Spaces:
Build error
Build error
Sean-Case
commited on
Commit
·
4ce2224
1
Parent(s):
8c115b3
Upgraded to Gradio 4.16.0. Added Spacy fuzzy search functionality.
Browse files- README.md +1 -1
- app.py +16 -7
- requirements.txt +1 -1
- search_funcs/bm25_functions.py +6 -6
- search_funcs/helper_functions.py +3 -3
- search_funcs/semantic_functions.py +1 -1
- search_funcs/spacy_search_funcs.py +17 -50
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: 🔍
|
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
|
|
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.16.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
app.py
CHANGED
|
@@ -3,6 +3,8 @@ from search_funcs.bm25_functions import prepare_bm25_input_data, prepare_bm25, b
|
|
| 3 |
#from search_funcs.semantic_ingest_functions import parse_csv_or_excel, csv_excel_text_to_docs
|
| 4 |
#from search_funcs.semantic_functions import docs_to_jina_embed_np_array, jina_simple_retrieval
|
| 5 |
from search_funcs.helper_functions import dummy_function, display_info, initial_data_load, put_columns_in_join_df, get_temp_folder_path, empty_folder
|
|
|
|
|
|
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
import pandas as pd
|
|
@@ -33,6 +35,7 @@ with block:
|
|
| 33 |
|
| 34 |
corpus_state = gr.State()
|
| 35 |
keyword_data_state = gr.State(pd.DataFrame())
|
|
|
|
| 36 |
join_data_state = gr.State(pd.DataFrame())
|
| 37 |
semantic_data_state = gr.State(pd.DataFrame())
|
| 38 |
|
|
@@ -74,15 +77,15 @@ depends on factors such as the type of documents or queries. Information taken f
|
|
| 74 |
load_finished_message = gr.Textbox(label="Load progress", scale = 2)
|
| 75 |
|
| 76 |
with gr.Accordion(label = "Search data", open=True):
|
|
|
|
| 77 |
with gr.Row():
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
keyword_search_button = gr.Button(value="Search text")
|
| 81 |
-
|
| 82 |
with gr.Row():
|
| 83 |
output_single_text = gr.Textbox(label="Top result")
|
| 84 |
output_file = gr.File(label="File output")
|
| 85 |
|
|
|
|
| 86 |
# with gr.Tab("Semantic search"):
|
| 87 |
# gr.Markdown(
|
| 88 |
# """
|
|
@@ -131,8 +134,10 @@ depends on factors such as the type of documents or queries. Information taken f
|
|
| 131 |
in_no_search_results_button = gr.Button(value = "Search results number info", scale = 1)
|
| 132 |
with gr.Row():
|
| 133 |
in_search_param_button = gr.Button(value="Load search parameters (Need to click this if you changed anything above)")
|
| 134 |
-
with gr.Accordion(label="
|
| 135 |
-
|
|
|
|
|
|
|
| 136 |
with gr.Accordion(label = "Join on additional dataframes to results", open = False):
|
| 137 |
in_join_file = gr.File(label="Upload your data to join here")
|
| 138 |
in_join_message = gr.Textbox(label="Join file load progress")
|
|
@@ -153,12 +158,16 @@ depends on factors such as the type of documents or queries. Information taken f
|
|
| 153 |
in_join_file.upload(put_columns_in_join_df, inputs=[in_join_file], outputs=[in_join_column, join_data_state, in_join_message])
|
| 154 |
|
| 155 |
# Load in BM25 data
|
| 156 |
-
load_bm25_data_button.click(fn=prepare_bm25_input_data, inputs=[in_bm25_file, in_bm25_column, keyword_data_state, tokenised_state, in_clean_data, return_intermediate_files], outputs=[corpus_state, load_finished_message, keyword_data_state, output_file, output_file]).\
|
| 157 |
then(fn=prepare_bm25, inputs=[corpus_state, in_bm25_file, in_bm25_column, search_index_state, in_clean_data, return_intermediate_files, in_k1, in_b, in_alpha], outputs=[load_finished_message, output_file])#.\
|
| 158 |
|
| 159 |
# BM25 search functions on click or enter
|
| 160 |
keyword_search_button.click(fn=bm25_search, inputs=[keyword_query, in_no_search_results, keyword_data_state, in_bm25_column, join_data_state, in_clean_data, in_join_column, search_df_join_column], outputs=[output_single_text, output_file], api_name="keyword")
|
| 161 |
keyword_query.submit(fn=bm25_search, inputs=[keyword_query, in_no_search_results, keyword_data_state, in_bm25_column, join_data_state, in_clean_data, in_join_column, search_df_join_column], outputs=[output_single_text, output_file])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
### SEMANTIC SEARCH ###
|
| 164 |
# Load in a csv/excel file for semantic search
|
|
|
|
| 3 |
#from search_funcs.semantic_ingest_functions import parse_csv_or_excel, csv_excel_text_to_docs
|
| 4 |
#from search_funcs.semantic_functions import docs_to_jina_embed_np_array, jina_simple_retrieval
|
| 5 |
from search_funcs.helper_functions import dummy_function, display_info, initial_data_load, put_columns_in_join_df, get_temp_folder_path, empty_folder
|
| 6 |
+
from search_funcs.spacy_search_funcs import spacy_fuzzy_search
|
| 7 |
+
|
| 8 |
|
| 9 |
import gradio as gr
|
| 10 |
import pandas as pd
|
|
|
|
| 35 |
|
| 36 |
corpus_state = gr.State()
|
| 37 |
keyword_data_state = gr.State(pd.DataFrame())
|
| 38 |
+
keyword_data_list_state = gr.State([])
|
| 39 |
join_data_state = gr.State(pd.DataFrame())
|
| 40 |
semantic_data_state = gr.State(pd.DataFrame())
|
| 41 |
|
|
|
|
| 77 |
load_finished_message = gr.Textbox(label="Load progress", scale = 2)
|
| 78 |
|
| 79 |
with gr.Accordion(label = "Search data", open=True):
|
| 80 |
+
keyword_query = gr.Textbox(label="Enter your search term")
|
| 81 |
with gr.Row():
|
| 82 |
+
keyword_search_button = gr.Button(value="Keyword search", variant="primary")
|
| 83 |
+
fuzzy_search_button = gr.Button(value="Fuzzy search (much slower)", variant="secondary")
|
|
|
|
|
|
|
| 84 |
with gr.Row():
|
| 85 |
output_single_text = gr.Textbox(label="Top result")
|
| 86 |
output_file = gr.File(label="File output")
|
| 87 |
|
| 88 |
+
|
| 89 |
# with gr.Tab("Semantic search"):
|
| 90 |
# gr.Markdown(
|
| 91 |
# """
|
|
|
|
| 134 |
in_no_search_results_button = gr.Button(value = "Search results number info", scale = 1)
|
| 135 |
with gr.Row():
|
| 136 |
in_search_param_button = gr.Button(value="Load search parameters (Need to click this if you changed anything above)")
|
| 137 |
+
with gr.Accordion(label="Fuzzy search options", open = False):
|
| 138 |
+
no_spelling_mistakes = gr.Slider(label = "Number of spelling mistakes allowed in fuzzy search", value = 1, minimum=1, maximum=4, step=1)
|
| 139 |
+
# with gr.Accordion(label="Semantic search options", open = False):
|
| 140 |
+
# semantic_min_distance = gr.Slider(label = "Minimum distance score for search result to be included", value = 0.75, minimum=0, maximum=0.95, step=0.01)
|
| 141 |
with gr.Accordion(label = "Join on additional dataframes to results", open = False):
|
| 142 |
in_join_file = gr.File(label="Upload your data to join here")
|
| 143 |
in_join_message = gr.Textbox(label="Join file load progress")
|
|
|
|
| 158 |
in_join_file.upload(put_columns_in_join_df, inputs=[in_join_file], outputs=[in_join_column, join_data_state, in_join_message])
|
| 159 |
|
| 160 |
# Load in BM25 data
|
| 161 |
+
load_bm25_data_button.click(fn=prepare_bm25_input_data, inputs=[in_bm25_file, in_bm25_column, keyword_data_state, tokenised_state, in_clean_data, return_intermediate_files], outputs=[corpus_state, load_finished_message, keyword_data_state, output_file, output_file, keyword_data_list_state]).\
|
| 162 |
then(fn=prepare_bm25, inputs=[corpus_state, in_bm25_file, in_bm25_column, search_index_state, in_clean_data, return_intermediate_files, in_k1, in_b, in_alpha], outputs=[load_finished_message, output_file])#.\
|
| 163 |
|
| 164 |
# BM25 search functions on click or enter
|
| 165 |
keyword_search_button.click(fn=bm25_search, inputs=[keyword_query, in_no_search_results, keyword_data_state, in_bm25_column, join_data_state, in_clean_data, in_join_column, search_df_join_column], outputs=[output_single_text, output_file], api_name="keyword")
|
| 166 |
keyword_query.submit(fn=bm25_search, inputs=[keyword_query, in_no_search_results, keyword_data_state, in_bm25_column, join_data_state, in_clean_data, in_join_column, search_df_join_column], outputs=[output_single_text, output_file])
|
| 167 |
+
|
| 168 |
+
# Fuzzy search functions on click
|
| 169 |
+
|
| 170 |
+
fuzzy_search_button.click(fn=spacy_fuzzy_search, inputs=[keyword_query, keyword_data_list_state, keyword_data_state, in_bm25_column, join_data_state, search_df_join_column, in_join_column, no_spelling_mistakes], outputs=[output_single_text, output_file], api_name="fuzzy")
|
| 171 |
|
| 172 |
### SEMANTIC SEARCH ###
|
| 173 |
# Load in a csv/excel file for semantic search
|
requirements.txt
CHANGED
|
@@ -7,4 +7,4 @@ openpyxl==3.1.2
|
|
| 7 |
# torch==2.1.2
|
| 8 |
spacy==3.7.2
|
| 9 |
en_core_web_sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.7.1/en_core_web_sm-3.7.1.tar.gz
|
| 10 |
-
gradio==
|
|
|
|
| 7 |
# torch==2.1.2
|
| 8 |
spacy==3.7.2
|
| 9 |
en_core_web_sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.7.1/en_core_web_sm-3.7.1.tar.gz
|
| 10 |
+
gradio==4.16.0
|
search_funcs/bm25_functions.py
CHANGED
|
@@ -236,7 +236,7 @@ def prepare_bm25_input_data(in_file, text_column, data_state, tokenised_state, c
|
|
| 236 |
|
| 237 |
if not in_file:
|
| 238 |
print("No input file found. Please load in at least one file.")
|
| 239 |
-
return None, "No input file found. Please load in at least one file.", data_state, None, None, None
|
| 240 |
|
| 241 |
progress(0, desc = "Loading in data")
|
| 242 |
file_list = [string.name for string in in_file]
|
|
@@ -246,10 +246,10 @@ def prepare_bm25_input_data(in_file, text_column, data_state, tokenised_state, c
|
|
| 246 |
data_file_names = [string for string in file_list if "tokenised" not in string.lower() and "npz" not in string.lower() and "gz" not in string.lower()]
|
| 247 |
|
| 248 |
if not data_file_names:
|
| 249 |
-
return None, "Please load in at least one csv/Excel/parquet data file.", data_state, None, None, None
|
| 250 |
|
| 251 |
if not text_column:
|
| 252 |
-
return None, "Please enter a column name to search.", data_state, None, None, None
|
| 253 |
|
| 254 |
data_file_name = data_file_names[0]
|
| 255 |
|
|
@@ -329,9 +329,9 @@ def prepare_bm25_input_data(in_file, text_column, data_state, tokenised_state, c
|
|
| 329 |
|
| 330 |
pd.DataFrame(data={"Corpus":corpus}).to_parquet(tokenised_data_file_name)
|
| 331 |
|
| 332 |
-
return corpus, message, df, out_file_name, tokenised_data_file_name
|
| 333 |
|
| 334 |
-
return corpus, message, df, out_file_name, None
|
| 335 |
|
| 336 |
def save_prepared_bm25_data(in_file_name, prepared_text_list, in_df, in_bm25_column, progress=gr.Progress(track_tqdm=True)):
|
| 337 |
|
|
@@ -506,7 +506,7 @@ def bm25_search(free_text_query, in_no_search_results, original_data, text_colum
|
|
| 506 |
# Duplicates dropped so as not to expand out dataframe
|
| 507 |
join_df = join_df.drop_duplicates(in_join_column)
|
| 508 |
|
| 509 |
-
results_df_out = results_df_out.merge(join_df,left_on=search_df_join_column, right_on=in_join_column, how="left")#.drop(in_join_column, axis=1)
|
| 510 |
|
| 511 |
# Reorder results by score
|
| 512 |
results_df_out = results_df_out.sort_values('search_score_abs', ascending=False)
|
|
|
|
| 236 |
|
| 237 |
if not in_file:
|
| 238 |
print("No input file found. Please load in at least one file.")
|
| 239 |
+
return None, "No input file found. Please load in at least one file.", data_state, None, None, None, []
|
| 240 |
|
| 241 |
progress(0, desc = "Loading in data")
|
| 242 |
file_list = [string.name for string in in_file]
|
|
|
|
| 246 |
data_file_names = [string for string in file_list if "tokenised" not in string.lower() and "npz" not in string.lower() and "gz" not in string.lower()]
|
| 247 |
|
| 248 |
if not data_file_names:
|
| 249 |
+
return None, "Please load in at least one csv/Excel/parquet data file.", data_state, None, None, None, []
|
| 250 |
|
| 251 |
if not text_column:
|
| 252 |
+
return None, "Please enter a column name to search.", data_state, None, None, None, []
|
| 253 |
|
| 254 |
data_file_name = data_file_names[0]
|
| 255 |
|
|
|
|
| 329 |
|
| 330 |
pd.DataFrame(data={"Corpus":corpus}).to_parquet(tokenised_data_file_name)
|
| 331 |
|
| 332 |
+
return corpus, message, df, out_file_name, tokenised_data_file_name, df_list
|
| 333 |
|
| 334 |
+
return corpus, message, df, out_file_name, None, df_list
|
| 335 |
|
| 336 |
def save_prepared_bm25_data(in_file_name, prepared_text_list, in_df, in_bm25_column, progress=gr.Progress(track_tqdm=True)):
|
| 337 |
|
|
|
|
| 506 |
# Duplicates dropped so as not to expand out dataframe
|
| 507 |
join_df = join_df.drop_duplicates(in_join_column)
|
| 508 |
|
| 509 |
+
results_df_out = results_df_out.merge(join_df,left_on=search_df_join_column, right_on=in_join_column, how="left", suffixes=('','_y'))#.drop(in_join_column, axis=1)
|
| 510 |
|
| 511 |
# Reorder results by score
|
| 512 |
results_df_out = results_df_out.sort_values('search_score_abs', ascending=False)
|
search_funcs/helper_functions.py
CHANGED
|
@@ -72,11 +72,11 @@ def read_file(filename):
|
|
| 72 |
print("Loading in file")
|
| 73 |
|
| 74 |
if file_type == 'csv':
|
| 75 |
-
file = pd.read_csv(filename, low_memory=False).reset_index()
|
| 76 |
elif file_type == 'xlsx':
|
| 77 |
-
file = pd.read_excel(filename).reset_index()
|
| 78 |
elif file_type == 'parquet':
|
| 79 |
-
file = pd.read_parquet(filename).reset_index()
|
| 80 |
elif file_type == 'pkl.gz':
|
| 81 |
with gzip.open(filename, 'rb') as file:
|
| 82 |
file = pickle.load(file)
|
|
|
|
| 72 |
print("Loading in file")
|
| 73 |
|
| 74 |
if file_type == 'csv':
|
| 75 |
+
file = pd.read_csv(filename, low_memory=False).reset_index()#.drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
|
| 76 |
elif file_type == 'xlsx':
|
| 77 |
+
file = pd.read_excel(filename).reset_index()#.drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
|
| 78 |
elif file_type == 'parquet':
|
| 79 |
+
file = pd.read_parquet(filename).reset_index()#.drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
|
| 80 |
elif file_type == 'pkl.gz':
|
| 81 |
with gzip.open(filename, 'rb') as file:
|
| 82 |
file = pickle.load(file)
|
search_funcs/semantic_functions.py
CHANGED
|
@@ -214,7 +214,7 @@ def process_data_from_scores_df(df_docs, in_join_file, out_passages, vec_score_c
|
|
| 214 |
|
| 215 |
results_df_out[search_df_join_column] = results_df_out[search_df_join_column].astype(str).str.replace("\.0$","", regex=True)
|
| 216 |
|
| 217 |
-
results_df_out = results_df_out.merge(join_df,left_on=search_df_join_column, right_on=in_join_column, how="left")#.drop(in_join_column, axis=1)
|
| 218 |
|
| 219 |
return results_df_out
|
| 220 |
|
|
|
|
| 214 |
|
| 215 |
results_df_out[search_df_join_column] = results_df_out[search_df_join_column].astype(str).str.replace("\.0$","", regex=True)
|
| 216 |
|
| 217 |
+
results_df_out = results_df_out.merge(join_df,left_on=search_df_join_column, right_on=in_join_column, how="left", suffixes=('','_y'))#.drop(in_join_column, axis=1)
|
| 218 |
|
| 219 |
return results_df_out
|
| 220 |
|
search_funcs/spacy_search_funcs.py
CHANGED
|
@@ -4,16 +4,19 @@ import numpy as np
|
|
| 4 |
import gradio as gr
|
| 5 |
import pandas as pd
|
| 6 |
from typing import List, Type
|
|
|
|
| 7 |
|
| 8 |
PandasDataFrame = Type[pd.DataFrame]
|
| 9 |
|
|
|
|
|
|
|
| 10 |
nlp = spacy.load("en_core_web_sm")
|
| 11 |
|
| 12 |
string_query = "knife attack run fast"
|
| 13 |
df_list = ["Last week someone was grievously injured in a knife attack on Exmoor road. Running away. They ran as fast as possible. I run.","This is the 3rd knifing in the area in as many weeks; knives everywhere.", "attacks of this kind have been increasing for years. Knife attack or knife attack.", "Nothing happened here"]
|
| 14 |
|
| 15 |
|
| 16 |
-
def spacy_fuzzy_search(string_query:str, df_list: List[str], original_data: PandasDataFrame, search_df_join_column:str, in_join_column:str, no_spelling_mistakes:int = 1, progress=gr.Progress(track_tqdm=True)):
|
| 17 |
''' Conduct fuzzy match on a list of data.'''
|
| 18 |
|
| 19 |
query = nlp(string_query)
|
|
@@ -26,52 +29,17 @@ def spacy_fuzzy_search(string_query:str, df_list: List[str], original_data: Pand
|
|
| 26 |
if len(tokenised_query) > 1:
|
| 27 |
pattern_lemma = [{"LEMMA": {"IN": tokenised_query}}]
|
| 28 |
pattern_fuzz = [{"TEXT": {spelling_mistakes_fuzzy_pattern: {"IN": tokenised_query}}}]
|
| 29 |
-
|
| 30 |
pattern_lemma = [{"LEMMA": tokenised_query[0]}]
|
| 31 |
pattern_fuzz = [{"TEXT": {spelling_mistakes_fuzzy_pattern: tokenised_query[0]}}]
|
| 32 |
-
else:
|
| 33 |
-
tokenised_query = [""]
|
| 34 |
-
|
| 35 |
-
# %%
|
| 36 |
-
search_pattern = pattern_fuzz.copy()
|
| 37 |
-
search_pattern.extend(pattern_lemma)
|
| 38 |
|
| 39 |
-
|
| 40 |
# %%
|
| 41 |
matcher = Matcher(nlp.vocab)
|
| 42 |
-
|
| 43 |
-
# %% [markdown]
|
| 44 |
-
# from spacy.tokens import Span
|
| 45 |
-
# from spacy import displacy
|
| 46 |
-
#
|
| 47 |
-
# def add_event_ent(matcher, doc, i, matches):
|
| 48 |
-
# # Get the current match and create tuple of entity label, start and end.
|
| 49 |
-
# # Append entity to the doc's entity. (Don't overwrite doc.ents!)
|
| 50 |
-
# match_id, start, end = matches[i]
|
| 51 |
-
# entity = Span(doc, start, end, label="EVENT")
|
| 52 |
-
# doc.ents += (entity,)
|
| 53 |
-
# print(entity.text)
|
| 54 |
-
|
| 55 |
-
# %% [markdown]
|
| 56 |
-
# matched_sents = [] # Collect data of matched sentences to be visualized
|
| 57 |
-
#
|
| 58 |
-
# def collect_sents(matcher, doc, i, matches):
|
| 59 |
-
# match_id, start, end = matches[i]
|
| 60 |
-
# span = doc[start:end] # Matched span
|
| 61 |
-
# sent = span.sent # Sentence containing matched span
|
| 62 |
-
# # Append mock entity for match in displaCy style to matched_sents
|
| 63 |
-
# # get the match span by ofsetting the start and end of the span with the
|
| 64 |
-
# # start and end of the sentence in the doc
|
| 65 |
-
# match_ents = [{
|
| 66 |
-
# "start": span.start_char - sent.start_char,
|
| 67 |
-
# "end": span.end_char - sent.start_char,
|
| 68 |
-
# "label": "MATCH",
|
| 69 |
-
# }]
|
| 70 |
-
# matched_sents.append({"text": sent.text, "ents": match_ents})
|
| 71 |
-
|
| 72 |
# %%
|
| 73 |
-
matcher.add(string_query, [pattern_fuzz])
|
| 74 |
-
matcher.add(string_query, [pattern_lemma])
|
| 75 |
|
| 76 |
# %%
|
| 77 |
batch_size = 256
|
|
@@ -100,8 +68,11 @@ def spacy_fuzzy_search(string_query:str, df_list: List[str], original_data: Pand
|
|
| 100 |
results_df = pd.DataFrame(data={"index": list(range(len(df_list))),
|
| 101 |
"search_text": df_list,
|
| 102 |
"search_score_abs": match_scores})
|
| 103 |
-
results_df['search_score_abs'] = abs(round(results_df['search_score_abs'], 2))
|
| 104 |
-
results_df_out = results_df[['index', 'search_text', 'search_score_abs']].merge(original_data,left_on="index", right_index=True, how="left")
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
# Join on additional files
|
| 107 |
if not in_join_file.empty:
|
|
@@ -113,13 +84,13 @@ def spacy_fuzzy_search(string_query:str, df_list: List[str], original_data: Pand
|
|
| 113 |
# Duplicates dropped so as not to expand out dataframe
|
| 114 |
join_df = join_df.drop_duplicates(in_join_column)
|
| 115 |
|
| 116 |
-
results_df_out = results_df_out.merge(join_df,left_on=search_df_join_column, right_on=in_join_column, how="left")#.drop(in_join_column, axis=1)
|
| 117 |
|
| 118 |
# Reorder results by score
|
| 119 |
results_df_out = results_df_out.sort_values('search_score_abs', ascending=False)
|
| 120 |
|
| 121 |
# Out file
|
| 122 |
-
query_str_file = ("_").join(
|
| 123 |
results_df_name = "keyword_search_result_" + today_rev + "_" + query_str_file + ".xlsx"
|
| 124 |
|
| 125 |
print("Saving search file output")
|
|
@@ -130,8 +101,4 @@ def spacy_fuzzy_search(string_query:str, df_list: List[str], original_data: Pand
|
|
| 130 |
|
| 131 |
print("Returning results")
|
| 132 |
|
| 133 |
-
return results_first_text, results_df_name
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
match_list = spacy_fuzzy_search(string_query, df_list)
|
| 137 |
-
print(match_list)
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
import pandas as pd
|
| 6 |
from typing import List, Type
|
| 7 |
+
from datetime import datetime
|
| 8 |
|
| 9 |
PandasDataFrame = Type[pd.DataFrame]
|
| 10 |
|
| 11 |
+
today_rev = datetime.now().strftime("%Y%m%d")
|
| 12 |
+
|
| 13 |
nlp = spacy.load("en_core_web_sm")
|
| 14 |
|
| 15 |
string_query = "knife attack run fast"
|
| 16 |
df_list = ["Last week someone was grievously injured in a knife attack on Exmoor road. Running away. They ran as fast as possible. I run.","This is the 3rd knifing in the area in as many weeks; knives everywhere.", "attacks of this kind have been increasing for years. Knife attack or knife attack.", "Nothing happened here"]
|
| 17 |
|
| 18 |
|
| 19 |
+
def spacy_fuzzy_search(string_query:str, df_list: List[str], original_data: PandasDataFrame, text_column:str, in_join_file: PandasDataFrame, search_df_join_column:str, in_join_column:str, no_spelling_mistakes:int = 1, progress=gr.Progress(track_tqdm=True)):
|
| 20 |
''' Conduct fuzzy match on a list of data.'''
|
| 21 |
|
| 22 |
query = nlp(string_query)
|
|
|
|
| 29 |
if len(tokenised_query) > 1:
|
| 30 |
pattern_lemma = [{"LEMMA": {"IN": tokenised_query}}]
|
| 31 |
pattern_fuzz = [{"TEXT": {spelling_mistakes_fuzzy_pattern: {"IN": tokenised_query}}}]
|
| 32 |
+
else:
|
| 33 |
pattern_lemma = [{"LEMMA": tokenised_query[0]}]
|
| 34 |
pattern_fuzz = [{"TEXT": {spelling_mistakes_fuzzy_pattern: tokenised_query[0]}}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
|
| 37 |
# %%
|
| 38 |
matcher = Matcher(nlp.vocab)
|
| 39 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
# %%
|
| 41 |
+
matcher.add(string_query, [pattern_fuzz])
|
| 42 |
+
matcher.add(string_query, [pattern_lemma])
|
| 43 |
|
| 44 |
# %%
|
| 45 |
batch_size = 256
|
|
|
|
| 68 |
results_df = pd.DataFrame(data={"index": list(range(len(df_list))),
|
| 69 |
"search_text": df_list,
|
| 70 |
"search_score_abs": match_scores})
|
| 71 |
+
results_df['search_score_abs'] = abs(round(results_df['search_score_abs']*100, 2))
|
| 72 |
+
results_df_out = results_df[['index', 'search_text', 'search_score_abs']].merge(original_data,left_on="index", right_index=True, how="left")
|
| 73 |
+
|
| 74 |
+
# Keep only results with at least one match
|
| 75 |
+
results_df_out = results_df_out.loc[results_df["search_score_abs"] > 0, :]
|
| 76 |
|
| 77 |
# Join on additional files
|
| 78 |
if not in_join_file.empty:
|
|
|
|
| 84 |
# Duplicates dropped so as not to expand out dataframe
|
| 85 |
join_df = join_df.drop_duplicates(in_join_column)
|
| 86 |
|
| 87 |
+
results_df_out = results_df_out.merge(join_df,left_on=search_df_join_column, right_on=in_join_column, how="left", suffixes=('','_y'))#.drop(in_join_column, axis=1)
|
| 88 |
|
| 89 |
# Reorder results by score
|
| 90 |
results_df_out = results_df_out.sort_values('search_score_abs', ascending=False)
|
| 91 |
|
| 92 |
# Out file
|
| 93 |
+
query_str_file = ("_").join(tokenised_query)
|
| 94 |
results_df_name = "keyword_search_result_" + today_rev + "_" + query_str_file + ".xlsx"
|
| 95 |
|
| 96 |
print("Saving search file output")
|
|
|
|
| 101 |
|
| 102 |
print("Returning results")
|
| 103 |
|
| 104 |
+
return results_first_text, results_df_name
|
|
|
|
|
|
|
|
|
|
|
|