File size: 13,658 Bytes
641ff3e
 
 
 
 
bde6e5b
 
2a4b347
 
bde6e5b
641ff3e
bde6e5b
641ff3e
f0c28d7
641ff3e
e3365ed
 
 
 
f0c28d7
 
e3365ed
 
 
 
 
f0c28d7
641ff3e
 
e3365ed
6ac4be4
1d772de
6ac4be4
 
 
 
 
 
 
cb349ad
6ac4be4
 
 
e3365ed
6ac4be4
e3365ed
 
 
 
 
641ff3e
 
 
8652429
641ff3e
e3365ed
339a165
641ff3e
 
 
 
 
a748df6
 
 
 
 
641ff3e
 
e3365ed
641ff3e
bde6e5b
641ff3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bde6e5b
641ff3e
 
 
 
 
 
 
 
 
a748df6
 
 
641ff3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bde6e5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cecbfa
bde6e5b
3cecbfa
bde6e5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cecbfa
 
 
bde6e5b
 
 
 
3cecbfa
bde6e5b
 
 
 
 
 
 
 
3cecbfa
 
bde6e5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
641ff3e
 
 
 
 
 
 
 
 
 
 
 
 
a748df6
641ff3e
 
e3365ed
641ff3e
 
 
e3365ed
bde6e5b
641ff3e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# %%
from typing import List
from presidio_analyzer import AnalyzerEngine, PatternRecognizer, EntityRecognizer, Pattern, RecognizerResult
from presidio_analyzer.nlp_engine import SpacyNlpEngine, NlpArtifacts
import spacy
from spacy.matcher import Matcher, PhraseMatcher
from spaczz.matcher import FuzzyMatcher
spacy.prefer_gpu()
from spacy.cli.download import download
import Levenshtein
import re
import gradio as gr

model_name = "en_core_web_sm" #"en_core_web_trf"
score_threshold = 0.001
custom_entities = ["TITLES", "UKPOSTCODE", "STREETNAME", "CUSTOM"]

#Load spacy model
try:
	import en_core_web_sm
	nlp = en_core_web_sm.load()
	print("Successfully imported spaCy model")

except:
	download(model_name)
	nlp = spacy.load(model_name)
	print("Successfully downloaded and imported spaCy model", model_name)

# #### Custom recognisers
def custom_word_list_recogniser(custom_list:List[str]=[]):
    # Create regex pattern, handling quotes carefully

    quote_str = '"'
    replace_str = '(?:"|"|")'

    custom_regex = '|'.join(
        rf'(?<!\w){re.escape(term.strip()).replace(quote_str, replace_str)}(?!\w)'
        for term in custom_list
    )
    #print(custom_regex)

    custom_pattern = Pattern(name="custom_pattern", regex=custom_regex, score = 1)
    
    custom_recogniser = PatternRecognizer(supported_entity="CUSTOM", name="CUSTOM", patterns = [custom_pattern], 
        global_regex_flags=re.DOTALL | re.MULTILINE | re.IGNORECASE)

    return custom_recogniser

# Initialise custom recogniser that will be overwritten later
custom_recogniser = custom_word_list_recogniser()

# Custom title recogniser
titles_list = ["Sir", "Ma'am", "Madam", "Mr", "Mr.", "Mrs", "Mrs.", "Ms", "Ms.", "Miss", "Dr", "Dr.", "Professor"]
titles_regex = '\\b' + '\\b|\\b'.join(rf"{re.escape(title)}" for title in titles_list) + '\\b'
titles_pattern = Pattern(name="titles_pattern",regex=titles_regex, score = 1)
titles_recogniser = PatternRecognizer(supported_entity="TITLES", name="TITLES", patterns = [titles_pattern], 
    global_regex_flags=re.DOTALL | re.MULTILINE)

# %%
# Custom postcode recogniser

# Define the regex pattern in a Presidio `Pattern` object:
ukpostcode_pattern = Pattern(
    name="ukpostcode_pattern",
    regex=r"\b([A-Z]{1,2}\d[A-Z\d]? ?\d[A-Z]{2}|GIR ?0AA)\b",
    score=1
)

# Define the recognizer with one or more patterns
ukpostcode_recogniser = PatternRecognizer(supported_entity="UKPOSTCODE", name = "UKPOSTCODE", patterns = [ukpostcode_pattern])

### Street name

def extract_street_name(text:str) -> str:
    """

    Extracts the street name and preceding word (that should contain at least one number) from the given text.



    """    
   
    street_types = [
    'Street', 'St', 'Boulevard', 'Blvd', 'Highway', 'Hwy', 'Broadway', 'Freeway',
    'Causeway', 'Cswy', 'Expressway', 'Way', 'Walk', 'Lane', 'Ln', 'Road', 'Rd',
    'Avenue', 'Ave', 'Circle', 'Cir', 'Cove', 'Cv', 'Drive', 'Dr', 'Parkway', 'Pkwy',
    'Park', 'Court', 'Ct', 'Square', 'Sq', 'Loop', 'Place', 'Pl', 'Parade', 'Estate',
    'Alley', 'Arcade', 'Avenue', 'Ave', 'Bay', 'Bend', 'Brae', 'Byway', 'Close', 'Corner', 'Cove',
    'Crescent', 'Cres', 'Cul-de-sac', 'Dell', 'Drive', 'Dr', 'Esplanade', 'Glen', 'Green', 'Grove', 'Heights', 'Hts',
    'Mews', 'Parade', 'Path', 'Piazza', 'Promenade', 'Quay', 'Ridge', 'Row', 'Terrace', 'Ter', 'Track', 'Trail', 'View', 'Villas',
    'Marsh', 'Embankment', 'Cut', 'Hill', 'Passage', 'Rise', 'Vale', 'Side'
    ]

    # Dynamically construct the regex pattern with all possible street types
    street_types_pattern = '|'.join(rf"{re.escape(street_type)}" for street_type in street_types)

    # The overall regex pattern to capture the street name and preceding word(s)

    pattern = rf'(?P<preceding_word>\w*\d\w*)\s*'
    pattern += rf'(?P<street_name>\w+\s*\b(?:{street_types_pattern})\b)'

    # Find all matches in text
    matches = re.finditer(pattern, text, re.DOTALL | re.MULTILINE | re.IGNORECASE)

    start_positions = []
    end_positions = []

    for match in matches:
        preceding_word = match.group('preceding_word').strip()
        street_name = match.group('street_name').strip()
        start_pos = match.start()
        end_pos = match.end()
        #print(f"Start: {start_pos}, End: {end_pos}")
        #print(f"Preceding words: {preceding_word}")
        #print(f"Street name: {street_name}")

        start_positions.append(start_pos)
        end_positions.append(end_pos)

    return start_positions, end_positions

class StreetNameRecognizer(EntityRecognizer):

    def load(self) -> None:
        """No loading is required."""
        pass

    def analyze(self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts) -> List[RecognizerResult]:
        """

        Logic for detecting a specific PII

        """

        start_pos, end_pos = extract_street_name(text)

        results = []

        for i in range(0, len(start_pos)):

            result = RecognizerResult(
                        entity_type="STREETNAME",
                        start = start_pos[i],
                        end = end_pos[i],
                        score= 1
                    )
        
            results.append(result)
        
        return results
    
street_recogniser = StreetNameRecognizer(supported_entities=["STREETNAME"])

## Custom fuzzy match recogniser for list of strings
def custom_fuzzy_word_list_regex(text:str, custom_list:List[str]=[]):
    # Create regex pattern, handling quotes carefully

    quote_str = '"'
    replace_str = '(?:"|"|")'

    custom_regex_pattern = '|'.join(
        rf'(?<!\w){re.escape(term.strip()).replace(quote_str, replace_str)}(?!\w)'
        for term in custom_list
    )

    # Find all matches in text
    matches = re.finditer(custom_regex_pattern, text, re.DOTALL | re.MULTILINE | re.IGNORECASE)

    start_positions = []
    end_positions = []

    for match in matches:
        start_pos = match.start()
        end_pos = match.end()

        start_positions.append(start_pos)
        end_positions.append(end_pos)

    return start_positions, end_positions

def spacy_fuzzy_search(text: str, custom_query_list:List[str]=[], spelling_mistakes_max:int = 1, search_whole_phrase:bool=True, nlp=nlp, progress=gr.Progress(track_tqdm=True)):
    ''' Conduct fuzzy match on a list of text data.'''

    all_matches = []
    all_start_positions = []
    all_end_positions = []
    all_ratios = []

    #print("custom_query_list:", custom_query_list)

    if not text:
        out_message = "No text data found. Skipping page."
        print(out_message)
        return all_start_positions, all_end_positions

    for string_query in custom_query_list:

        #print("text:", text)
        #print("string_query:", string_query)

        query = nlp(string_query)

        if search_whole_phrase == False:
            # Keep only words that are not stop words
            token_query = [token.text for token in query if not token.is_space and not token.is_stop and not token.is_punct]

            spelling_mistakes_fuzzy_pattern = "FUZZY" + str(spelling_mistakes_max)

            #print("token_query:", token_query)

            if len(token_query) > 1:
                #pattern_lemma = [{"LEMMA": {"IN": query}}]
                pattern_fuzz = [{"TEXT": {spelling_mistakes_fuzzy_pattern: {"IN": token_query}}}]
            else:
                #pattern_lemma = [{"LEMMA": query[0]}]
                pattern_fuzz = [{"TEXT": {spelling_mistakes_fuzzy_pattern: token_query[0]}}]

            matcher = Matcher(nlp.vocab)        
            matcher.add(string_query, [pattern_fuzz])
            #matcher.add(string_query, [pattern_lemma])
        
        else:
            # If matching a whole phrase, use Spacy PhraseMatcher, then consider similarity after using Levenshtein distance.
            #tokenised_query = [string_query.lower()]
            # If you want to match the whole phrase, use phrase matcher
            matcher = FuzzyMatcher(nlp.vocab)
            patterns = [nlp.make_doc(string_query)]  # Convert query into a Doc object
            matcher.add("PHRASE", patterns, [{"ignore_case": True}])

        batch_size = 256
        docs = nlp.pipe([text], batch_size=batch_size)

        # Get number of matches per doc
        for doc in docs: #progress.tqdm(docs, desc = "Searching text", unit = "rows"):
            matches = matcher(doc)
            match_count = len(matches)

            # If considering each sub term individually, append match. If considering together, consider weight of the relevance to that of the whole phrase.
            if search_whole_phrase==False:
                all_matches.append(match_count)

                for match_id, start, end in matches:
                    span = str(doc[start:end]).strip()
                    query_search = str(query).strip()
                    #print("doc:", doc)
                    #print("span:", span)
                    #print("query_search:", query_search)
                    
                    # Convert word positions to character positions
                    start_char = doc[start].idx  # Start character position
                    end_char = doc[end - 1].idx + len(doc[end - 1])  # End character position

                    # The positions here are word position, not character position
                    all_matches.append(match_count)
                    all_start_positions.append(start_char)
                    all_end_positions.append(end_char)
                
            else:
                for match_id, start, end, ratio, pattern in matches:
                    span = str(doc[start:end]).strip()
                    query_search = str(query).strip()
                    #print("doc:", doc)
                    #print("span:", span)
                    #print("query_search:", query_search)
                    
                    # Calculate Levenshtein distance. Only keep matches with less than specified number of spelling mistakes
                    distance = Levenshtein.distance(query_search.lower(), span.lower())

                    #print("Levenshtein distance:", distance)
                    
                    if distance > spelling_mistakes_max:                                       
                        match_count = match_count - 1
                    else:
                        # Convert word positions to character positions
                        start_char = doc[start].idx  # Start character position
                        end_char = doc[end - 1].idx + len(doc[end - 1])  # End character position

                        #print("start_char:", start_char)
                        #print("end_char:", end_char)

                        all_matches.append(match_count)
                        all_start_positions.append(start_char)
                        all_end_positions.append(end_char)
                        all_ratios.append(ratio)                        


    return all_start_positions, all_end_positions


class CustomWordFuzzyRecognizer(EntityRecognizer):
    def __init__(self, supported_entities: List[str], custom_list: List[str] = [], spelling_mistakes_max: int = 1, search_whole_phrase: bool = True):
        super().__init__(supported_entities=supported_entities)
        self.custom_list = custom_list  # Store the custom_list as an instance attribute
        self.spelling_mistakes_max = spelling_mistakes_max  # Store the max spelling mistakes
        self.search_whole_phrase = search_whole_phrase  # Store the search whole phrase flag

    def load(self) -> None:
        """No loading is required."""
        pass

    def analyze(self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts) -> List[RecognizerResult]:
        """

        Logic for detecting a specific PII

        """
        start_pos, end_pos = spacy_fuzzy_search(text, self.custom_list, self.spelling_mistakes_max, self.search_whole_phrase)  # Pass new parameters

        results = []

        for i in range(0, len(start_pos)):
            result = RecognizerResult(
                entity_type="CUSTOM_FUZZY",
                start=start_pos[i],
                end=end_pos[i],
                score=1
            )
            results.append(result)

        return results
    
custom_list_default = []
custom_word_fuzzy_recognizer = CustomWordFuzzyRecognizer(supported_entities=["CUSTOM_FUZZY"], custom_list=custom_list_default)

# Create a class inheriting from SpacyNlpEngine
class LoadedSpacyNlpEngine(SpacyNlpEngine):
    def __init__(self, loaded_spacy_model):
        super().__init__()
        self.nlp = {"en": loaded_spacy_model}

# Pass the loaded model to the new LoadedSpacyNlpEngine
loaded_nlp_engine = LoadedSpacyNlpEngine(loaded_spacy_model = nlp)


nlp_analyser = AnalyzerEngine(nlp_engine=loaded_nlp_engine,
                default_score_threshold=score_threshold,
                supported_languages=["en"],
                log_decision_process=False,
                )

# Add custom recognisers to nlp_analyser
nlp_analyser.registry.add_recognizer(street_recogniser)
nlp_analyser.registry.add_recognizer(ukpostcode_recogniser)
nlp_analyser.registry.add_recognizer(titles_recogniser)
nlp_analyser.registry.add_recognizer(custom_recogniser)
nlp_analyser.registry.add_recognizer(custom_word_fuzzy_recognizer)