File size: 17,956 Bytes
641ff3e 12224f5 641ff3e 7810536 641ff3e 0f18146 12224f5 641ff3e 12224f5 7810536 0f18146 12224f5 01c88c0 0f18146 01c88c0 0f18146 2807627 01c88c0 0f18146 7810536 01c88c0 7810536 01c88c0 7810536 01c88c0 7810536 01c88c0 7810536 01c88c0 0f18146 01c88c0 0f18146 7810536 01c88c0 0f18146 01c88c0 0f18146 12224f5 641ff3e 2807627 641ff3e 12224f5 641ff3e 12224f5 641ff3e 2807627 641ff3e 2807627 7810536 2807627 641ff3e a63133d 7810536 641ff3e 7810536 641ff3e a63133d 641ff3e 12224f5 641ff3e 12224f5 641ff3e 12224f5 641ff3e 12224f5 641ff3e 43287c3 641ff3e 12224f5 641ff3e 2807627 7810536 641ff3e 12224f5 641ff3e 12224f5 641ff3e 12224f5 641ff3e 12224f5 641ff3e 12224f5 641ff3e 12224f5 641ff3e 2807627 641ff3e 2807627 641ff3e 12224f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
from PIL import Image
from typing import List
import pandas as pd
from presidio_image_redactor import ImageRedactorEngine, ImageAnalyzerEngine
from presidio_image_redactor.entities import ImageRecognizerResult
from pdfminer.high_level import extract_pages
from tools.file_conversion import process_file
from pdfminer.layout import LTTextContainer, LTChar, LTTextLine #, LTAnno
from pikepdf import Pdf, Dictionary, Name
from gradio import Progress
import time
from collections import defaultdict # For efficient grouping
from tools.load_spacy_model_custom_recognisers import nlp_analyser, score_threshold
from tools.helper_functions import get_file_path_end, output_folder
from tools.file_conversion import process_file, is_pdf, convert_text_pdf_to_img_pdf
import gradio as gr
def choose_and_run_redactor(file_paths:List[str], image_paths:List[str], language:str, chosen_redact_entities:List[str], in_redact_method:str, in_allow_list:List[List[str]]=None, latest_file_completed:int=0, out_message:list=[], out_file_paths:list = [], progress=gr.Progress(track_tqdm=True)):
tic = time.perf_counter()
# If out message is string or out_file_paths are blank, change to a list so it can be appended to
if isinstance(out_message, str):
out_message = [out_message]
if not out_file_paths:
out_file_paths = []
print("Latest file completed is:", str(latest_file_completed))
latest_file_completed = int(latest_file_completed)
# If we have already redacted the last file, return the input out_message and file list to the relevant components
if latest_file_completed == len(file_paths):
print("Last file reached, returning files:", str(latest_file_completed))
final_out_message = '\n'.join(out_message)
return final_out_message, out_file_paths, out_file_paths, latest_file_completed
file_paths_loop = [file_paths[int(latest_file_completed)]]
if in_allow_list:
in_allow_list_flat = [item for sublist in in_allow_list for item in sublist]
print("File paths:", file_paths)
for file in progress.tqdm(file_paths_loop, desc="Redacting files", unit = "files"):
file_path = file.name
if file_path:
file_path_without_ext = get_file_path_end(file_path)
if is_pdf(file_path) == False:
# If user has not submitted a pdf, assume it's an image
print("File is not a pdf, assuming that image analysis needs to be used.")
in_redact_method = "Image analysis"
else:
out_message = "No file selected"
print(out_message)
return out_message, out_file_paths, out_file_paths, latest_file_completed
if in_redact_method == "Image analysis":
# Analyse and redact image-based pdf or image
# if is_pdf_or_image(file_path) == False:
# return "Please upload a PDF file or image file (JPG, PNG) for image analysis.", None
print("Redacting file as image-based pdf")
pdf_images = redact_image_pdf(file_path, image_paths, language, chosen_redact_entities, in_allow_list_flat)
out_image_file_path = output_folder + file_path_without_ext + "_redacted_as_img.pdf"
pdf_images[0].save(out_image_file_path, "PDF" ,resolution=100.0, save_all=True, append_images=pdf_images[1:])
out_file_paths.append(out_image_file_path)
out_message.append("File '" + file_path_without_ext + "' successfully redacted and saved to file.")
# Increase latest file completed count unless we are at the last file
if latest_file_completed != len(file_paths):
print("Completed file number:", str(latest_file_completed))
latest_file_completed += 1
elif in_redact_method == "Text analysis":
if is_pdf(file_path) == False:
return "Please upload a PDF file for text analysis. If you have an image, select 'Image analysis'.", None, None
# Analyse text-based pdf
print('Redacting file as text-based PDF')
pdf_text = redact_text_pdf(file_path, language, chosen_redact_entities, in_allow_list_flat)
out_text_file_path = output_folder + file_path_without_ext + "_text_redacted.pdf"
pdf_text.save(out_text_file_path)
#out_file_paths.append(out_text_file_path)
out_message_new = "File " + file_path_without_ext + " successfully redacted."
out_message.append(out_message_new)
# Convert message
convert_message="Converting PDF to image-based PDF to embed redactions."
#progress(0.8, desc=convert_message)
print(convert_message)
# Convert document to image-based document to 'embed' redactions
img_output_summary, img_output_file_path = convert_text_pdf_to_img_pdf(file_path, [out_text_file_path])
out_file_paths.extend(img_output_file_path)
# Add confirmation for converting to image if you want
# out_message.append(img_output_summary)
if latest_file_completed != len(file_paths):
print("Completed file number:", str(latest_file_completed))
latest_file_completed += 1
else:
out_message = "No redaction method selected"
print(out_message)
return out_message, out_file_paths, out_file_paths, latest_file_completed
toc = time.perf_counter()
out_time = f"in {toc - tic:0.1f} seconds."
print(out_time)
out_message_out = '\n'.join(out_message)
out_message_out = out_message_out + " " + out_time
return out_message_out, out_file_paths, out_file_paths, latest_file_completed
def merge_img_bboxes(bboxes, horizontal_threshold=150, vertical_threshold=25):
merged_bboxes = []
grouped_bboxes = defaultdict(list)
# 1. Group by approximate vertical proximity
for box in bboxes:
grouped_bboxes[round(box.top / vertical_threshold)].append(box)
# 2. Merge within each group
for _, group in grouped_bboxes.items():
group.sort(key=lambda box: box.left)
merged_box = group[0]
for next_box in group[1:]:
if next_box.left - (merged_box.left + merged_box.width) <= horizontal_threshold:
print("Merging a box")
# Calculate new dimensions for the merged box
new_left = min(merged_box.left, next_box.left)
new_top = min(merged_box.top, next_box.top)
new_width = max(merged_box.left + merged_box.width, next_box.left + next_box.width) - new_left
new_height = max(merged_box.top + merged_box.height, next_box.top + next_box.height) - new_top
merged_box = ImageRecognizerResult(
merged_box.entity_type, merged_box.start, merged_box.end, merged_box.score, new_left, new_top, new_width, new_height
)
else:
merged_bboxes.append(merged_box)
merged_box = next_box
merged_bboxes.append(merged_box)
return merged_bboxes
def redact_image_pdf(file_path:str, image_paths:List[str], language:str, chosen_redact_entities:List[str], allow_list:List[str]=None, progress=Progress(track_tqdm=True)):
'''
Take an path for an image of a document, then run this image through the Presidio ImageAnalyzer and PIL to get a redacted page back. Adapted from Presidio ImageRedactorEngine.
'''
from PIL import Image, ImageChops, ImageDraw
fill = (0, 0, 0)
if not image_paths:
out_message = "PDF does not exist as images. Converting pages to image"
print(out_message)
#progress(0, desc=out_message)
image_paths = process_file(file_path)
images = []
number_of_pages = len(image_paths)
out_message = "Redacting pages"
print(out_message)
#progress(0.1, desc=out_message)
#for i in progress.tqdm(range(0,number_of_pages), total=number_of_pages, unit="pages", desc="Redacting pages"):
for i in range(0, number_of_pages):
print("Redacting page ", str(i + 1))
# Get the image to redact using PIL lib (pillow)
image = image_paths[i] #Image.open(image_paths[i])
image = ImageChops.duplicate(image)
# %%
image_analyser = ImageAnalyzerEngine(nlp_analyser)
engine = ImageRedactorEngine(image_analyser)
if language == 'en':
ocr_lang = 'eng'
else: ocr_lang = language
bboxes = image_analyser.analyze(image,ocr_kwargs={"lang": ocr_lang},
**{
"allow_list": allow_list,
"language": language,
"entities": chosen_redact_entities,
"score_threshold": score_threshold
})
#print("For page: ", str(i), "Bounding boxes: ", bboxes)
draw = ImageDraw.Draw(image)
merged_bboxes = merge_img_bboxes(bboxes)
print("For page: ", str(i), "Merged bounding boxes: ", merged_bboxes)
# 3. Draw the merged boxes (unchanged)
for box in merged_bboxes:
x0 = box.left
y0 = box.top
x1 = x0 + box.width
y1 = y0 + box.height
draw.rectangle([x0, y0, x1, y1], fill=fill)
images.append(image)
return images
def redact_text_pdf(filename:str, language:str, chosen_redact_entities:List[str], allow_list:List[str]=None, progress=Progress(track_tqdm=True)):
'''
Redact chosen entities from a pdf that is made up of multiple pages that are not images.
'''
combined_analyzer_results = []
analyser_explanations = []
annotations_all_pages = []
analyzed_bounding_boxes_df = pd.DataFrame()
# Horizontal distance between PII bounding boxes under/equal they are combined into one
combine_pixel_dist = 100
pdf = Pdf.open(filename)
page_num = 0
#for page in progress.tqdm(pdf.pages, total=len(pdf.pages), unit="pages", desc="Redacting pages"):
for page in pdf.pages:
print("Page number is: ", page_num + 1)
annotations_on_page = []
analyzed_bounding_boxes = []
for page_layout in extract_pages(filename, page_numbers = [page_num], maxpages=1):
analyzer_results = []
for text_container in page_layout:
if isinstance(text_container, LTTextContainer):
text_to_analyze = text_container.get_text()
analyzer_results = []
characters = []
analyzer_results = nlp_analyser.analyze(text=text_to_analyze,
language=language,
entities=chosen_redact_entities,
score_threshold=score_threshold,
return_decision_process=False,
allow_list=allow_list)
characters = [char # This is what we want to include in the list
for line in text_container # Loop through each line in text_container
if isinstance(line, LTTextLine) # Check if the line is an instance of LTTextLine
for char in line] # Loop through each character in the line
#if isinstance(char, LTChar)] # Check if the character is not an instance of LTAnno #isinstance(char, LTChar) or
# if len(analyzer_results) > 0 and len(characters) > 0:
# analyzed_bounding_boxes.extend({"boundingBox": char.bbox, "result": result} for result in analyzer_results for char in characters[result.start:result.end] if isinstance(char, LTChar))
# combined_analyzer_results.extend(analyzer_results)
# Inside the loop where you process analyzer_results:
if len(analyzer_results) > 0 and len(characters) > 0:
merged_bounding_boxes = []
current_box = None
current_y = None
for result in analyzer_results:
for char in characters[result.start : result.end]:
if isinstance(char, LTChar):
char_box = list(char.bbox)
# Fix: Check if either current_y or current_box are None
if current_y is None or current_box is None:
# This is the first character, so initialize current_box and current_y
current_box = char_box
current_y = char_box[1]
else: # Now we have previous values to compare
print("Comparing values")
vertical_diff_bboxes = abs(char_box[1] - current_y)
horizontal_diff_bboxes = abs(char_box[0] - current_box[2])
#print("Vertical distance with last bbox: ", str(vertical_diff_bboxes), "Horizontal distance: ", str(horizontal_diff_bboxes), "For result: ", result)
if (
vertical_diff_bboxes <= 5
and horizontal_diff_bboxes <= combine_pixel_dist
):
old_right_pos = current_box[2]
current_box[2] = char_box[2]
print("Old right pos: ", str(old_right_pos), "has been replaced with: ", str(current_box[2]), "for result: ", result)
else:
merged_bounding_boxes.append(
{"boundingBox": current_box, "result": result})
current_box = char_box
current_y = char_box[1]
# Add the last box
if current_box:
merged_bounding_boxes.append({"boundingBox": current_box, "result": result})
if not merged_bounding_boxes:
analyzed_bounding_boxes.extend({"boundingBox": char.bbox, "result": result} for result in analyzer_results for char in characters[result.start:result.end] if isinstance(char, LTChar))
else:
analyzed_bounding_boxes.extend(merged_bounding_boxes)
combined_analyzer_results.extend(analyzer_results)
if len(analyzer_results) > 0:
# Create summary df of annotations to be made
analyzed_bounding_boxes_df_new = pd.DataFrame(analyzed_bounding_boxes)
analyzed_bounding_boxes_df_text = analyzed_bounding_boxes_df_new['result'].astype(str).str.split(",",expand=True).replace(".*: ", "", regex=True)
analyzed_bounding_boxes_df_text.columns = ["type", "start", "end", "score"]
analyzed_bounding_boxes_df_new = pd.concat([analyzed_bounding_boxes_df_new, analyzed_bounding_boxes_df_text], axis = 1)
analyzed_bounding_boxes_df_new['page'] = page_num + 1
analyzed_bounding_boxes_df = pd.concat([analyzed_bounding_boxes_df, analyzed_bounding_boxes_df_new], axis = 0)
for analyzed_bounding_box in analyzed_bounding_boxes:
bounding_box = analyzed_bounding_box["boundingBox"]
annotation = Dictionary(
Type=Name.Annot,
Subtype=Name.Square, #Name.Highlight,
QuadPoints=[bounding_box[0], bounding_box[3], bounding_box[2], bounding_box[3], bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[1]],
Rect=[bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[3]],
C=[0, 0, 0],
IC=[0, 0, 0],
CA=1, # Transparency
T=analyzed_bounding_box["result"].entity_type,
BS=Dictionary(
W=0, # Border width: 1 point
S=Name.S # Border style: solid
)
)
annotations_on_page.append(annotation)
annotations_all_pages.extend([annotations_on_page])
print("For page number: ", page_num, " there are ", len(annotations_all_pages[page_num]), " annotations")
page.Annots = pdf.make_indirect(annotations_on_page)
page_num += 1
analyzed_bounding_boxes_df.to_csv(output_folder + "annotations_made.csv")
return pdf
|