File size: 17,956 Bytes
641ff3e
 
 
 
12224f5
641ff3e
 
7810536
641ff3e
 
0f18146
12224f5
641ff3e
 
12224f5
7810536
0f18146
 
12224f5
01c88c0
0f18146
 
 
01c88c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f18146
2807627
 
01c88c0
0f18146
7810536
 
01c88c0
7810536
 
 
 
 
 
 
 
 
 
 
01c88c0
7810536
 
 
 
 
 
 
 
 
 
 
 
 
 
01c88c0
 
 
 
 
7810536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01c88c0
 
 
 
 
7810536
 
 
 
01c88c0
 
0f18146
 
01c88c0
0f18146
 
7810536
01c88c0
0f18146
01c88c0
0f18146
12224f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
641ff3e
2807627
641ff3e
12224f5
641ff3e
12224f5
 
 
641ff3e
2807627
641ff3e
2807627
 
7810536
2807627
 
641ff3e
 
 
 
a63133d
 
7810536
641ff3e
7810536
 
641ff3e
a63133d
 
641ff3e
 
 
12224f5
 
641ff3e
 
 
 
 
 
 
 
12224f5
 
 
641ff3e
 
 
12224f5
641ff3e
12224f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
641ff3e
 
 
43287c3
641ff3e
 
 
 
 
 
 
 
 
12224f5
 
 
641ff3e
 
2807627
 
7810536
 
 
641ff3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12224f5
 
 
 
 
641ff3e
12224f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
641ff3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12224f5
641ff3e
 
 
12224f5
641ff3e
12224f5
 
 
 
 
641ff3e
12224f5
641ff3e
 
2807627
641ff3e
 
 
2807627
641ff3e
12224f5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
from PIL import Image
from typing import List
import pandas as pd
from presidio_image_redactor import ImageRedactorEngine, ImageAnalyzerEngine
from presidio_image_redactor.entities import ImageRecognizerResult
from pdfminer.high_level import extract_pages
from tools.file_conversion import process_file
from pdfminer.layout import LTTextContainer, LTChar, LTTextLine #, LTAnno
from pikepdf import Pdf, Dictionary, Name
from gradio import Progress
import time
from collections import defaultdict  # For efficient grouping

from tools.load_spacy_model_custom_recognisers import nlp_analyser, score_threshold
from tools.helper_functions import get_file_path_end, output_folder
from tools.file_conversion import process_file, is_pdf, convert_text_pdf_to_img_pdf
import gradio as gr


def choose_and_run_redactor(file_paths:List[str], image_paths:List[str], language:str, chosen_redact_entities:List[str], in_redact_method:str, in_allow_list:List[List[str]]=None, latest_file_completed:int=0, out_message:list=[], out_file_paths:list = [], progress=gr.Progress(track_tqdm=True)):

    tic = time.perf_counter()

    # If out message is string or out_file_paths are blank, change to a list so it can be appended to
    if isinstance(out_message, str):
        out_message = [out_message]

    if not out_file_paths:
        out_file_paths = []

    print("Latest file completed is:", str(latest_file_completed))

    latest_file_completed = int(latest_file_completed)

    # If we have already redacted the last file, return the input out_message and file list to the relevant components
    if latest_file_completed == len(file_paths):
        print("Last file reached, returning files:", str(latest_file_completed))
        final_out_message = '\n'.join(out_message)
        return final_out_message, out_file_paths, out_file_paths, latest_file_completed
    
    file_paths_loop = [file_paths[int(latest_file_completed)]]

    if in_allow_list:
        in_allow_list_flat = [item for sublist in in_allow_list for item in sublist]
    

    print("File paths:", file_paths)

    for file in progress.tqdm(file_paths_loop, desc="Redacting files", unit = "files"):
        file_path = file.name

        if file_path:
            file_path_without_ext = get_file_path_end(file_path)
            if is_pdf(file_path) == False:
                # If user has not submitted a pdf, assume it's an image
                print("File is not a pdf, assuming that image analysis needs to be used.")
                in_redact_method = "Image analysis"
        else:
            out_message = "No file selected"
            print(out_message)
            return out_message, out_file_paths, out_file_paths, latest_file_completed

        if in_redact_method == "Image analysis":
            # Analyse and redact image-based pdf or image
            # if is_pdf_or_image(file_path) == False:
            #     return "Please upload a PDF file or image file (JPG, PNG) for image analysis.", None

            print("Redacting file as image-based pdf")
            pdf_images = redact_image_pdf(file_path, image_paths, language, chosen_redact_entities, in_allow_list_flat)
            out_image_file_path = output_folder + file_path_without_ext + "_redacted_as_img.pdf"
            pdf_images[0].save(out_image_file_path, "PDF" ,resolution=100.0, save_all=True, append_images=pdf_images[1:])

            out_file_paths.append(out_image_file_path)
            out_message.append("File '" + file_path_without_ext + "' successfully redacted and saved to file.")

            # Increase latest file completed count unless we are at the last file
            if latest_file_completed != len(file_paths):
                print("Completed file number:", str(latest_file_completed))
                latest_file_completed += 1                

        elif in_redact_method == "Text analysis":
            if is_pdf(file_path) == False:
                return "Please upload a PDF file for text analysis. If you have an image, select 'Image analysis'.", None, None

            # Analyse text-based pdf
            print('Redacting file as text-based PDF')
            pdf_text = redact_text_pdf(file_path, language, chosen_redact_entities, in_allow_list_flat)
            out_text_file_path = output_folder + file_path_without_ext + "_text_redacted.pdf"
            pdf_text.save(out_text_file_path)

            #out_file_paths.append(out_text_file_path)
            out_message_new = "File " + file_path_without_ext + " successfully redacted."
            out_message.append(out_message_new)

            # Convert message
            convert_message="Converting PDF to image-based PDF to embed redactions."
            #progress(0.8, desc=convert_message)
            print(convert_message)

            # Convert document to image-based document to 'embed' redactions
            img_output_summary, img_output_file_path = convert_text_pdf_to_img_pdf(file_path, [out_text_file_path])
            out_file_paths.extend(img_output_file_path)

            # Add confirmation for converting to image if you want
            # out_message.append(img_output_summary)

            if latest_file_completed != len(file_paths):
                print("Completed file number:", str(latest_file_completed))
                latest_file_completed += 1                
            
        else:
            out_message = "No redaction method selected"
            print(out_message)
            return out_message, out_file_paths, out_file_paths, latest_file_completed    
        
    
    toc = time.perf_counter()
    out_time = f"in {toc - tic:0.1f} seconds."
    print(out_time)

    out_message_out = '\n'.join(out_message)
    out_message_out = out_message_out + " " + out_time

    return out_message_out, out_file_paths, out_file_paths, latest_file_completed

def merge_img_bboxes(bboxes, horizontal_threshold=150, vertical_threshold=25):
            merged_bboxes = []
            grouped_bboxes = defaultdict(list)

            # 1. Group by approximate vertical proximity
            for box in bboxes:
                grouped_bboxes[round(box.top / vertical_threshold)].append(box)

            # 2. Merge within each group
            for _, group in grouped_bboxes.items():
                group.sort(key=lambda box: box.left)

                merged_box = group[0]
                for next_box in group[1:]:
                    if next_box.left - (merged_box.left + merged_box.width) <= horizontal_threshold:
                        print("Merging a box")
                        # Calculate new dimensions for the merged box
                        new_left = min(merged_box.left, next_box.left)
                        new_top = min(merged_box.top, next_box.top)
                        new_width = max(merged_box.left + merged_box.width, next_box.left + next_box.width) - new_left
                        new_height = max(merged_box.top + merged_box.height, next_box.top + next_box.height) - new_top
                        merged_box = ImageRecognizerResult(
                            merged_box.entity_type, merged_box.start, merged_box.end, merged_box.score, new_left, new_top, new_width, new_height
                        )
                    else:
                        merged_bboxes.append(merged_box)
                        merged_box = next_box  

                merged_bboxes.append(merged_box) 
            return merged_bboxes

def redact_image_pdf(file_path:str, image_paths:List[str], language:str, chosen_redact_entities:List[str], allow_list:List[str]=None, progress=Progress(track_tqdm=True)):
    '''

    Take an path for an image of a document, then run this image through the Presidio ImageAnalyzer and PIL to get a redacted page back. Adapted from Presidio ImageRedactorEngine.

    '''
    from PIL import Image, ImageChops, ImageDraw

    fill = (0, 0, 0)

    if not image_paths:

        out_message = "PDF does not exist as images. Converting pages to image"
        print(out_message)
        #progress(0, desc=out_message)

        image_paths = process_file(file_path)

    images = []
    number_of_pages = len(image_paths)

    out_message = "Redacting pages"
    print(out_message)
    #progress(0.1, desc=out_message)

    #for i in progress.tqdm(range(0,number_of_pages), total=number_of_pages, unit="pages", desc="Redacting pages"):
    for i in range(0, number_of_pages):

        print("Redacting page ", str(i + 1))

        # Get the image to redact using PIL lib (pillow)
        image = image_paths[i] #Image.open(image_paths[i])

        image = ImageChops.duplicate(image)

        # %%
        image_analyser = ImageAnalyzerEngine(nlp_analyser)
        engine = ImageRedactorEngine(image_analyser)

        if language == 'en':
            ocr_lang = 'eng'
        else: ocr_lang = language

        bboxes = image_analyser.analyze(image,ocr_kwargs={"lang": ocr_lang},
                **{
                "allow_list": allow_list,
                "language": language,
                "entities": chosen_redact_entities,
                "score_threshold": score_threshold
            })
        
        #print("For page: ", str(i), "Bounding boxes: ", bboxes)

        draw = ImageDraw.Draw(image)
               
        merged_bboxes = merge_img_bboxes(bboxes)

        print("For page: ", str(i), "Merged bounding boxes: ", merged_bboxes)

        # 3. Draw the merged boxes (unchanged)
        for box in merged_bboxes:
            x0 = box.left
            y0 = box.top
            x1 = x0 + box.width
            y1 = y0 + box.height
            draw.rectangle([x0, y0, x1, y1], fill=fill)

        images.append(image)

    return images

def redact_text_pdf(filename:str, language:str, chosen_redact_entities:List[str], allow_list:List[str]=None, progress=Progress(track_tqdm=True)):
    '''

    Redact chosen entities from a pdf that is made up of multiple pages that are not images.

    '''
    
    combined_analyzer_results = []
    analyser_explanations = []
    annotations_all_pages = []
    analyzed_bounding_boxes_df = pd.DataFrame()

    # Horizontal distance between PII bounding boxes under/equal they are combined into one
    combine_pixel_dist = 100

    pdf = Pdf.open(filename)

    page_num = 0

    #for page in progress.tqdm(pdf.pages, total=len(pdf.pages), unit="pages", desc="Redacting pages"):
    for page in pdf.pages:
        print("Page number is: ", page_num + 1)

        annotations_on_page = []
        analyzed_bounding_boxes = []

        for page_layout in extract_pages(filename, page_numbers = [page_num], maxpages=1):
            analyzer_results = []

            for text_container in page_layout:
                if isinstance(text_container, LTTextContainer):
                    text_to_analyze = text_container.get_text()

                    analyzer_results = []
                    characters = []

                    analyzer_results = nlp_analyser.analyze(text=text_to_analyze,
                                                            language=language, 
                                                            entities=chosen_redact_entities,
                                                            score_threshold=score_threshold,
                                                            return_decision_process=False,
                                                            allow_list=allow_list)

                    characters = [char                    # This is what we want to include in the list
                            for line in text_container          # Loop through each line in text_container
                            if isinstance(line, LTTextLine)    # Check if the line is an instance of LTTextLine
                            for char in line]                   # Loop through each character in the line
                            #if isinstance(char, LTChar)]  # Check if the character is not an instance of LTAnno #isinstance(char, LTChar) or
                    

                    # if len(analyzer_results) > 0 and len(characters) > 0:
                    #     analyzed_bounding_boxes.extend({"boundingBox": char.bbox, "result": result} for result in analyzer_results for char in characters[result.start:result.end] if isinstance(char, LTChar))
                    #     combined_analyzer_results.extend(analyzer_results)

                    # Inside the loop where you process analyzer_results:
                    if len(analyzer_results) > 0 and len(characters) > 0:
                        merged_bounding_boxes = []
                        current_box = None
                        current_y = None

                        for result in analyzer_results:
                            for char in characters[result.start : result.end]:
                                if isinstance(char, LTChar):
                                    char_box = list(char.bbox)

                                    # Fix: Check if either current_y or current_box are None
                                    if current_y is None or current_box is None:
                                        # This is the first character, so initialize current_box and current_y
                                        current_box = char_box
                                        current_y = char_box[1]
                                    else:  # Now we have previous values to compare
                                        print("Comparing values")
                                        vertical_diff_bboxes = abs(char_box[1] - current_y)
                                        horizontal_diff_bboxes = abs(char_box[0] - current_box[2])
                                        #print("Vertical distance with last bbox: ", str(vertical_diff_bboxes), "Horizontal distance: ", str(horizontal_diff_bboxes), "For result: ", result)

                                        if (
                                            vertical_diff_bboxes <= 5
                                            and horizontal_diff_bboxes <= combine_pixel_dist
                                        ):
                                            old_right_pos = current_box[2]
                                            current_box[2] = char_box[2]

                                            print("Old right pos: ", str(old_right_pos), "has been replaced with: ", str(current_box[2]), "for result: ", result)

                                        else:
                                            merged_bounding_boxes.append(
                                                {"boundingBox": current_box, "result": result})

                                            current_box = char_box
                                            current_y = char_box[1]
                            # Add the last box
                            if current_box:
                                merged_bounding_boxes.append({"boundingBox": current_box, "result": result})

                        if not merged_bounding_boxes:
                            analyzed_bounding_boxes.extend({"boundingBox": char.bbox, "result": result} for result in analyzer_results for char in characters[result.start:result.end] if isinstance(char, LTChar))
                        else:
                            analyzed_bounding_boxes.extend(merged_bounding_boxes)
                            
                        combined_analyzer_results.extend(analyzer_results)

            if len(analyzer_results) > 0:
                # Create summary df of annotations to be made
                analyzed_bounding_boxes_df_new = pd.DataFrame(analyzed_bounding_boxes)
                analyzed_bounding_boxes_df_text = analyzed_bounding_boxes_df_new['result'].astype(str).str.split(",",expand=True).replace(".*: ", "", regex=True)
                analyzed_bounding_boxes_df_text.columns = ["type", "start", "end", "score"]
                analyzed_bounding_boxes_df_new = pd.concat([analyzed_bounding_boxes_df_new, analyzed_bounding_boxes_df_text], axis = 1)
                analyzed_bounding_boxes_df_new['page'] = page_num + 1
                analyzed_bounding_boxes_df = pd.concat([analyzed_bounding_boxes_df, analyzed_bounding_boxes_df_new], axis = 0)

            for analyzed_bounding_box in analyzed_bounding_boxes:
                bounding_box = analyzed_bounding_box["boundingBox"]
                annotation = Dictionary(
                    Type=Name.Annot,
                    Subtype=Name.Square, #Name.Highlight,
                    QuadPoints=[bounding_box[0], bounding_box[3], bounding_box[2], bounding_box[3], bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[1]],
                    Rect=[bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[3]],
                    C=[0, 0, 0],
                    IC=[0, 0, 0],
                    CA=1, # Transparency
                    T=analyzed_bounding_box["result"].entity_type,
                    BS=Dictionary(
                        W=0,                     # Border width: 1 point
                        S=Name.S                # Border style: solid
                    )
                )
                annotations_on_page.append(annotation)     

            annotations_all_pages.extend([annotations_on_page])
 
            print("For page number: ", page_num, " there are ", len(annotations_all_pages[page_num]), " annotations")
            page.Annots = pdf.make_indirect(annotations_on_page)

            page_num += 1
    
    analyzed_bounding_boxes_df.to_csv(output_folder + "annotations_made.csv")

    return pdf