Spaces:
Running
Running
Commit
·
8c90944
1
Parent(s):
86f6252
Allowed for custom output folder. Upgraded Gradio version
Browse files- AddressMatcher_0.1_f.spec +52 -0
- Dockerfile +1 -1
- README.md +1 -1
- app.py +4 -1
- how_to_create_exe_dist.txt +4 -0
- tools/addressbase_api_funcs.py +0 -14
- tools/aws_functions.py +0 -10
- tools/constants.py +44 -35
- tools/gradio.py +4 -3
- tools/matcher_funcs.py +10 -58
- tools/model_predict.py +0 -15
- tools/recordlinkage_funcs.py +1 -34
AddressMatcher_0.1_f.spec
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- mode: python ; coding: utf-8 -*-
|
| 2 |
+
from PyInstaller.utils.hooks import collect_data_files
|
| 3 |
+
|
| 4 |
+
datas = []
|
| 5 |
+
datas += collect_data_files('gradio_client')
|
| 6 |
+
datas += collect_data_files('gradio')
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
a = Analysis(
|
| 10 |
+
['app.py'],
|
| 11 |
+
pathex=[],
|
| 12 |
+
binaries=[],
|
| 13 |
+
datas=datas,
|
| 14 |
+
hiddenimports=['pyarrow.vendored.version'],
|
| 15 |
+
hookspath=['build_deps\\'],
|
| 16 |
+
hooksconfig={},
|
| 17 |
+
runtime_hooks=[],
|
| 18 |
+
excludes=[],
|
| 19 |
+
noarchive=False,
|
| 20 |
+
optimize=0,
|
| 21 |
+
module_collection_mode={
|
| 22 |
+
'gradio': 'py', # Collect gradio package as source .py files
|
| 23 |
+
}
|
| 24 |
+
)
|
| 25 |
+
pyz = PYZ(a.pure)
|
| 26 |
+
|
| 27 |
+
exe = EXE(
|
| 28 |
+
pyz,
|
| 29 |
+
a.scripts,
|
| 30 |
+
[],
|
| 31 |
+
exclude_binaries=True,
|
| 32 |
+
name='AddressMatcher_0.1_f',
|
| 33 |
+
debug=False,
|
| 34 |
+
bootloader_ignore_signals=False,
|
| 35 |
+
strip=False,
|
| 36 |
+
upx=True,
|
| 37 |
+
console=True,
|
| 38 |
+
disable_windowed_traceback=False,
|
| 39 |
+
argv_emulation=False,
|
| 40 |
+
target_arch=None,
|
| 41 |
+
codesign_identity=None,
|
| 42 |
+
entitlements_file=None,
|
| 43 |
+
)
|
| 44 |
+
coll = COLLECT(
|
| 45 |
+
exe,
|
| 46 |
+
a.binaries,
|
| 47 |
+
a.datas,
|
| 48 |
+
strip=False,
|
| 49 |
+
upx=True,
|
| 50 |
+
upx_exclude=[],
|
| 51 |
+
name='AddressMatcher_0.1_f',
|
| 52 |
+
)
|
Dockerfile
CHANGED
|
@@ -6,7 +6,7 @@ COPY requirements.txt .
|
|
| 6 |
|
| 7 |
RUN pip install --no-cache-dir -r requirements.txt
|
| 8 |
|
| 9 |
-
RUN pip install --no-cache-dir gradio==4.
|
| 10 |
|
| 11 |
# Set up a new user named "user" with user ID 1000
|
| 12 |
RUN useradd -m -u 1000 user
|
|
|
|
| 6 |
|
| 7 |
RUN pip install --no-cache-dir -r requirements.txt
|
| 8 |
|
| 9 |
+
RUN pip install --no-cache-dir gradio==4.32.2
|
| 10 |
|
| 11 |
# Set up a new user named "user" with user ID 1000
|
| 12 |
RUN useradd -m -u 1000 user
|
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: 🌍
|
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: gray
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 4.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
|
|
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: gray
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.32.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
app.py
CHANGED
|
@@ -7,6 +7,7 @@ import pandas as pd
|
|
| 7 |
from tools.matcher_funcs import run_matcher
|
| 8 |
from tools.gradio import initial_data_load, ensure_output_folder_exists
|
| 9 |
from tools.aws_functions import load_data_from_aws
|
|
|
|
| 10 |
|
| 11 |
import warnings
|
| 12 |
# Remove warnings from print statements
|
|
@@ -20,7 +21,9 @@ today_rev = datetime.now().strftime("%Y%m%d")
|
|
| 20 |
|
| 21 |
# Base folder is where the code file is stored
|
| 22 |
base_folder = Path(os.getcwd())
|
| 23 |
-
output_folder = "output/"
|
|
|
|
|
|
|
| 24 |
|
| 25 |
ensure_output_folder_exists(output_folder)
|
| 26 |
|
|
|
|
| 7 |
from tools.matcher_funcs import run_matcher
|
| 8 |
from tools.gradio import initial_data_load, ensure_output_folder_exists
|
| 9 |
from tools.aws_functions import load_data_from_aws
|
| 10 |
+
from tools.constants import output_folder
|
| 11 |
|
| 12 |
import warnings
|
| 13 |
# Remove warnings from print statements
|
|
|
|
| 21 |
|
| 22 |
# Base folder is where the code file is stored
|
| 23 |
base_folder = Path(os.getcwd())
|
| 24 |
+
# output_folder = "output/" # This is now defined in constants
|
| 25 |
+
|
| 26 |
+
|
| 27 |
|
| 28 |
ensure_output_folder_exists(output_folder)
|
| 29 |
|
how_to_create_exe_dist.txt
CHANGED
|
@@ -16,6 +16,8 @@ NOTE: for ensuring that spaCy models are loaded into the program correctly in re
|
|
| 16 |
|
| 17 |
a) In command line: pyi-makespec --additional-hooks-dir="build_deps\\" --collect-data=gradio_client --collect-data=gradio --hidden-import pyarrow.vendored.version --onefile --name AddressMatcher_0.1 app.py
|
| 18 |
|
|
|
|
|
|
|
| 19 |
b) Open the created spec file in Notepad. Add the following to the end of the Analysis section then save:
|
| 20 |
|
| 21 |
a = Analysis(
|
|
@@ -27,6 +29,8 @@ a = Analysis(
|
|
| 27 |
|
| 28 |
c) Back in command line, run this: pyinstaller --clean --noconfirm AddressMatcher_0.1.spec
|
| 29 |
|
|
|
|
|
|
|
| 30 |
|
| 31 |
9. A 'dist' folder will be created with the executable inside along with all dependencies('dist\data_text_search').
|
| 32 |
|
|
|
|
| 16 |
|
| 17 |
a) In command line: pyi-makespec --additional-hooks-dir="build_deps\\" --collect-data=gradio_client --collect-data=gradio --hidden-import pyarrow.vendored.version --onefile --name AddressMatcher_0.1 app.py
|
| 18 |
|
| 19 |
+
pyi-makespec --additional-hooks-dir="build_deps\\" --collect-data=gradio_client --collect-data=gradio --hidden-import pyarrow.vendored.version --name AddressMatcher_0.1_f app.py
|
| 20 |
+
|
| 21 |
b) Open the created spec file in Notepad. Add the following to the end of the Analysis section then save:
|
| 22 |
|
| 23 |
a = Analysis(
|
|
|
|
| 29 |
|
| 30 |
c) Back in command line, run this: pyinstaller --clean --noconfirm AddressMatcher_0.1.spec
|
| 31 |
|
| 32 |
+
pyinstaller --clean --noconfirm AddressMatcher_0.1_f.spec
|
| 33 |
+
|
| 34 |
|
| 35 |
9. A 'dist' folder will be created with the executable inside along with all dependencies('dist\data_text_search').
|
| 36 |
|
tools/addressbase_api_funcs.py
CHANGED
|
@@ -156,9 +156,6 @@ def places_api_query(query, api_key, query_type):
|
|
| 156 |
print("No API key provided.")
|
| 157 |
return pd.DataFrame() # Return blank dataframe
|
| 158 |
|
| 159 |
-
#print('RESPONSE:', concat_results)
|
| 160 |
-
|
| 161 |
-
|
| 162 |
# Convert 'results' to DataFrame
|
| 163 |
|
| 164 |
# Check if 'LPI' sub-branch exists in the JSON response
|
|
@@ -177,18 +174,7 @@ def places_api_query(query, api_key, query_type):
|
|
| 177 |
if isinstance(df, pd.Series):
|
| 178 |
print("This is a series!")
|
| 179 |
df = df.to_frame().T # Convert the Series to a DataFrame with a single row
|
| 180 |
-
# if isinstance(df, pd.DataFrame):
|
| 181 |
-
# print("This is a dataframe!")
|
| 182 |
-
# else:
|
| 183 |
-
# print("This is not a dataframe!")
|
| 184 |
-
# return pd.DataFrame() # Return blank dataframe
|
| 185 |
-
|
| 186 |
|
| 187 |
-
print(df)
|
| 188 |
-
#print(df.columns)
|
| 189 |
-
#df.to_csv(query + ".csv")
|
| 190 |
-
|
| 191 |
-
|
| 192 |
|
| 193 |
overall_toc = time.perf_counter()
|
| 194 |
time_out = f"The API call took {overall_toc - overall_tic:0.1f} seconds"
|
|
|
|
| 156 |
print("No API key provided.")
|
| 157 |
return pd.DataFrame() # Return blank dataframe
|
| 158 |
|
|
|
|
|
|
|
|
|
|
| 159 |
# Convert 'results' to DataFrame
|
| 160 |
|
| 161 |
# Check if 'LPI' sub-branch exists in the JSON response
|
|
|
|
| 174 |
if isinstance(df, pd.Series):
|
| 175 |
print("This is a series!")
|
| 176 |
df = df.to_frame().T # Convert the Series to a DataFrame with a single row
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
overall_toc = time.perf_counter()
|
| 180 |
time_out = f"The API call took {overall_toc - overall_tic:0.1f} seconds"
|
tools/aws_functions.py
CHANGED
|
@@ -13,16 +13,6 @@ except Exception as e:
|
|
| 13 |
bucket_name = ''
|
| 14 |
print(e)
|
| 15 |
|
| 16 |
-
# sts = session.client("sts")
|
| 17 |
-
# Create a Session with the IAM role ARN
|
| 18 |
-
# aws_role = os.environ['AWS_ROLE_DATA_TEXT_SEARCH']
|
| 19 |
-
# response = sts.assume_role(
|
| 20 |
-
# RoleArn=aws_role,
|
| 21 |
-
# RoleSessionName="ecs-test-session"
|
| 22 |
-
# )
|
| 23 |
-
# print(response)
|
| 24 |
-
|
| 25 |
-
|
| 26 |
def get_assumed_role_info():
|
| 27 |
sts = boto3.client('sts', region_name='eu-west-2', endpoint_url='https://sts.eu-west-2.amazonaws.com')
|
| 28 |
response = sts.get_caller_identity()
|
|
|
|
| 13 |
bucket_name = ''
|
| 14 |
print(e)
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
def get_assumed_role_info():
|
| 17 |
sts = boto3.client('sts', region_name='eu-west-2', endpoint_url='https://sts.eu-west-2.amazonaws.com')
|
| 18 |
response = sts.get_caller_identity()
|
tools/constants.py
CHANGED
|
@@ -11,6 +11,24 @@ from .pytorch_models import *
|
|
| 11 |
PandasDataFrame = Type[pd.DataFrame]
|
| 12 |
PandasSeries = Type[pd.Series]
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
# +
|
| 15 |
''' Fuzzywuzzy/Rapidfuzz scorer to use. Options are: ratio, partial_ratio, token_sort_ratio, partial_token_sort_ratio,
|
| 16 |
token_set_ratio, partial_token_set_ratio, QRatio, UQRatio, WRatio (default), UWRatio
|
|
@@ -18,17 +36,11 @@ details here: https://stackoverflow.com/questions/31806695/when-to-use-which-fuz
|
|
| 18 |
|
| 19 |
fuzzy_scorer_used = "token_set_ratio"
|
| 20 |
|
| 21 |
-
# +
|
| 22 |
fuzzy_match_limit = 85
|
| 23 |
-
|
| 24 |
fuzzy_search_addr_limit = 20
|
| 25 |
-
|
| 26 |
filter_to_lambeth_pcodes= True
|
| 27 |
-
# -
|
| 28 |
-
|
| 29 |
standardise = False
|
| 30 |
|
| 31 |
-
# +
|
| 32 |
if standardise == True:
|
| 33 |
std = "_std"
|
| 34 |
if standardise == False:
|
|
@@ -40,8 +52,7 @@ suffix_used = dataset_name + "_" + fuzzy_scorer_used
|
|
| 40 |
|
| 41 |
# https://stackoverflow.com/questions/59221557/tensorflow-v2-replacement-for-tf-contrib-predictor-from-saved-model
|
| 42 |
|
| 43 |
-
|
| 44 |
-
print(ROOT_DIR)
|
| 45 |
|
| 46 |
# Uncomment these lines for the tensorflow model
|
| 47 |
#model_type = "tf"
|
|
@@ -66,30 +77,32 @@ device = "cpu"
|
|
| 66 |
global labels_list
|
| 67 |
labels_list = []
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
model_dir_name = os.path.join(ROOT_DIR, "nnet_model" , model_stub , model_version)
|
| 70 |
-
print(model_dir_name)
|
| 71 |
|
| 72 |
model_path = os.path.join(model_dir_name, "saved_model.zip")
|
| 73 |
-
print("
|
| 74 |
-
print(model_path)
|
| 75 |
|
| 76 |
if os.path.exists(model_path):
|
| 77 |
|
| 78 |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # Better to go without GPU to avoid 'out of memory' issues
|
| 79 |
device = "cpu"
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
## The labels_list object defines the structure of the prediction outputs. It must be the same as what the model was originally trained on
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
''' Load pre-trained model '''
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
with zipfile.ZipFile(model_path,"r") as zip_ref:
|
| 92 |
-
zip_ref.extractall(
|
| 93 |
|
| 94 |
# if model_stub == "addr_model_out_lon":
|
| 95 |
|
|
@@ -143,16 +156,15 @@ if os.path.exists(model_path):
|
|
| 143 |
'Postcode', # 14
|
| 144 |
'IGNORE'
|
| 145 |
]
|
| 146 |
-
|
| 147 |
-
#labels_list.to_csv("labels_list.csv", index = None)
|
| 148 |
|
| 149 |
if (model_type == "transformer") | (model_type == "gru") | (model_type == "lstm") :
|
| 150 |
# Load vocab and word_to_index
|
| 151 |
-
with open(
|
| 152 |
vocab = eval(f.read())
|
| 153 |
-
with open(
|
| 154 |
word_to_index = eval(f.read())
|
| 155 |
-
with open(
|
| 156 |
cat_to_idx = eval(f.read())
|
| 157 |
|
| 158 |
VOCAB_SIZE = len(word_to_index)
|
|
@@ -180,8 +192,12 @@ if os.path.exists(model_path):
|
|
| 180 |
exported_model = LSTMTextClassifier(VOCAB_SIZE, EMBEDDING_DIM, HIDDEN_DIM, OUTPUT_DIM, N_LAYERS, DROPOUT, PAD_TOKEN)
|
| 181 |
|
| 182 |
|
| 183 |
-
|
| 184 |
-
"_" + str(N_EPOCHS) + "_" + model_type + ".pth"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
exported_model.eval()
|
| 186 |
|
| 187 |
device='cpu'
|
|
@@ -196,13 +212,7 @@ if os.path.exists(model_path):
|
|
| 196 |
|
| 197 |
else: exported_model = []
|
| 198 |
|
| 199 |
-
|
| 200 |
-
# exported_model = exported_model
|
| 201 |
-
#else: exported_model = []
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
# +
|
| 206 |
# Address matcher will try to match <batch_size> records in one go to avoid exceeding memory limits.
|
| 207 |
batch_size = 10000
|
| 208 |
ref_batch_size = 150000
|
|
@@ -215,7 +225,6 @@ ref_batch_size = 150000
|
|
| 215 |
|
| 216 |
Comparison of some of the Jellyfish string comparison methods: https://manpages.debian.org/testing/python-jellyfish-doc/jellyfish.3.en.html '''
|
| 217 |
|
| 218 |
-
|
| 219 |
fuzzy_method = "jarowinkler"
|
| 220 |
|
| 221 |
# Required overall match score for all columns to count as a match
|
|
|
|
| 11 |
PandasDataFrame = Type[pd.DataFrame]
|
| 12 |
PandasSeries = Type[pd.Series]
|
| 13 |
|
| 14 |
+
def get_or_create_env_var(var_name, default_value):
|
| 15 |
+
# Get the environment variable if it exists
|
| 16 |
+
value = os.environ.get(var_name)
|
| 17 |
+
|
| 18 |
+
# If it doesn't exist, set it to the default value
|
| 19 |
+
if value is None:
|
| 20 |
+
os.environ[var_name] = default_value
|
| 21 |
+
value = default_value
|
| 22 |
+
|
| 23 |
+
return value
|
| 24 |
+
|
| 25 |
+
# Retrieving or setting output folder
|
| 26 |
+
env_var_name = 'GRADIO_OUTPUT_FOLDER'
|
| 27 |
+
default_value = 'output/'
|
| 28 |
+
|
| 29 |
+
output_folder = get_or_create_env_var(env_var_name, default_value)
|
| 30 |
+
print(f'The value of {env_var_name} is {output_folder}')
|
| 31 |
+
|
| 32 |
# +
|
| 33 |
''' Fuzzywuzzy/Rapidfuzz scorer to use. Options are: ratio, partial_ratio, token_sort_ratio, partial_token_sort_ratio,
|
| 34 |
token_set_ratio, partial_token_set_ratio, QRatio, UQRatio, WRatio (default), UWRatio
|
|
|
|
| 36 |
|
| 37 |
fuzzy_scorer_used = "token_set_ratio"
|
| 38 |
|
|
|
|
| 39 |
fuzzy_match_limit = 85
|
|
|
|
| 40 |
fuzzy_search_addr_limit = 20
|
|
|
|
| 41 |
filter_to_lambeth_pcodes= True
|
|
|
|
|
|
|
| 42 |
standardise = False
|
| 43 |
|
|
|
|
| 44 |
if standardise == True:
|
| 45 |
std = "_std"
|
| 46 |
if standardise == False:
|
|
|
|
| 52 |
|
| 53 |
# https://stackoverflow.com/questions/59221557/tensorflow-v2-replacement-for-tf-contrib-predictor-from-saved-model
|
| 54 |
|
| 55 |
+
|
|
|
|
| 56 |
|
| 57 |
# Uncomment these lines for the tensorflow model
|
| 58 |
#model_type = "tf"
|
|
|
|
| 77 |
global labels_list
|
| 78 |
labels_list = []
|
| 79 |
|
| 80 |
+
ROOT_DIR = os.path.realpath(os.path.join(os.path.dirname(__file__), '..'))
|
| 81 |
+
|
| 82 |
+
# If in a non-standard location (e.g. on AWS Lambda Function URL, then save model to tmp drive)
|
| 83 |
+
if output_folder == "output/":
|
| 84 |
+
out_model_dir = ROOT_DIR
|
| 85 |
+
print(out_model_dir)
|
| 86 |
+
else:
|
| 87 |
+
out_model_dir = output_folder[:-1]
|
| 88 |
+
print(out_model_dir)
|
| 89 |
+
|
| 90 |
model_dir_name = os.path.join(ROOT_DIR, "nnet_model" , model_stub , model_version)
|
|
|
|
| 91 |
|
| 92 |
model_path = os.path.join(model_dir_name, "saved_model.zip")
|
| 93 |
+
print("Model zip path: ", model_path)
|
|
|
|
| 94 |
|
| 95 |
if os.path.exists(model_path):
|
| 96 |
|
| 97 |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # Better to go without GPU to avoid 'out of memory' issues
|
| 98 |
device = "cpu"
|
| 99 |
+
|
|
|
|
|
|
|
| 100 |
## The labels_list object defines the structure of the prediction outputs. It must be the same as what the model was originally trained on
|
| 101 |
+
|
|
|
|
|
|
|
| 102 |
''' Load pre-trained model '''
|
| 103 |
|
|
|
|
|
|
|
| 104 |
with zipfile.ZipFile(model_path,"r") as zip_ref:
|
| 105 |
+
zip_ref.extractall(out_model_dir)
|
| 106 |
|
| 107 |
# if model_stub == "addr_model_out_lon":
|
| 108 |
|
|
|
|
| 156 |
'Postcode', # 14
|
| 157 |
'IGNORE'
|
| 158 |
]
|
| 159 |
+
|
|
|
|
| 160 |
|
| 161 |
if (model_type == "transformer") | (model_type == "gru") | (model_type == "lstm") :
|
| 162 |
# Load vocab and word_to_index
|
| 163 |
+
with open(out_model_dir + "/vocab.txt", "r") as f:
|
| 164 |
vocab = eval(f.read())
|
| 165 |
+
with open(out_model_dir + "/word_to_index.txt", "r") as f:
|
| 166 |
word_to_index = eval(f.read())
|
| 167 |
+
with open(out_model_dir + "/cat_to_idx.txt", "r") as f:
|
| 168 |
cat_to_idx = eval(f.read())
|
| 169 |
|
| 170 |
VOCAB_SIZE = len(word_to_index)
|
|
|
|
| 192 |
exported_model = LSTMTextClassifier(VOCAB_SIZE, EMBEDDING_DIM, HIDDEN_DIM, OUTPUT_DIM, N_LAYERS, DROPOUT, PAD_TOKEN)
|
| 193 |
|
| 194 |
|
| 195 |
+
out_model_file_name = "output_model_" + str(data_sample_size) +\
|
| 196 |
+
"_" + str(N_EPOCHS) + "_" + model_type + ".pth"
|
| 197 |
+
|
| 198 |
+
out_model_path = os.path.join(out_model_dir, out_model_file_name)
|
| 199 |
+
print("Model location: ", out_model_path)
|
| 200 |
+
exported_model.load_state_dict(torch.load(out_model_path, map_location=torch.device('cpu')))
|
| 201 |
exported_model.eval()
|
| 202 |
|
| 203 |
device='cpu'
|
|
|
|
| 212 |
|
| 213 |
else: exported_model = []
|
| 214 |
|
| 215 |
+
### ADDRESS MATCHING FUNCTIONS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
# Address matcher will try to match <batch_size> records in one go to avoid exceeding memory limits.
|
| 217 |
batch_size = 10000
|
| 218 |
ref_batch_size = 150000
|
|
|
|
| 225 |
|
| 226 |
Comparison of some of the Jellyfish string comparison methods: https://manpages.debian.org/testing/python-jellyfish-doc/jellyfish.3.en.html '''
|
| 227 |
|
|
|
|
| 228 |
fuzzy_method = "jarowinkler"
|
| 229 |
|
| 230 |
# Required overall match score for all columns to count as a match
|
tools/gradio.py
CHANGED
|
@@ -60,9 +60,9 @@ def ensure_output_folder_exists(output_folder):
|
|
| 60 |
if not os.path.exists(folder_name):
|
| 61 |
# Create the folder if it doesn't exist
|
| 62 |
os.makedirs(folder_name)
|
| 63 |
-
print(f"Created the output folder
|
| 64 |
else:
|
| 65 |
-
print(f"The output folder already exists
|
| 66 |
|
| 67 |
def dummy_function(in_colnames):
|
| 68 |
"""
|
|
@@ -72,4 +72,5 @@ def dummy_function(in_colnames):
|
|
| 72 |
|
| 73 |
|
| 74 |
def clear_inputs(in_file, in_ref, in_text):
|
| 75 |
-
return gr.File
|
|
|
|
|
|
| 60 |
if not os.path.exists(folder_name):
|
| 61 |
# Create the folder if it doesn't exist
|
| 62 |
os.makedirs(folder_name)
|
| 63 |
+
print(f"Created the output folder:", folder_name)
|
| 64 |
else:
|
| 65 |
+
print(f"The output folder already exists:", folder_name)
|
| 66 |
|
| 67 |
def dummy_function(in_colnames):
|
| 68 |
"""
|
|
|
|
| 72 |
|
| 73 |
|
| 74 |
def clear_inputs(in_file, in_ref, in_text):
|
| 75 |
+
return gr.File(value=[]), gr.File(value=[]), gr.Textbox(value='')
|
| 76 |
+
|
tools/matcher_funcs.py
CHANGED
|
@@ -169,7 +169,7 @@ def run_all_api_calls(in_api_key:str, Matcher:MatcherClass, query_type:str, prog
|
|
| 169 |
if (i + 1) % 500 == 0:
|
| 170 |
print("Saving api call checkpoint for query:", str(i + 1))
|
| 171 |
|
| 172 |
-
pd.concat(loop_list).to_parquet(api_ref_save_loc + ".parquet", index=False)
|
| 173 |
|
| 174 |
return loop_list
|
| 175 |
|
|
@@ -351,8 +351,8 @@ def run_all_api_calls(in_api_key:str, Matcher:MatcherClass, query_type:str, prog
|
|
| 351 |
|
| 352 |
if save_file:
|
| 353 |
print("Saving reference file to: " + api_ref_save_loc[:-5] + ".parquet")
|
| 354 |
-
Matcher.ref_df.to_parquet(api_ref_save_loc + ".parquet", index=False) # Save checkpoint as well
|
| 355 |
-
Matcher.ref_df.to_parquet(api_ref_save_loc[:-5] + ".parquet", index=False)
|
| 356 |
|
| 357 |
if Matcher.ref_df.empty:
|
| 358 |
print ("No reference data found with API")
|
|
@@ -676,8 +676,8 @@ def load_matcher_data(in_text, in_file, in_ref, data_state, results_data_state,
|
|
| 676 |
print("Shape of ref_df after filtering is: ", Matcher.ref_df.shape)
|
| 677 |
print("Shape of search_df after filtering is: ", Matcher.search_df.shape)
|
| 678 |
|
| 679 |
-
Matcher.match_outputs_name = "
|
| 680 |
-
Matcher.results_orig_df_name = "
|
| 681 |
|
| 682 |
Matcher.match_results_output.to_csv(Matcher.match_outputs_name, index = None)
|
| 683 |
Matcher.results_on_orig_df.to_csv(Matcher.results_orig_df_name, index = None)
|
|
@@ -724,10 +724,6 @@ def run_matcher(in_text:str, in_file:str, in_ref:str, data_state:PandasDataFrame
|
|
| 724 |
InitMatch.ref_df_cleaned = prepare_ref_address(InitMatch.ref_df, InitMatch.ref_address_cols, InitMatch.new_join_col)
|
| 725 |
|
| 726 |
|
| 727 |
-
# Sort dataframes by postcode - will allow for more efficient matching process if using multiple batches
|
| 728 |
-
#InitMatch.search_df_cleaned = InitMatch.search_df_cleaned.sort_values(by="postcode")
|
| 729 |
-
#InitMatch.ref_df_cleaned = InitMatch.ref_df_cleaned.sort_values(by="Postcode")
|
| 730 |
-
|
| 731 |
# Polars implementation - not finalised
|
| 732 |
#InitMatch.search_df_cleaned = InitMatch.search_df_cleaned.to_pandas()
|
| 733 |
#InitMatch.ref_df_cleaned = InitMatch.ref_df_cleaned.to_pandas()
|
|
@@ -777,31 +773,10 @@ def run_matcher(in_text:str, in_file:str, in_ref:str, data_state:PandasDataFrame
|
|
| 777 |
|
| 778 |
search_range = range_df.iloc[row]['search_range']
|
| 779 |
ref_range = range_df.iloc[row]['ref_range']
|
| 780 |
-
|
| 781 |
-
#print("search_range: ", search_range)
|
| 782 |
-
#pd.DataFrame(search_range).to_csv("search_range.csv")
|
| 783 |
-
#print("ref_range: ", ref_range)
|
| 784 |
|
| 785 |
BatchMatch = copy.copy(InitMatch)
|
| 786 |
|
| 787 |
# Subset the search and reference dfs based on current batch ranges
|
| 788 |
-
# BatchMatch.search_df = BatchMatch.search_df.iloc[search_range[0]:search_range[1] + 1,:].reset_index(drop=True)
|
| 789 |
-
# BatchMatch.search_df_not_matched = BatchMatch.search_df.copy()
|
| 790 |
-
# BatchMatch.search_df_cleaned = BatchMatch.search_df_cleaned.iloc[search_range[0]:search_range[1] + 1,:].reset_index(drop=True)
|
| 791 |
-
# BatchMatch.ref_df = BatchMatch.ref_df.iloc[ref_range[0]:ref_range[1] + 1,:].reset_index(drop=True)
|
| 792 |
-
# BatchMatch.ref_df_cleaned = BatchMatch.ref_df_cleaned.iloc[ref_range[0]:ref_range[1] + 1,:].reset_index(drop=True)
|
| 793 |
-
|
| 794 |
-
|
| 795 |
-
# BatchMatch.search_df_after_stand_series = BatchMatch.search_df_after_stand_series.iloc[search_range[0]:search_range[1] + 1]
|
| 796 |
-
# BatchMatch.ref_df_after_stand_series = BatchMatch.ref_df_after_stand_series.iloc[ref_range[0]:ref_range[1] + 1]
|
| 797 |
-
# BatchMatch.search_df_after_stand_series_full_stand = BatchMatch.search_df_after_stand_series_full_stand.iloc[search_range[0]:search_range[1] + 1]
|
| 798 |
-
# BatchMatch.ref_df_after_stand_series_full_stand = BatchMatch.ref_df_after_stand_series_full_stand.iloc[ref_range[0]:ref_range[1] + 1]
|
| 799 |
-
|
| 800 |
-
# BatchMatch.search_df_after_stand = BatchMatch.search_df_after_stand.iloc[search_range[0]:search_range[1] + 1,:].reset_index(drop=True)
|
| 801 |
-
# BatchMatch.ref_df_after_stand = BatchMatch.ref_df_after_stand.iloc[ref_range[0]:ref_range[1] + 1,:].reset_index(drop=True)
|
| 802 |
-
# BatchMatch.search_df_after_full_stand = BatchMatch.search_df_after_full_stand.iloc[search_range[0]:search_range[1] + 1,:].reset_index(drop=True)
|
| 803 |
-
# BatchMatch.ref_df_after_full_stand = BatchMatch.ref_df_after_full_stand.iloc[ref_range[0]:ref_range[1] + 1,:].reset_index(drop=True)
|
| 804 |
-
|
| 805 |
BatchMatch.search_df = BatchMatch.search_df[BatchMatch.search_df.index.isin(search_range)].reset_index(drop=True)
|
| 806 |
BatchMatch.search_df_not_matched = BatchMatch.search_df.copy()
|
| 807 |
BatchMatch.search_df_cleaned = BatchMatch.search_df_cleaned[BatchMatch.search_df_cleaned.index.isin(search_range)].reset_index(drop=True)
|
|
@@ -814,25 +789,9 @@ def run_matcher(in_text:str, in_file:str, in_ref:str, data_state:PandasDataFrame
|
|
| 814 |
BatchMatch.search_df_after_full_stand = BatchMatch.search_df_after_full_stand[BatchMatch.search_df_after_full_stand.index.isin(search_range)].reset_index(drop=True)
|
| 815 |
|
| 816 |
### Create lookup lists for fuzzy matches
|
| 817 |
-
# BatchMatch.search_df_after_stand_series = BatchMatch.search_df_after_stand.copy().set_index('postcode_search')['search_address_stand']
|
| 818 |
-
# BatchMatch.search_df_after_stand_series_full_stand = BatchMatch.search_df_after_full_stand.copy().set_index('postcode_search')['search_address_stand']
|
| 819 |
-
# BatchMatch.search_df_after_stand_series = BatchMatch.search_df_after_stand_series.sort_index()
|
| 820 |
-
# BatchMatch.search_df_after_stand_series_full_stand = BatchMatch.search_df_after_stand_series_full_stand.sort_index()
|
| 821 |
-
|
| 822 |
-
#BatchMatch.search_df_after_stand.reset_index(inplace=True, drop = True)
|
| 823 |
-
#BatchMatch.search_df_after_full_stand.reset_index(inplace=True, drop = True)
|
| 824 |
-
|
| 825 |
BatchMatch.ref_df_after_stand = BatchMatch.ref_df_after_stand[BatchMatch.ref_df_after_stand.index.isin(ref_range)].reset_index(drop=True)
|
| 826 |
BatchMatch.ref_df_after_full_stand = BatchMatch.ref_df_after_full_stand[BatchMatch.ref_df_after_full_stand.index.isin(ref_range)].reset_index(drop=True)
|
| 827 |
|
| 828 |
-
# BatchMatch.ref_df_after_stand_series = BatchMatch.ref_df_after_stand.copy().set_index('postcode_search')['ref_address_stand']
|
| 829 |
-
# BatchMatch.ref_df_after_stand_series_full_stand = BatchMatch.ref_df_after_full_stand.copy().set_index('postcode_search')['ref_address_stand']
|
| 830 |
-
# BatchMatch.ref_df_after_stand_series = BatchMatch.ref_df_after_stand_series.sort_index()
|
| 831 |
-
# BatchMatch.ref_df_after_stand_series_full_stand = BatchMatch.ref_df_after_stand_series_full_stand.sort_index()
|
| 832 |
-
|
| 833 |
-
# BatchMatch.ref_df_after_stand.reset_index(inplace=True, drop=True)
|
| 834 |
-
# BatchMatch.ref_df_after_full_stand.reset_index(inplace=True, drop=True)
|
| 835 |
-
|
| 836 |
# Match the data, unless the search or reference dataframes are empty
|
| 837 |
if BatchMatch.search_df.empty or BatchMatch.ref_df.empty:
|
| 838 |
out_message = "Nothing to match for batch: " + str(n)
|
|
@@ -938,8 +897,6 @@ def create_batch_ranges(df:PandasDataFrame, ref_df:PandasDataFrame, batch_size:i
|
|
| 938 |
df = df.sort_index()
|
| 939 |
ref_df = ref_df.sort_index()
|
| 940 |
|
| 941 |
-
#df.to_csv("batch_search_df.csv")
|
| 942 |
-
|
| 943 |
# Overall batch variables
|
| 944 |
batch_indexes = []
|
| 945 |
ref_indexes = []
|
|
@@ -1184,8 +1141,8 @@ def orchestrate_match_run(Matcher, standardise = False, nnet = False, file_stub=
|
|
| 1184 |
|
| 1185 |
Matcher.output_summary = create_match_summary(Matcher.match_results_output, df_name = df_name)
|
| 1186 |
|
| 1187 |
-
Matcher.match_outputs_name = "
|
| 1188 |
-
Matcher.results_orig_df_name = "
|
| 1189 |
|
| 1190 |
Matcher.match_results_output.to_csv(Matcher.match_outputs_name, index = None)
|
| 1191 |
Matcher.results_on_orig_df.to_csv(Matcher.results_orig_df_name, index = None)
|
|
@@ -1233,14 +1190,9 @@ def full_fuzzy_match(search_df:PandasDataFrame,
|
|
| 1233 |
# Remove rows from ref search series where postcode is not found in the search_df
|
| 1234 |
search_df_after_stand_series = search_df_after_stand.copy().set_index('postcode_search')['search_address_stand'].sort_index()
|
| 1235 |
ref_df_after_stand_series = ref_df_after_stand.copy().set_index('postcode_search')['ref_address_stand'].sort_index()
|
| 1236 |
-
|
| 1237 |
-
#print(search_df_after_stand_series.index.tolist())
|
| 1238 |
-
#print(ref_df_after_stand_series.index.tolist())
|
| 1239 |
-
|
| 1240 |
ref_df_after_stand_series_checked = ref_df_after_stand_series.copy()[ref_df_after_stand_series.index.isin(search_df_after_stand_series.index.tolist())]
|
| 1241 |
|
| 1242 |
-
# pd.DataFrame(ref_df_after_stand_series_checked.to_csv("ref_df_after_stand_series_checked.csv"))
|
| 1243 |
-
|
| 1244 |
if len(ref_df_after_stand_series_checked) == 0:
|
| 1245 |
print("Nothing relevant in reference data to match!")
|
| 1246 |
return pd.DataFrame(), pd.DataFrame(), pd.DataFrame(),pd.DataFrame(),"Nothing relevant in reference data to match!",search_address_cols
|
|
@@ -1603,8 +1555,8 @@ def combine_two_matches(OrigMatchClass:MatcherClass, NewMatchClass:MatcherClass,
|
|
| 1603 |
### Rejoin the excluded matches onto the output file
|
| 1604 |
#NewMatchClass.results_on_orig_df = pd.concat([NewMatchClass.results_on_orig_df, NewMatchClass.excluded_df])
|
| 1605 |
|
| 1606 |
-
NewMatchClass.match_outputs_name = "
|
| 1607 |
-
NewMatchClass.results_orig_df_name = "
|
| 1608 |
|
| 1609 |
# Only keep essential columns
|
| 1610 |
essential_results_cols = [NewMatchClass.search_df_key_field, "Excluded from search", "Matched with reference address", "ref_index", "Reference matched address", "Reference file"]
|
|
|
|
| 169 |
if (i + 1) % 500 == 0:
|
| 170 |
print("Saving api call checkpoint for query:", str(i + 1))
|
| 171 |
|
| 172 |
+
pd.concat(loop_list).to_parquet(output_folder + api_ref_save_loc + ".parquet", index=False)
|
| 173 |
|
| 174 |
return loop_list
|
| 175 |
|
|
|
|
| 351 |
|
| 352 |
if save_file:
|
| 353 |
print("Saving reference file to: " + api_ref_save_loc[:-5] + ".parquet")
|
| 354 |
+
Matcher.ref_df.to_parquet(output_folder + api_ref_save_loc + ".parquet", index=False) # Save checkpoint as well
|
| 355 |
+
Matcher.ref_df.to_parquet(output_folder + api_ref_save_loc[:-5] + ".parquet", index=False)
|
| 356 |
|
| 357 |
if Matcher.ref_df.empty:
|
| 358 |
print ("No reference data found with API")
|
|
|
|
| 676 |
print("Shape of ref_df after filtering is: ", Matcher.ref_df.shape)
|
| 677 |
print("Shape of search_df after filtering is: ", Matcher.search_df.shape)
|
| 678 |
|
| 679 |
+
Matcher.match_outputs_name = output_folder + "diagnostics_initial_" + today_rev + ".csv"
|
| 680 |
+
Matcher.results_orig_df_name = output_folder + "results_initial_" + today_rev + ".csv"
|
| 681 |
|
| 682 |
Matcher.match_results_output.to_csv(Matcher.match_outputs_name, index = None)
|
| 683 |
Matcher.results_on_orig_df.to_csv(Matcher.results_orig_df_name, index = None)
|
|
|
|
| 724 |
InitMatch.ref_df_cleaned = prepare_ref_address(InitMatch.ref_df, InitMatch.ref_address_cols, InitMatch.new_join_col)
|
| 725 |
|
| 726 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 727 |
# Polars implementation - not finalised
|
| 728 |
#InitMatch.search_df_cleaned = InitMatch.search_df_cleaned.to_pandas()
|
| 729 |
#InitMatch.ref_df_cleaned = InitMatch.ref_df_cleaned.to_pandas()
|
|
|
|
| 773 |
|
| 774 |
search_range = range_df.iloc[row]['search_range']
|
| 775 |
ref_range = range_df.iloc[row]['ref_range']
|
|
|
|
|
|
|
|
|
|
|
|
|
| 776 |
|
| 777 |
BatchMatch = copy.copy(InitMatch)
|
| 778 |
|
| 779 |
# Subset the search and reference dfs based on current batch ranges
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 780 |
BatchMatch.search_df = BatchMatch.search_df[BatchMatch.search_df.index.isin(search_range)].reset_index(drop=True)
|
| 781 |
BatchMatch.search_df_not_matched = BatchMatch.search_df.copy()
|
| 782 |
BatchMatch.search_df_cleaned = BatchMatch.search_df_cleaned[BatchMatch.search_df_cleaned.index.isin(search_range)].reset_index(drop=True)
|
|
|
|
| 789 |
BatchMatch.search_df_after_full_stand = BatchMatch.search_df_after_full_stand[BatchMatch.search_df_after_full_stand.index.isin(search_range)].reset_index(drop=True)
|
| 790 |
|
| 791 |
### Create lookup lists for fuzzy matches
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 792 |
BatchMatch.ref_df_after_stand = BatchMatch.ref_df_after_stand[BatchMatch.ref_df_after_stand.index.isin(ref_range)].reset_index(drop=True)
|
| 793 |
BatchMatch.ref_df_after_full_stand = BatchMatch.ref_df_after_full_stand[BatchMatch.ref_df_after_full_stand.index.isin(ref_range)].reset_index(drop=True)
|
| 794 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 795 |
# Match the data, unless the search or reference dataframes are empty
|
| 796 |
if BatchMatch.search_df.empty or BatchMatch.ref_df.empty:
|
| 797 |
out_message = "Nothing to match for batch: " + str(n)
|
|
|
|
| 897 |
df = df.sort_index()
|
| 898 |
ref_df = ref_df.sort_index()
|
| 899 |
|
|
|
|
|
|
|
| 900 |
# Overall batch variables
|
| 901 |
batch_indexes = []
|
| 902 |
ref_indexes = []
|
|
|
|
| 1141 |
|
| 1142 |
Matcher.output_summary = create_match_summary(Matcher.match_results_output, df_name = df_name)
|
| 1143 |
|
| 1144 |
+
Matcher.match_outputs_name = output_folder + "diagnostics_" + file_stub + today_rev + ".csv"
|
| 1145 |
+
Matcher.results_orig_df_name = output_folder + "results_" + file_stub + today_rev + ".csv"
|
| 1146 |
|
| 1147 |
Matcher.match_results_output.to_csv(Matcher.match_outputs_name, index = None)
|
| 1148 |
Matcher.results_on_orig_df.to_csv(Matcher.results_orig_df_name, index = None)
|
|
|
|
| 1190 |
# Remove rows from ref search series where postcode is not found in the search_df
|
| 1191 |
search_df_after_stand_series = search_df_after_stand.copy().set_index('postcode_search')['search_address_stand'].sort_index()
|
| 1192 |
ref_df_after_stand_series = ref_df_after_stand.copy().set_index('postcode_search')['ref_address_stand'].sort_index()
|
| 1193 |
+
|
|
|
|
|
|
|
|
|
|
| 1194 |
ref_df_after_stand_series_checked = ref_df_after_stand_series.copy()[ref_df_after_stand_series.index.isin(search_df_after_stand_series.index.tolist())]
|
| 1195 |
|
|
|
|
|
|
|
| 1196 |
if len(ref_df_after_stand_series_checked) == 0:
|
| 1197 |
print("Nothing relevant in reference data to match!")
|
| 1198 |
return pd.DataFrame(), pd.DataFrame(), pd.DataFrame(),pd.DataFrame(),"Nothing relevant in reference data to match!",search_address_cols
|
|
|
|
| 1555 |
### Rejoin the excluded matches onto the output file
|
| 1556 |
#NewMatchClass.results_on_orig_df = pd.concat([NewMatchClass.results_on_orig_df, NewMatchClass.excluded_df])
|
| 1557 |
|
| 1558 |
+
NewMatchClass.match_outputs_name = output_folder + "diagnostics_" + today_rev + ".csv" # + NewMatchClass.file_name + "_"
|
| 1559 |
+
NewMatchClass.results_orig_df_name = output_folder + "results_" + today_rev + ".csv" # + NewMatchClass.file_name + "_"
|
| 1560 |
|
| 1561 |
# Only keep essential columns
|
| 1562 |
essential_results_cols = [NewMatchClass.search_df_key_field, "Excluded from search", "Matched with reference address", "ref_index", "Reference matched address", "Reference file"]
|
tools/model_predict.py
CHANGED
|
@@ -15,10 +15,6 @@ today_rev = datetime.now().strftime("%Y%m%d")
|
|
| 15 |
|
| 16 |
# # Neural net functions
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
def vocab_lookup(characters: str, vocab) -> (int, np.ndarray):
|
| 23 |
"""
|
| 24 |
Taken from the function from the addressnet package by Jason Rigby
|
|
@@ -298,21 +294,10 @@ def post_predict_clean(predict_df, orig_search_df, ref_address_cols, search_df_k
|
|
| 298 |
|
| 299 |
predict_df = predict_df.rename(columns={"Postcode":"Postcode_predict"})
|
| 300 |
|
| 301 |
-
#orig_search_df.to_csv("orig_search_df_pre_predict.csv")
|
| 302 |
-
|
| 303 |
orig_search_df_pc = orig_search_df[[search_df_key_field, "postcode"]].rename(columns={"postcode":"Postcode"}).reset_index(drop=True)
|
| 304 |
predict_df = predict_df.merge(orig_search_df_pc, left_index=True, right_index=True, how = "left")
|
| 305 |
|
| 306 |
-
#predict_df = pd.concat([predict_df, orig_search_df_pc], axis = 1)
|
| 307 |
-
|
| 308 |
-
#predict_df[search_df_key_field] = orig_search_df[search_df_key_field]
|
| 309 |
-
|
| 310 |
-
#predict_df = predict_df.drop("index", axis=1)
|
| 311 |
-
|
| 312 |
-
#predict_df['index'] = predict_df.index
|
| 313 |
predict_df[search_df_key_field] = predict_df[search_df_key_field].astype(str)
|
| 314 |
-
|
| 315 |
-
#predict_df.to_csv("predict_end_of_clean.csv")
|
| 316 |
|
| 317 |
return predict_df
|
| 318 |
|
|
|
|
| 15 |
|
| 16 |
# # Neural net functions
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
def vocab_lookup(characters: str, vocab) -> (int, np.ndarray):
|
| 19 |
"""
|
| 20 |
Taken from the function from the addressnet package by Jason Rigby
|
|
|
|
| 294 |
|
| 295 |
predict_df = predict_df.rename(columns={"Postcode":"Postcode_predict"})
|
| 296 |
|
|
|
|
|
|
|
| 297 |
orig_search_df_pc = orig_search_df[[search_df_key_field, "postcode"]].rename(columns={"postcode":"Postcode"}).reset_index(drop=True)
|
| 298 |
predict_df = predict_df.merge(orig_search_df_pc, left_index=True, right_index=True, how = "left")
|
| 299 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
predict_df[search_df_key_field] = predict_df[search_df_key_field].astype(str)
|
|
|
|
|
|
|
| 301 |
|
| 302 |
return predict_df
|
| 303 |
|
tools/recordlinkage_funcs.py
CHANGED
|
@@ -93,7 +93,6 @@ def calc_final_nnet_scores(scoresSBM, weights, matching_variables):
|
|
| 93 |
scoresSBM_r = scoresSBM_r.sort_values(by=["level_0","score_perc"], ascending = False)
|
| 94 |
|
| 95 |
# Within each search address, remove anything below the max
|
| 96 |
-
#scoresSBM_r.to_csv("scoresSBM_r.csv")
|
| 97 |
scoresSBM_g = scoresSBM_r.reset_index()
|
| 98 |
|
| 99 |
# Get maximum score to join on
|
|
@@ -114,8 +113,6 @@ def join_on_pred_ref_details(scoresSBM_search_m, ref_search, predict_df_search):
|
|
| 114 |
|
| 115 |
scoresSBM_search_m_j = scoresSBM_search_m_j.reindex(sorted(scoresSBM_search_m_j.columns), axis=1)
|
| 116 |
|
| 117 |
-
#scoresSBM_search_m_j.to_csv("scoresSBM_search_m_j.csv")
|
| 118 |
-
|
| 119 |
return scoresSBM_search_m_j
|
| 120 |
|
| 121 |
def rearrange_columns(scoresSBM_search_m_j, new_join_col, search_df_key_field, blocker_column, standardise):
|
|
@@ -175,14 +172,10 @@ def rearrange_columns(scoresSBM_search_m_j, new_join_col, search_df_key_field, b
|
|
| 175 |
|
| 176 |
scoresSBM_out = scoresSBM_search_m_j[final_cols]
|
| 177 |
|
| 178 |
-
#scoresSBM_out.to_csv("scoresSBM_out" + "_" + blocker_column[0] + "_" + str(standardise) + ".csv")
|
| 179 |
-
|
| 180 |
return scoresSBM_out, start_columns
|
| 181 |
|
| 182 |
def create_matched_results_nnet(scoresSBM_best, search_df_key_field, orig_search_df, new_join_col, standardise, ref_search, blocker_column, score_cut_off):
|
| 183 |
|
| 184 |
-
#scoresSBM_best.to_csv("scores_sbm_best_" + str(standardise) + ".csv")
|
| 185 |
-
|
| 186 |
### Make the final 'matched output' file
|
| 187 |
scoresSBM_best_pred_cols = scoresSBM_best.filter(regex='_pred$').iloc[:,1:-1]
|
| 188 |
scoresSBM_best["search_orig_address"] = (scoresSBM_best_pred_cols.agg(' '.join, axis=1)).str.strip().str.replace("\s{2,}", " ", regex=True)
|
|
@@ -199,22 +192,16 @@ def create_matched_results_nnet(scoresSBM_best, search_df_key_field, orig_search
|
|
| 199 |
'full_match_score_based', 'Reference file']], on = search_df_key_field, how = "left").\
|
| 200 |
rename(columns={"full_address":"search_orig_address"})
|
| 201 |
|
| 202 |
-
#ref_search.to_csv("ref_search.csv")
|
| 203 |
-
|
| 204 |
if 'index' not in ref_search.columns:
|
| 205 |
ref_search['ref_index'] = ref_search.index
|
| 206 |
|
| 207 |
matched_output_SBM = matched_output_SBM.merge(ref_search.drop_duplicates("fulladdress")[["ref_index", "fulladdress", "Postcode", "property_number", "prop_number", "flat_number", "apart_number", "block_number", 'unit_number', "room_number", "house_court_name", "ref_address_stand"]], left_on = "address_ref", right_on = "fulladdress", how = "left", suffixes=('_search', '_reference')).rename(columns={"fulladdress":"reference_orig_address", "ref_address_stand":"reference_list_address"})
|
| 208 |
|
| 209 |
-
#matched_output_SBM.to_csv("matched_output_SBM_earlier_" + str(standardise) + ".csv")
|
| 210 |
-
|
| 211 |
# To replace with number check
|
| 212 |
|
| 213 |
-
|
| 214 |
matched_output_SBM = matched_output_SBM.rename(columns={"full_match_score_based":"full_match"})
|
| 215 |
|
| 216 |
matched_output_SBM['property_number_match'] = matched_output_SBM['full_match']
|
| 217 |
-
#
|
| 218 |
|
| 219 |
scores_SBM_best_cols = [search_df_key_field, 'full_match_score_based', 'perc_weighted_columns_matched', 'address_pred']#, "reference_mod_address"]
|
| 220 |
scores_SBM_best_cols.extend(new_join_col)
|
|
@@ -223,20 +210,13 @@ def create_matched_results_nnet(scoresSBM_best, search_df_key_field, orig_search
|
|
| 223 |
|
| 224 |
matched_output_SBM = matched_output_SBM.merge(matched_output_SBM_b.drop_duplicates(search_df_key_field), on = search_df_key_field, how = "left")
|
| 225 |
|
| 226 |
-
#matched_output_SBM.to_csv("matched_output_SBM_later_" + str(standardise) + ".csv")
|
| 227 |
-
|
| 228 |
from tools.fuzzy_match import create_diag_shortlist
|
| 229 |
matched_output_SBM = create_diag_shortlist(matched_output_SBM, "search_orig_address", score_cut_off, blocker_column, fuzzy_col='perc_weighted_columns_matched', search_mod_address="address_pred", resolve_tie_breaks=False)
|
| 230 |
|
| 231 |
-
#matched_output_SBM.to_csv("matched_output_after.csv")
|
| 232 |
-
|
| 233 |
-
#matched_output_SBM["UPRN"] = scoresSBM_best['UPRN']
|
| 234 |
|
| 235 |
matched_output_SBM['standardised_address'] = standardise
|
| 236 |
|
| 237 |
-
matched_output_SBM = matched_output_SBM.rename(columns={"address_pred":"search_mod_address",
|
| 238 |
-
#"address_ref":"reference_orig_address",
|
| 239 |
-
#"full_match_score_based":"fuzzy_score_match",
|
| 240 |
'perc_weighted_columns_matched':"fuzzy_score"})
|
| 241 |
|
| 242 |
matched_output_SBM_cols = [search_df_key_field, 'search_orig_address','reference_orig_address',
|
|
@@ -257,10 +237,6 @@ def create_matched_results_nnet(scoresSBM_best, search_df_key_field, orig_search
|
|
| 257 |
"unit_number_search","unit_number_reference",
|
| 258 |
'house_court_name_search', 'house_court_name_reference',
|
| 259 |
"search_mod_address", 'reference_mod_address','Postcode', 'postcode', 'ref_index', 'Reference file']
|
| 260 |
-
|
| 261 |
-
#matched_output_SBM_cols = [search_df_key_field, 'search_orig_address', 'reference_orig_address',
|
| 262 |
-
#'full_match', 'fuzzy_score_match', 'property_number_match', 'full_number_match',
|
| 263 |
-
#'fuzzy_score', 'search_mod_address', 'reference_mod_address', 'Reference file']
|
| 264 |
|
| 265 |
matched_output_SBM_cols.extend(new_join_col)
|
| 266 |
matched_output_SBM_cols.extend(['standardised_address'])
|
|
@@ -268,8 +244,6 @@ def create_matched_results_nnet(scoresSBM_best, search_df_key_field, orig_search
|
|
| 268 |
|
| 269 |
matched_output_SBM = matched_output_SBM.sort_values(search_df_key_field, ascending=True)
|
| 270 |
|
| 271 |
-
#matched_output_SBM.to_csv("matched_output_SBM_out.csv")
|
| 272 |
-
|
| 273 |
return matched_output_SBM
|
| 274 |
|
| 275 |
def score_based_match(predict_df_search, ref_search, orig_search_df, matching_variables, text_columns, blocker_column, weights, fuzzy_method, score_cut_off, search_df_key_field, standardise, new_join_col, score_cut_off_nnet_street=score_cut_off_nnet_street):
|
|
@@ -287,8 +261,6 @@ def score_based_match(predict_df_search, ref_search, orig_search_df, matching_va
|
|
| 287 |
|
| 288 |
scoresSBM_search_m_j = join_on_pred_ref_details(scoresSBM_search_m, ref_search, predict_df_search)
|
| 289 |
|
| 290 |
-
#scoresSBM_search_m_j.to_csv("scoresSBM_search_m_j.csv")
|
| 291 |
-
|
| 292 |
# When blocking by street, may to have an increased threshold as this is more prone to making mistakes
|
| 293 |
if blocker_column[0] == "Street": scoresSBM_search_m_j['full_match_score_based'] = (scoresSBM_search_m_j['score_perc'] >= score_cut_off_nnet_street)
|
| 294 |
|
|
@@ -297,15 +269,10 @@ def score_based_match(predict_df_search, ref_search, orig_search_df, matching_va
|
|
| 297 |
### Reorder some columns
|
| 298 |
scoresSBM_out, start_columns = rearrange_columns(scoresSBM_search_m_j, new_join_col, search_df_key_field, blocker_column, standardise)
|
| 299 |
|
| 300 |
-
#scoresSBM_out.to_csv("scoresSBM_out.csv")
|
| 301 |
-
|
| 302 |
matched_output_SBM = create_matched_results_nnet(scoresSBM_out, search_df_key_field, orig_search_df, new_join_col, standardise, ref_search, blocker_column, score_cut_off)
|
| 303 |
|
| 304 |
matched_output_SBM_best = matched_output_SBM.sort_values([search_df_key_field, "full_match"], ascending = [True, False]).drop_duplicates(search_df_key_field)
|
| 305 |
|
| 306 |
-
#matched_output_SBM.to_csv("matched_output_SBM.csv")
|
| 307 |
-
#matched_output_SBM_best.to_csv("matched_output_SBM_best.csv")
|
| 308 |
-
|
| 309 |
scoresSBM_best = scoresSBM_out[scoresSBM_out[search_df_key_field].isin(matched_output_SBM_best[search_df_key_field])]
|
| 310 |
|
| 311 |
return scoresSBM_best, matched_output_SBM_best
|
|
|
|
| 93 |
scoresSBM_r = scoresSBM_r.sort_values(by=["level_0","score_perc"], ascending = False)
|
| 94 |
|
| 95 |
# Within each search address, remove anything below the max
|
|
|
|
| 96 |
scoresSBM_g = scoresSBM_r.reset_index()
|
| 97 |
|
| 98 |
# Get maximum score to join on
|
|
|
|
| 113 |
|
| 114 |
scoresSBM_search_m_j = scoresSBM_search_m_j.reindex(sorted(scoresSBM_search_m_j.columns), axis=1)
|
| 115 |
|
|
|
|
|
|
|
| 116 |
return scoresSBM_search_m_j
|
| 117 |
|
| 118 |
def rearrange_columns(scoresSBM_search_m_j, new_join_col, search_df_key_field, blocker_column, standardise):
|
|
|
|
| 172 |
|
| 173 |
scoresSBM_out = scoresSBM_search_m_j[final_cols]
|
| 174 |
|
|
|
|
|
|
|
| 175 |
return scoresSBM_out, start_columns
|
| 176 |
|
| 177 |
def create_matched_results_nnet(scoresSBM_best, search_df_key_field, orig_search_df, new_join_col, standardise, ref_search, blocker_column, score_cut_off):
|
| 178 |
|
|
|
|
|
|
|
| 179 |
### Make the final 'matched output' file
|
| 180 |
scoresSBM_best_pred_cols = scoresSBM_best.filter(regex='_pred$').iloc[:,1:-1]
|
| 181 |
scoresSBM_best["search_orig_address"] = (scoresSBM_best_pred_cols.agg(' '.join, axis=1)).str.strip().str.replace("\s{2,}", " ", regex=True)
|
|
|
|
| 192 |
'full_match_score_based', 'Reference file']], on = search_df_key_field, how = "left").\
|
| 193 |
rename(columns={"full_address":"search_orig_address"})
|
| 194 |
|
|
|
|
|
|
|
| 195 |
if 'index' not in ref_search.columns:
|
| 196 |
ref_search['ref_index'] = ref_search.index
|
| 197 |
|
| 198 |
matched_output_SBM = matched_output_SBM.merge(ref_search.drop_duplicates("fulladdress")[["ref_index", "fulladdress", "Postcode", "property_number", "prop_number", "flat_number", "apart_number", "block_number", 'unit_number', "room_number", "house_court_name", "ref_address_stand"]], left_on = "address_ref", right_on = "fulladdress", how = "left", suffixes=('_search', '_reference')).rename(columns={"fulladdress":"reference_orig_address", "ref_address_stand":"reference_list_address"})
|
| 199 |
|
|
|
|
|
|
|
| 200 |
# To replace with number check
|
| 201 |
|
|
|
|
| 202 |
matched_output_SBM = matched_output_SBM.rename(columns={"full_match_score_based":"full_match"})
|
| 203 |
|
| 204 |
matched_output_SBM['property_number_match'] = matched_output_SBM['full_match']
|
|
|
|
| 205 |
|
| 206 |
scores_SBM_best_cols = [search_df_key_field, 'full_match_score_based', 'perc_weighted_columns_matched', 'address_pred']#, "reference_mod_address"]
|
| 207 |
scores_SBM_best_cols.extend(new_join_col)
|
|
|
|
| 210 |
|
| 211 |
matched_output_SBM = matched_output_SBM.merge(matched_output_SBM_b.drop_duplicates(search_df_key_field), on = search_df_key_field, how = "left")
|
| 212 |
|
|
|
|
|
|
|
| 213 |
from tools.fuzzy_match import create_diag_shortlist
|
| 214 |
matched_output_SBM = create_diag_shortlist(matched_output_SBM, "search_orig_address", score_cut_off, blocker_column, fuzzy_col='perc_weighted_columns_matched', search_mod_address="address_pred", resolve_tie_breaks=False)
|
| 215 |
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
matched_output_SBM['standardised_address'] = standardise
|
| 218 |
|
| 219 |
+
matched_output_SBM = matched_output_SBM.rename(columns={"address_pred":"search_mod_address",
|
|
|
|
|
|
|
| 220 |
'perc_weighted_columns_matched':"fuzzy_score"})
|
| 221 |
|
| 222 |
matched_output_SBM_cols = [search_df_key_field, 'search_orig_address','reference_orig_address',
|
|
|
|
| 237 |
"unit_number_search","unit_number_reference",
|
| 238 |
'house_court_name_search', 'house_court_name_reference',
|
| 239 |
"search_mod_address", 'reference_mod_address','Postcode', 'postcode', 'ref_index', 'Reference file']
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
|
| 241 |
matched_output_SBM_cols.extend(new_join_col)
|
| 242 |
matched_output_SBM_cols.extend(['standardised_address'])
|
|
|
|
| 244 |
|
| 245 |
matched_output_SBM = matched_output_SBM.sort_values(search_df_key_field, ascending=True)
|
| 246 |
|
|
|
|
|
|
|
| 247 |
return matched_output_SBM
|
| 248 |
|
| 249 |
def score_based_match(predict_df_search, ref_search, orig_search_df, matching_variables, text_columns, blocker_column, weights, fuzzy_method, score_cut_off, search_df_key_field, standardise, new_join_col, score_cut_off_nnet_street=score_cut_off_nnet_street):
|
|
|
|
| 261 |
|
| 262 |
scoresSBM_search_m_j = join_on_pred_ref_details(scoresSBM_search_m, ref_search, predict_df_search)
|
| 263 |
|
|
|
|
|
|
|
| 264 |
# When blocking by street, may to have an increased threshold as this is more prone to making mistakes
|
| 265 |
if blocker_column[0] == "Street": scoresSBM_search_m_j['full_match_score_based'] = (scoresSBM_search_m_j['score_perc'] >= score_cut_off_nnet_street)
|
| 266 |
|
|
|
|
| 269 |
### Reorder some columns
|
| 270 |
scoresSBM_out, start_columns = rearrange_columns(scoresSBM_search_m_j, new_join_col, search_df_key_field, blocker_column, standardise)
|
| 271 |
|
|
|
|
|
|
|
| 272 |
matched_output_SBM = create_matched_results_nnet(scoresSBM_out, search_df_key_field, orig_search_df, new_join_col, standardise, ref_search, blocker_column, score_cut_off)
|
| 273 |
|
| 274 |
matched_output_SBM_best = matched_output_SBM.sort_values([search_df_key_field, "full_match"], ascending = [True, False]).drop_duplicates(search_df_key_field)
|
| 275 |
|
|
|
|
|
|
|
|
|
|
| 276 |
scoresSBM_best = scoresSBM_out[scoresSBM_out[search_df_key_field].isin(matched_output_SBM_best[search_df_key_field])]
|
| 277 |
|
| 278 |
return scoresSBM_best, matched_output_SBM_best
|