File size: 11,333 Bytes
43287c3 230fcc3 a680619 641ff3e 34addbf 6ea0852 43287c3 8c33828 641ff3e 37d982e 0f18146 37d982e 641ff3e bc4bdbd 641ff3e 43287c3 a63133d 43287c3 5b4b5fb 43287c3 e9c4101 a63133d 43287c3 ebf9010 43287c3 ebf9010 bc4bdbd 43287c3 8c33828 43287c3 bc4bdbd ebf9010 34addbf 43287c3 641ff3e bc4bdbd 641ff3e 0f18146 641ff3e 37d982e 641ff3e 7810536 8c33828 641ff3e 7810536 641ff3e 7810536 641ff3e 7810536 8652429 ebf9010 8652429 ebf9010 8652429 ebf9010 8652429 ebf9010 8652429 ebf9010 8652429 8c33828 0f18146 34addbf ebf9010 e9c4101 8c33828 ebf9010 8c33828 bbf818d ebf9010 8c33828 01c88c0 ebf9010 01c88c0 bbf818d 01c88c0 e9c4101 ebf9010 0f18146 7810536 8652429 8c33828 bc4bdbd 01c88c0 7810536 01c88c0 7810536 34addbf 7810536 34addbf 8c33828 230fcc3 8652429 230fcc3 6ea0852 7810536 ebf9010 7810536 84c83c0 7810536 ebf9010 7810536 ebf9010 7810536 8652429 7810536 ebf9010 7810536 ebf9010 34addbf 0f18146 ebf9010 0f18146 2807627 0f18146 7810536 2807627 7810536 12224f5 0f18146 7810536 0f18146 bbf818d 0f18146 ebf9010 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
from pdf2image import convert_from_path, pdfinfo_from_path
from tools.helper_functions import get_file_path_end, output_folder, detect_file_type
from PIL import Image, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
import os
import time
import json
from gradio import Progress
from typing import List, Optional
def is_pdf_or_image(filename):
"""
Check if a file name is a PDF or an image file.
Args:
filename (str): The name of the file.
Returns:
bool: True if the file name ends with ".pdf", ".jpg", or ".png", False otherwise.
"""
if filename.lower().endswith(".pdf") or filename.lower().endswith(".jpg") or filename.lower().endswith(".jpeg") or filename.lower().endswith(".png"):
output = True
else:
output = False
return output
def is_pdf(filename):
"""
Check if a file name is a PDF.
Args:
filename (str): The name of the file.
Returns:
bool: True if the file name ends with ".pdf", False otherwise.
"""
return filename.lower().endswith(".pdf")
# %%
## Convert pdf to image if necessary
def convert_pdf_to_images(pdf_path:str, page_min:int = 0, progress=Progress(track_tqdm=True)):
# Get the number of pages in the PDF
page_count = pdfinfo_from_path(pdf_path)['Pages']
print("Number of pages in PDF: ", str(page_count))
images = []
# Open the PDF file
#for page_num in progress.tqdm(range(0,page_count), total=page_count, unit="pages", desc="Converting pages"): range(page_min,page_count): #
for page_num in progress.tqdm(range(page_min,page_count), total=page_count, unit="pages", desc="Preparing pages"):
print("Converting page: ", str(page_num + 1))
# Convert one page to image
out_path = pdf_path + "_" + str(page_num) + ".png"
# Ensure the directory exists
os.makedirs(os.path.dirname(out_path), exist_ok=True)
# Check if the image already exists
if os.path.exists(out_path):
print(f"Loading existing image from {out_path}.")
image = [Image.open(out_path)] # Load the existing image
else:
image = convert_from_path(pdf_path, first_page=page_num+1, last_page=page_num+1, dpi=300, use_cropbox=True, use_pdftocairo=False)
image[0].save(out_path, format="PNG") # Save the new image
# If no images are returned, break the loop
if not image:
print("Conversion of page", str(page_num), "to file failed.")
break
# print("Conversion of page", str(page_num), "to file succeeded.")
# print("image:", image)
images.extend(image)
print("PDF has been converted to images.")
# print("Images:", images)
return images
# %% Function to take in a file path, decide if it is an image or pdf, then process appropriately.
def process_file(file_path):
# Get the file extension
file_extension = os.path.splitext(file_path)[1].lower()
# Check if the file is an image type
if file_extension in ['.jpg', '.jpeg', '.png']:
print(f"{file_path} is an image file.")
# Perform image processing here
img_object = [Image.open(file_path)]
# Load images from the file paths
# Check if the file is a PDF
elif file_extension == '.pdf':
print(f"{file_path} is a PDF file. Converting to image set")
# Run your function for processing PDF files here
img_object = convert_pdf_to_images(file_path)
else:
print(f"{file_path} is not an image or PDF file.")
img_object = ['']
return img_object
def get_input_file_names(file_input):
'''
Get list of input files to report to logs.
'''
all_relevant_files = []
#print("file_input:", file_input)
for file in file_input:
file_path = file.name
print(file_path)
file_path_without_ext = get_file_path_end(file_path)
#print("file:", file_path)
file_extension = os.path.splitext(file_path)[1].lower()
file_name_with_extension = file_path_without_ext + file_extension
# Check if the file is an image type
if file_extension in ['.jpg', '.jpeg', '.png', '.pdf', '.xlsx', '.csv', '.parquet']:
all_relevant_files.append(file_path_without_ext)
all_relevant_files_str = ", ".join(all_relevant_files)
#print("all_relevant_files_str:", all_relevant_files_str)
return all_relevant_files_str, file_name_with_extension
def prepare_image_or_pdf(
file_paths: List[str],
in_redact_method: str,
in_allow_list: Optional[List[List[str]]] = None,
latest_file_completed: int = 0,
out_message: List[str] = [],
first_loop_state: bool = False,
progress: Progress = Progress(track_tqdm=True)
) -> tuple[List[str], List[str]]:
"""
Prepare and process image or text PDF files for redaction.
This function takes a list of file paths, processes each file based on the specified redaction method,
and returns the output messages and processed file paths.
Args:
file_paths (List[str]): List of file paths to process.
in_redact_method (str): The redaction method to use.
in_allow_list (Optional[List[List[str]]]): List of allowed terms for redaction.
latest_file_completed (int): Index of the last completed file.
out_message (List[str]): List to store output messages.
first_loop_state (bool): Flag indicating if this is the first iteration.
progress (Progress): Progress tracker for the operation.
Returns:
tuple[List[str], List[str]]: A tuple containing the output messages and processed file paths.
"""
tic = time.perf_counter()
# If out message or converted_file_paths are blank, change to a list so it can be appended to
if isinstance(out_message, str):
out_message = [out_message]
# If this is the first time around, set variables to 0/blank
if first_loop_state==True:
latest_file_completed = 0
out_message = []
converted_file_paths = []
image_file_paths = []
else:
print("Now attempting file:", str(latest_file_completed))
converted_file_paths = []
image_file_paths = []
if not file_paths:
file_paths = []
#converted_file_paths = file_paths
latest_file_completed = int(latest_file_completed)
# If we have already redacted the last file, return the input out_message and file list to the relevant components
if latest_file_completed >= len(file_paths):
print("Last file reached, returning files:", str(latest_file_completed))
if isinstance(out_message, list):
final_out_message = '\n'.join(out_message)
else:
final_out_message = out_message
return final_out_message, converted_file_paths, image_file_paths
#in_allow_list_flat = [item for sublist in in_allow_list for item in sublist]
progress(0.1, desc='Preparing file')
file_paths_loop = [file_paths[int(latest_file_completed)]]
#print("file_paths_loop:", str(file_paths_loop))
#for file in progress.tqdm(file_paths, desc="Preparing files"):
for file in file_paths_loop:
file_path = file.name
file_path_without_ext = get_file_path_end(file_path)
#print("file:", file_path)
file_extension = os.path.splitext(file_path)[1].lower()
# Check if the file is an image type
if file_extension in ['.jpg', '.jpeg', '.png']:
in_redact_method = "Quick image analysis - typed text"
# If the file loaded in is json, assume this is a textract response object. Save this to the output folder so it can be found later during redaction and go to the next file.
if file_extension in ['.json']:
json_contents = json.load(file_path)
# Write the response to a JSON file
out_folder = output_folder + file_path
with open(file_path, 'w') as json_file:
json.dump(json_contents, out_folder, indent=4) # indent=4 makes the JSON file pretty-printed
continue
#if file_path:
# file_path_without_ext = get_file_path_end(file_path)
if not file_path:
out_message = "No file selected"
print(out_message)
return out_message, converted_file_paths, image_file_paths
if in_redact_method == "Quick image analysis - typed text" or in_redact_method == "Complex image analysis - docs with handwriting/signatures (AWS Textract)":
# Analyse and redact image-based pdf or image
if is_pdf_or_image(file_path) == False:
out_message = "Please upload a PDF file or image file (JPG, PNG) for image analysis."
print(out_message)
return out_message, converted_file_paths, image_file_paths
converted_file_path = process_file(file_path)
image_file_path = converted_file_path
#print("Out file path at image conversion step:", converted_file_path)
elif in_redact_method == "Simple text analysis - PDFs with selectable text":
if is_pdf(file_path) == False:
out_message = "Please upload a PDF file for text analysis."
print(out_message)
return out_message, converted_file_paths, image_file_paths
converted_file_path = file_path # Pikepdf works with the basic unconverted pdf file
image_file_path = process_file(file_path)
converted_file_paths.append(converted_file_path)
image_file_paths.extend(image_file_path)
#print("file conversion image_file_paths:", image_file_paths)
toc = time.perf_counter()
out_time = f"File '{file_path_without_ext}' prepared in {toc - tic:0.1f} seconds."
print(out_time)
out_message.append(out_time)
out_message_out = '\n'.join(out_message)
return out_message_out, converted_file_paths, image_file_paths
def convert_text_pdf_to_img_pdf(in_file_path:str, out_text_file_path:List[str]):
file_path_without_ext = get_file_path_end(in_file_path)
out_file_paths = out_text_file_path
# Convert annotated text pdf back to image to give genuine redactions
print("Creating image version of redacted PDF to embed redactions.")
pdf_text_image_paths = process_file(out_text_file_path[0])
out_text_image_file_path = output_folder + file_path_without_ext + "_text_redacted_as_img.pdf"
pdf_text_image_paths[0].save(out_text_image_file_path, "PDF" ,resolution=300.0, save_all=True, append_images=pdf_text_image_paths[1:])
# out_file_paths.append(out_text_image_file_path)
out_file_paths = [out_text_image_file_path]
out_message = "PDF " + file_path_without_ext + " converted to image-based file."
print(out_message)
#print("Out file paths:", out_file_paths)
return out_message, out_file_paths
|