
from pdf2image import convert_from_bytes
from tools.custom_image_analyser_engine import OCRResult, CustomImageRecognizerResult
def extract_textract_metadata(response):
"""Extracts metadata from an AWS Textract response."""
print("Document metadata:", response['DocumentMetadata'])
request_id = response['ResponseMetadata']['RequestId']
pages = response['DocumentMetadata']['Pages']
#number_of_pages = response['DocumentMetadata']['NumberOfPages']
return str({
'RequestId': request_id,
'Pages': pages
#,
#'NumberOfPages': number_of_pages
})
def analyse_page_with_textract(pdf_page_bytes, json_file_path):
'''
Analyse page with AWS Textract
'''
try:
client = boto3.client('textract')
except:
print("Cannot connect to AWS Textract")
return "", "", ""
print("Analysing page with AWS Textract")
# Convert the image to bytes using an in-memory buffer
#image_buffer = io.BytesIO()
#image.save(image_buffer, format='PNG') # Save as PNG, or adjust format if needed
#image_bytes = image_buffer.getvalue()
#response = client.detect_document_text(Document={'Bytes': image_bytes})
response = client.analyze_document(Document={'Bytes': pdf_page_bytes}, FeatureTypes=["SIGNATURES"])
text_blocks = response['Blocks']
request_metadata = extract_textract_metadata(response) # Metadata comes out as a string
# Write the response to a JSON file
with open(json_file_path, 'w') as json_file:
json.dump(response, json_file, indent=4) # indent=4 makes the JSON file pretty-printed
print("Response has been written to output:", json_file_path)
return text_blocks, request_metadata
def convert_pike_pdf_page_to_bytes(pdf, page_num):
# Create a new empty PDF
new_pdf = pikepdf.Pdf.new()
# Specify the page number you want to extract (0-based index)
page_num = 0 # Example: first page
# Extract the specific page and add it to the new PDF
new_pdf.pages.append(pdf.pages[page_num])
# Save the new PDF to a bytes buffer
buffer = io.BytesIO()
new_pdf.save(buffer)
# Get the PDF bytes
pdf_bytes = buffer.getvalue()
# Now you can use the `pdf_bytes` to convert it to an image or further process
buffer.close()
#images = convert_from_bytes(pdf_bytes)
#image = images[0]
return pdf_bytes
def json_to_ocrresult(json_data, page_width, page_height):
'''
Convert the json response from textract to the OCRResult format used elsewhere in the code. Looks for lines, words, and signatures. Handwriting and signatures are set aside especially for later in case the user wants to override the default behaviour and redact all handwriting/signatures.
'''
all_ocr_results = []
signature_or_handwriting_recogniser_results = []
signature_recogniser_results = []
handwriting_recogniser_results = []
signatures = []
handwriting = []
combined_results = {}
for text_block in json_data:
is_signature = False
is_handwriting = False
if (text_block['BlockType'] == 'LINE') | (text_block['BlockType'] == 'SIGNATURE'): # (text_block['BlockType'] == 'WORD') |
if text_block['BlockType'] == 'LINE':
# Extract text and bounding box for the line
line_text = text_block.get('Text', '')
line_bbox = text_block["Geometry"]["BoundingBox"]
line_left = int(line_bbox["Left"] * page_width)
line_top = int(line_bbox["Top"] * page_height)
line_right = int((line_bbox["Left"] + line_bbox["Width"]) * page_width)
line_bottom = int((line_bbox["Top"] + line_bbox["Height"]) * page_height)
words = []
if 'Relationships' in text_block:
for relationship in text_block['Relationships']:
if relationship['Type'] == 'CHILD':
for child_id in relationship['Ids']:
child_block = next((block for block in json_data if block['Id'] == child_id), None)
if child_block and child_block['BlockType'] == 'WORD':
word_text = child_block.get('Text', '')
word_bbox = child_block["Geometry"]["BoundingBox"]
confidence = child_block.get('Confidence','')
word_left = int(word_bbox["Left"] * page_width)
word_top = int(word_bbox["Top"] * page_height)
word_right = int((word_bbox["Left"] + word_bbox["Width"]) * page_width)
word_bottom = int((word_bbox["Top"] + word_bbox["Height"]) * page_height)
# Extract BoundingBox details
width = word_bbox["Width"]
height = word_bbox["Height"]
# Convert proportional coordinates to absolute coordinates
width_abs = int(width * page_width)
height_abs = int(height * page_height)
words.append({
'text': word_text,
'bounding_box': (word_left, word_top, word_right, word_bottom)
})
# Check for handwriting
text_type = child_block.get("TextType", '')
if text_type == "HANDWRITING":
is_handwriting = True
entity_name = "HANDWRITING"
word_end = len(entity_name)
recogniser_result = CustomImageRecognizerResult(entity_type=entity_name, text= word_text, score= confidence, start=0, end=word_end, left=word_left, top=word_top, width=width_abs, height=height_abs)
handwriting.append(recogniser_result)
print("Handwriting found:", handwriting[-1])
combined_results[line_text] = {
'bounding_box': (line_left, line_top, line_right, line_bottom),
'words': words
}
# If handwriting or signature, add to bounding box
elif (text_block['BlockType'] == 'SIGNATURE'):
line_text = "SIGNATURE"
is_signature = True
entity_name = "SIGNATURE"
confidence = text_block['Confidence']
word_end = len(entity_name)
# Extract BoundingBox details
bbox = text_block["Geometry"]["BoundingBox"]
left = bbox["Left"]
top = bbox["Top"]
width = bbox["Width"]
height = bbox["Height"]
# Convert proportional coordinates to absolute coordinates
left_abs = int(left * page_width)
top_abs = int(top * page_height)
width_abs = int(width * page_width)
height_abs = int(height * page_height)
recogniser_result = CustomImageRecognizerResult(entity_type=entity_name, text= line_text, score= confidence, start=0, end=word_end, left=left_abs, top=top_abs, width=width_abs, height=height_abs)
signatures.append(recogniser_result)
print("Signature found:", signatures[-1])
# Extract BoundingBox details
bbox = text_block["Geometry"]["BoundingBox"]
left = bbox["Left"]
top = bbox["Top"]
width = bbox["Width"]
height = bbox["Height"]
# Convert proportional coordinates to absolute coordinates
left_abs = int(left * page_width)
top_abs = int(top * page_height)
width_abs = int(width * page_width)
height_abs = int(height * page_height)
# Create OCRResult with absolute coordinates
ocr_result = OCRResult(line_text, left_abs, top_abs, width_abs, height_abs)
all_ocr_results.append(ocr_result)
is_signature_or_handwriting = is_signature | is_handwriting
# If it is signature or handwriting, will overwrite the default behaviour of the PII analyser
if is_signature_or_handwriting:
signature_or_handwriting_recogniser_results.append(recogniser_result)
if is_signature: signature_recogniser_results.append(recogniser_result)
if is_handwriting: handwriting_recogniser_results.append(recogniser_result)
return all_ocr_results, signature_or_handwriting_recogniser_results, signature_recogniser_results, handwriting_recogniser_results, combined_results |