address_matcher / tools /matcher_funcs.py
seanpedrickcase's picture
Initial commit v1.0
dd1cbb4
raw
history blame
66.7 kB
import os
import numpy as np
import pandas as pd
from typing import Dict, List, Tuple, Type
import time
import re
import math
from datetime import datetime
import copy
import gradio as gr
PandasDataFrame = Type[pd.DataFrame]
PandasSeries = Type[pd.Series]
MatchedResults = Dict[str,Tuple[str,int]]
array = List[str]
today = datetime.now().strftime("%d%m%Y")
today_rev = datetime.now().strftime("%Y%m%d")
today_month_rev = datetime.now().strftime("%Y%m")
# Constants
run_fuzzy_match = True
run_nnet_match = True
run_standardise = True
from tools.preparation import prepare_search_address_string, prepare_search_address, prepare_ref_address, check_no_number_addresses, extract_street_name, remove_non_postal
from tools.standardise import standardise_wrapper_func
from tools.fuzzy_match import string_match_by_post_code_multiple, _create_fuzzy_match_results_output, join_to_orig_df
# Neural network functions
### Predict function for imported model
from tools.model_predict import full_predict_func, full_predict_torch, post_predict_clean
from tools.recordlinkage_funcs import score_based_match, check_matches_against_fuzzy
from tools.gradio import initial_data_load
# API functions
from tools.addressbase_api_funcs import places_api_query
# Maximum number of neural net predictions in a single batch
from tools.constants import max_predict_len, MatcherClass
# Load in data functions
def detect_file_type(filename):
"""Detect the file type based on its extension."""
if (filename.endswith('.csv')) | (filename.endswith('.csv.gz')) | (filename.endswith('.zip')):
return 'csv'
elif filename.endswith('.xlsx'):
return 'xlsx'
elif filename.endswith('.parquet'):
return 'parquet'
else:
raise ValueError("Unsupported file type.")
def read_file(filename):
"""Read the file based on its detected type."""
file_type = detect_file_type(filename)
if file_type == 'csv':
return pd.read_csv(filename, low_memory=False)
elif file_type == 'xlsx':
return pd.read_excel(filename)
elif file_type == 'parquet':
return pd.read_parquet(filename)
def get_file_name(in_name):
# Corrected regex pattern
match = re.search(r'\\(?!.*\\)(.*)', in_name)
if match:
matched_result = match.group(1)
else:
matched_result = None
return matched_result
def filter_not_matched(
matched_results: pd.DataFrame,
search_df: pd.DataFrame,
key_col: str
) -> pd.DataFrame:
"""Filters search_df to only rows with key_col not in matched_results"""
# Validate inputs
if not isinstance(matched_results, pd.DataFrame):
raise TypeError("not_matched_results must be a Pandas DataFrame")
if not isinstance(search_df, pd.DataFrame):
raise TypeError("search_df must be a Pandas DataFrame")
if not isinstance(key_col, str):
raise TypeError("key_col must be a string")
if key_col not in matched_results.columns:
raise ValueError(f"{key_col} not a column in matched_results")
matched_results_success = matched_results[matched_results["full_match"]==True]
# Filter search_df
#print(search_df.columns)
#print(key_col)
matched = search_df[key_col].astype(str).isin(matched_results_success[key_col].astype(str))#.drop(['level_0','index'], axis = 1, errors="ignore").reset_index() #
return search_df.iloc[np.where(~matched)[0]] # search_df[~matched]
def run_all_api_calls(in_api_key:str, Matcher:MatcherClass, query_type:str, progress=gr.Progress()):
if in_api_key == "":
print ("No API key provided, please provide one to continue")
return Matcher
else:
# Call the API
#Matcher.ref_df = pd.DataFrame()
# Check if the ref_df file already exists
def check_and_create_api_folder():
# Check if the environmental variable is available
file_path = os.environ.get('ADDRESSBASE_API_OUT') # Replace 'YOUR_ENV_VARIABLE_NAME' with the name of your environmental variable
if file_path is None:
# Environmental variable is not set
print("API output environmental variable not set.")
# Create the 'api/' folder if it doesn't already exist
api_folder_path = 'api/'
if not os.path.exists(api_folder_path):
os.makedirs(api_folder_path)
print(f"'{api_folder_path}' folder created.")
else:
# Environmental variable is set
api_folder_path = file_path
print(f"Environmental variable found: {api_folder_path}")
return api_folder_path
api_output_folder = check_and_create_api_folder()
# Check if the file exists
print("Matcher file name: ", Matcher.file_name)
search_file_name_without_extension = re.sub(r'\.[^.]+$', '', Matcher.file_name)
#print("Search file name without extension: ", search_file_name_without_extension)
api_ref_save_loc = api_output_folder + search_file_name_without_extension + "_api_" + today_month_rev + "_" + query_type + "_ckpt"
print("API reference save location: ", api_ref_save_loc)
# Allow for csv, parquet and gzipped csv files
if os.path.isfile(api_ref_save_loc + ".csv"):
print("API reference CSV file found")
Matcher.ref_df = pd.read_csv(api_ref_save_loc + ".csv")
elif os.path.isfile(api_ref_save_loc + ".parquet"):
print("API reference Parquet file found")
Matcher.ref_df = pd.read_parquet(api_ref_save_loc + ".parquet")
elif os.path.isfile(api_ref_save_loc + ".csv.gz"):
print("API reference gzipped CSV file found")
Matcher.ref_df = pd.read_csv(api_ref_save_loc + ".csv.gz", compression='gzip')
else:
print("API reference file not found, querying API for reference data.")
def conduct_api_loop(in_query, in_api_key, query_type, i, api_ref_save_loc, loop_list, api_search_index):
ref_addresses = places_api_query(in_query, in_api_key, query_type)
ref_addresses['Address_row_number'] = api_search_index[i]
loop_list.append(ref_addresses)
if (i + 1) % 500 == 0:
print("Saving api call checkpoint for query:", str(i + 1))
pd.concat(loop_list).to_parquet(api_ref_save_loc + ".parquet", index=False)
return loop_list
def check_postcode(postcode):
# Remove spaces on the ends or in the middle of the postcode, and any symbols
cleaned_postcode = re.sub(r'[^\w\s]|[\s]', '', postcode)
# Ensure that the postcode meets the specified format
postcode_pattern = r'\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]?[0-9][A-Z]{2}|GIR0AA|GIR0A{2}|[A-Z][A-HJ-Y]?[0-9][0-9A-Z]?[0-9]{1}?)\b'
match = re.match(postcode_pattern, cleaned_postcode)
if match and len(cleaned_postcode) in (6, 7):
return cleaned_postcode # Return the matched postcode string
else:
return None # Return None if no match is found
if query_type == "Address":
save_file = True
# Do an API call for each unique address
if not Matcher.ref_df.empty:
api_search_df = Matcher.search_df.copy().drop(list(set(Matcher.ref_df["Address_row_number"])))
else:
print("Matcher ref_df data empty")
api_search_df = Matcher.search_df.copy()
i = 0
loop_df = Matcher.ref_df
loop_list = [Matcher.ref_df]
for address in progress.tqdm(api_search_df['full_address_postcode'], desc= "Making API calls", unit="addresses", total=len(api_search_df['full_address_postcode'])):
print("Query number: " + str(i+1), "with address: ", address)
api_search_index = api_search_df.index
loop_list = conduct_api_loop(address, in_api_key, query_type, i, api_ref_save_loc, loop_list, api_search_index)
i += 1
loop_df = pd.concat(loop_list)
Matcher.ref_df = loop_df.drop_duplicates(keep='first', ignore_index=True)
elif query_type == "Postcode":
save_file = True
# Do an API call for each unique postcode. Each API call can only return 100 results maximum :/
if not Matcher.ref_df.empty:
print("Excluding postcodes that already exist in API call data.")
# Retain original index values after filtering
Matcher.search_df["index_keep"] = Matcher.search_df.index
if 'invalid_request' in Matcher.ref_df.columns and 'Address_row_number' in Matcher.ref_df.columns:
print("Joining on invalid_request column")
Matcher.search_df = Matcher.search_df.merge(Matcher.ref_df[['Address_row_number', 'invalid_request']].drop_duplicates(subset="Address_row_number"), left_on = Matcher.search_df_key_field, right_on='Address_row_number', how='left')
elif not 'invalid_request' in Matcher.search_df.columns:
Matcher.search_df['invalid_request'] = False
postcode_col = Matcher.search_postcode_col[0]
# Check ref_df df against cleaned and non-cleaned postcodes
Matcher.search_df[postcode_col] = Matcher.search_df[postcode_col].astype(str)
search_df_cleaned_pcodes = Matcher.search_df[postcode_col].apply(check_postcode)
ref_df_cleaned_pcodes = Matcher.ref_df['POSTCODE_LOCATOR'].dropna().apply(check_postcode)
api_search_df = Matcher.search_df.copy().loc[
~Matcher.search_df[postcode_col].isin(Matcher.ref_df['POSTCODE_LOCATOR']) &
~(Matcher.search_df['invalid_request']==True) &
~(search_df_cleaned_pcodes.isin(ref_df_cleaned_pcodes)), :]
#api_search_index = api_search_df["index_keep"]
#api_search_df.index = api_search_index
print("Remaining invalid request count: ", Matcher.search_df['invalid_request'].value_counts())
else:
print("Matcher ref_df data empty")
api_search_df = Matcher.search_df.copy()
api_search_index = api_search_df.index
api_search_df['index_keep'] = api_search_index
postcode_col = Matcher.search_postcode_col[0]
unique_pcodes = api_search_df.loc[:, ["index_keep", postcode_col]].drop_duplicates(subset=[postcode_col], keep='first')
print("Unique postcodes: ", unique_pcodes[postcode_col])
# Apply the function to each postcode in the Series
unique_pcodes["cleaned_unique_postcodes"] = unique_pcodes[postcode_col].apply(check_postcode)
# Filter out the postcodes that comply with the specified format
valid_unique_postcodes = unique_pcodes.dropna(subset=["cleaned_unique_postcodes"])
valid_postcode_search_index = valid_unique_postcodes['index_keep']
valid_postcode_search_index_list = valid_postcode_search_index.tolist()
if not valid_unique_postcodes.empty:
print("Unique valid postcodes: ", valid_unique_postcodes)
print("Number of unique valid postcodes: ", len(valid_unique_postcodes))
tic = time.perf_counter()
i = 0
loop_df = Matcher.ref_df
loop_list = [Matcher.ref_df]
for pcode in progress.tqdm(valid_unique_postcodes["cleaned_unique_postcodes"], desc= "Making API calls", unit="unique postcodes", total=len(valid_unique_postcodes["cleaned_unique_postcodes"])):
#api_search_index = api_search_df.index
print("Query number: " + str(i+1), " with postcode: ", pcode, " and index: ", valid_postcode_search_index_list[i])
loop_list = conduct_api_loop(pcode, in_api_key, query_type, i, api_ref_save_loc, loop_list, valid_postcode_search_index_list)
i += 1
loop_df = pd.concat(loop_list)
Matcher.ref_df = loop_df.drop_duplicates(keep='first', ignore_index=True)
toc = time.perf_counter()
print("API call time in seconds: ", toc-tic)
else:
print("No valid postcodes found.")
elif query_type == "UPRN":
save_file = True
# Do an API call for each unique address
if not Matcher.ref_df.empty:
api_search_df = Matcher.search_df.copy().drop(list(set(Matcher.ref_df["Address_row_number"])))
else:
print("Matcher ref_df data empty")
api_search_df = Matcher.search_df.copy()
i = 0
loop_df = Matcher.ref_df
loop_list = [Matcher.ref_df]
uprn_check_col = 'ADR_UPRN'
for uprn in progress.tqdm(api_search_df[uprn_check_col], desc= "Making API calls", unit="UPRNs", total=len(api_search_df[uprn_check_col])):
print("Query number: " + str(i+1), "with address: ", uprn)
api_search_index = api_search_df.index
loop_list = conduct_api_loop(uprn, in_api_key, query_type, i, api_ref_save_loc, loop_list, api_search_index)
i += 1
loop_df = pd.concat(loop_list)
Matcher.ref_df = loop_df.drop_duplicates(keep='first', ignore_index=True)
else:
print("Reference file loaded from file, no API calls made.")
save_file = False
# Post API call processing
Matcher.ref_name = "API"
#Matcher.ref_df = Matcher.ref_df.reset_index(drop=True)
Matcher.ref_df['Reference file'] = Matcher.ref_name
if query_type == "Postcode":
#print(Matcher.ref_df.columns)
cols_of_interest = ["ADDRESS", "ORGANISATION", "SAO_TEXT", "SAO_START_NUMBER", "SAO_START_SUFFIX", "SAO_END_NUMBER", "SAO_END_SUFFIX", "PAO_TEXT", "PAO_START_NUMBER", "PAO_START_SUFFIX", "PAO_END_NUMBER", "PAO_END_SUFFIX", "STREET_DESCRIPTION", "TOWN_NAME" ,"ADMINISTRATIVE_AREA", "LOCALITY_NAME", "POSTCODE_LOCATOR", "UPRN", "PARENT_UPRN", "USRN", "LPI_KEY", "RPC", "LOGICAL_STATUS_CODE", "CLASSIFICATION_CODE", "LOCAL_CUSTODIAN_CODE", "COUNTRY_CODE", "POSTAL_ADDRESS_CODE", "BLPU_STATE_CODE", "LAST_UPDATE_DATE", "ENTRY_DATE", "STREET_STATE_CODE", "STREET_CLASSIFICATION_CODE", "LPI_LOGICAL_STATUS_CODE", "invalid_request", "Address_row_number", "Reference file"]
try:
# Attempt to select only the columns of interest
Matcher.ref_df = Matcher.ref_df[cols_of_interest]
except KeyError as e:
missing_columns = [col for col in e.args[0][1:-1].split(", ") if col not in cols_of_interest]
# Handle the missing columns gracefully
print(f"Some columns are missing: {missing_columns}")
#if "LOCAL_CUSTODIAN_CODE" in Matcher.ref_df.columns:
# These are items that are 'owned' by Ordnance Survey like telephone boxes, bus shelters
# Matcher.ref_df = Matcher.ref_df.loc[Matcher.ref_df["LOCAL_CUSTODIAN_CODE"] != 7655,:]
if save_file:
print("Saving reference file to: " + api_ref_save_loc[:-5] + ".parquet")
Matcher.ref_df.to_parquet(api_ref_save_loc + ".parquet", index=False) # Save checkpoint as well
Matcher.ref_df.to_parquet(api_ref_save_loc[:-5] + ".parquet", index=False)
if Matcher.ref_df.empty:
print ("No reference data found with API")
return Matcher
return Matcher
def check_ref_data_exists(Matcher:MatcherClass, ref_data_state:PandasDataFrame, in_ref:List[str], in_refcol:List[str], in_api:List[str], in_api_key:str, query_type:str, progress=gr.Progress()):
'''
Check for reference address data, do some preprocessing, and load in from the Addressbase API if required.
'''
# Check if reference data loaded, bring in if already there
if not ref_data_state.empty:
Matcher.ref_df = ref_data_state
Matcher.ref_name = get_file_name(in_ref[0].name)
Matcher.ref_df["Reference file"] = Matcher.ref_name
# Otherwise check for file name and load in. If nothing found, fail
else:
Matcher.ref_df = pd.DataFrame()
if not in_ref:
if in_api==False:
print ("No reference file provided, please provide one to continue")
return Matcher
# Check if api call required and api key is provided
else:
Matcher = run_all_api_calls(in_api_key, Matcher, query_type)
else:
Matcher.ref_name = get_file_name(in_ref[0].name)
# Concatenate all in reference files together
for ref_file in in_ref:
#print(ref_file.name)
temp_ref_file = read_file(ref_file.name)
file_name_out = get_file_name(ref_file.name)
temp_ref_file["Reference file"] = file_name_out
Matcher.ref_df = pd.concat([Matcher.ref_df, temp_ref_file])
# For the neural net model to work, the llpg columns have to be in the LPI format (e.g. with columns SaoText, SaoStartNumber etc. Here we check if we have that format.
if 'Address_LPI' in Matcher.ref_df.columns:
Matcher.ref_df = Matcher.ref_df.rename(columns={
"Name_LPI": "PaoText",
"Num_LPI": "PaoStartNumber",
"Num_Suffix_LPI":"PaoStartSuffix",
"Number End_LPI":"PaoEndNumber",
"Number_End_Suffix_LPI":"PaoEndSuffix",
"Secondary_Name_LPI":"SaoText",
"Secondary_Num_LPI":"SaoStartNumber",
"Secondary_Num_Suffix_LPI":"SaoStartSuffix",
"Secondary_Num_End_LPI":"SaoEndNumber",
"Secondary_Num_End_Suffix_LPI":"SaoEndSuffix",
"Postcode_LPI":"Postcode",
"Postal_Town_LPI":"PostTown",
"UPRN_BLPU": "UPRN"
})
#print("Matcher reference file: ", Matcher.ref_df['Reference file'])
# Check if the source is the Addressbase places API
if Matcher.ref_df.iloc[0]['Reference file'] == 'API' or '_api_' in Matcher.ref_df.iloc[0]['Reference file']:
Matcher.ref_df = Matcher.ref_df.rename(columns={
"ORGANISATION_NAME": "Organisation",
"ORGANISATION": "Organisation",
"PAO_TEXT": "PaoText",
"PAO_START_NUMBER": "PaoStartNumber",
"PAO_START_SUFFIX":"PaoStartSuffix",
"PAO_END_NUMBER":"PaoEndNumber",
"PAO_END_SUFFIX":"PaoEndSuffix",
"STREET_DESCRIPTION":"Street",
"SAO_TEXT":"SaoText",
"SAO_START_NUMBER":"SaoStartNumber",
"SAO_START_SUFFIX":"SaoStartSuffix",
"SAO_END_NUMBER":"SaoEndNumber",
"SAO_END_SUFFIX":"SaoEndSuffix",
"POSTCODE_LOCATOR":"Postcode",
"TOWN_NAME":"PostTown",
"LOCALITY_NAME":"LocalityName",
"ADMINISTRATIVE_AREA":"AdministrativeArea"
}, errors="ignore")
# Check ref_df file format
# If standard format, or it's an API call
if 'SaoText' in Matcher.ref_df.columns or in_api:
Matcher.standard_llpg_format = True
Matcher.ref_address_cols = ["Organisation", "SaoStartNumber", "SaoStartSuffix", "SaoEndNumber", "SaoEndSuffix", "SaoText", "PaoStartNumber", "PaoStartSuffix", "PaoEndNumber",
"PaoEndSuffix", "PaoText", "Street", "PostTown", "Postcode"]
# Add columns from the list if they don't exist
for col in Matcher.ref_address_cols:
if col not in Matcher.ref_df:
Matcher.ref_df[col] = np.nan
else:
Matcher.standard_llpg_format = False
Matcher.ref_address_cols = in_refcol
Matcher.ref_df = Matcher.ref_df.rename(columns={Matcher.ref_address_cols[-1]:"Postcode"})
Matcher.ref_address_cols[-1] = "Postcode"
# Reset index for ref_df as multiple files may have been combined with identical indices
Matcher.ref_df = Matcher.ref_df.reset_index() #.drop(["index","level_0"], axis = 1, errors="ignore").reset_index().drop(["index","level_0"], axis = 1, errors="ignore")
Matcher.ref_df.index.name = 'index'
return Matcher
def check_match_data_filter(Matcher, data_state, results_data_state, in_file, in_text, in_colnames, in_joincol, in_existing, in_api):
# Assign join field if not known
if not Matcher.search_df_key_field:
Matcher.search_df_key_field = "index"
# Set search address cols as entered column names
#print("In colnames in check match data: ", in_colnames)
Matcher.search_address_cols = in_colnames
# Check if data loaded already and bring it in
if not data_state.empty:
Matcher.search_df = data_state
Matcher.search_df['index'] = Matcher.search_df.index
else:
Matcher.search_df = pd.DataFrame()
# If someone has just entered open text, just load this instead
if in_text:
Matcher.search_df, Matcher.search_df_key_field, Matcher.search_address_cols, Matcher.search_postcode_col = prepare_search_address_string(in_text)
# If two matcher files are loaded in, the algorithm will combine them together
if Matcher.search_df.empty and in_file:
output_message, drop1, drop2, Matcher.search_df, results_data_state = initial_data_load(in_file)
file_list = [string.name for string in in_file]
data_file_names = [string for string in file_list if "results_on_orig" not in string.lower()]
#print("Data file names: ", data_file_names)
Matcher.file_name = get_file_name(data_file_names[0])
# search_df makes column to use as index
Matcher.search_df['index'] = Matcher.search_df.index
# Join previously created results file onto search_df if previous results file exists
if not results_data_state.empty:
print("Joining on previous results file")
Matcher.results_on_orig_df = results_data_state.copy()
Matcher.search_df = Matcher.search_df.merge(results_data_state, on = "index", how = "left")
# If no join on column suggested, assume the user wants the UPRN
# print("in_joincol: ", in_joincol)
if not in_joincol:
Matcher.new_join_col = ['UPRN']
#Matcher.new_join_col = Matcher.new_join_col#[0]
else:
Matcher.new_join_col = in_joincol
#Matcher.new_join_col = Matcher.new_join_col
# Extract the column names from the input data
print("In colnames: ", in_colnames)
if len(in_colnames) > 1:
Matcher.search_postcode_col = [in_colnames[-1]]
print("Postcode col: ", Matcher.search_postcode_col)
elif len(in_colnames) == 1:
Matcher.search_df['full_address_postcode'] = Matcher.search_df[in_colnames[0]]
Matcher.search_postcode_col = ['full_address_postcode']
Matcher.search_address_cols.append('full_address_postcode')
# Check for column that indicates there are existing matches. The code will then search this column for entries, and will remove them from the data to be searched
Matcher.existing_match_cols = in_existing
if in_existing:
if "Matched with reference address" in Matcher.search_df.columns:
Matcher.search_df.loc[~Matcher.search_df[in_existing].isna(), "Matched with reference address"] = True
else: Matcher.search_df["Matched with reference address"] = ~Matcher.search_df[in_existing].isna()
print("Shape of search_df before filtering is: ", Matcher.search_df.shape)
### Filter addresses to those with length > 0
zero_length_search_df = Matcher.search_df.copy()[Matcher.search_address_cols]
zero_length_search_df = zero_length_search_df.fillna('').infer_objects(copy=False)
Matcher.search_df["address_cols_joined"] = zero_length_search_df.astype(str).sum(axis=1).str.strip()
length_more_than_0 = Matcher.search_df["address_cols_joined"].str.len() > 0
### Filter addresses to match to postcode areas present in both search_df and ref_df_cleaned only (postcode without the last three characters). Only run if API call is false. When the API is called, relevant addresses and postcodes should be brought in by the API.
if not in_api:
if Matcher.filter_to_lambeth_pcodes == True:
Matcher.search_df["postcode_search_area"] = Matcher.search_df[Matcher.search_postcode_col[0]].str.strip().str.upper().str.replace(" ", "").str[:-2]
Matcher.ref_df["postcode_search_area"] = Matcher.ref_df["Postcode"].str.strip().str.upper().str.replace(" ", "").str[:-2]
unique_ref_pcode_area = (Matcher.ref_df["postcode_search_area"][Matcher.ref_df["postcode_search_area"].str.len() > 3]).unique()
postcode_found_in_search = Matcher.search_df["postcode_search_area"].isin(unique_ref_pcode_area)
Matcher.search_df["Excluded from search"] = "Included in search"
Matcher.search_df.loc[~(postcode_found_in_search), "Excluded from search"] = "Postcode area not found"
Matcher.search_df.loc[~(length_more_than_0), "Excluded from search"] = "Address length 0"
Matcher.pre_filter_search_df = Matcher.search_df.copy()#.drop(["index", "level_0"], axis = 1, errors = "ignore").reset_index()
Matcher.pre_filter_search_df = Matcher.pre_filter_search_df.drop("address_cols_joined", axis = 1)
Matcher.excluded_df = Matcher.search_df.copy()[~(postcode_found_in_search) | ~(length_more_than_0)]
Matcher.search_df = Matcher.search_df[(postcode_found_in_search) & (length_more_than_0)]
# Exclude records that have already been matched separately, i.e. if 'Matched with reference address' column exists, and has trues in it
if "Matched with reference address" in Matcher.search_df.columns:
previously_matched = Matcher.pre_filter_search_df["Matched with reference address"] == True
Matcher.pre_filter_search_df.loc[previously_matched, "Excluded from search"] = "Previously matched"
Matcher.excluded_df = Matcher.search_df.copy()[~(postcode_found_in_search) | ~(length_more_than_0) | (previously_matched)]
Matcher.search_df = Matcher.search_df[(postcode_found_in_search) & (length_more_than_0) & ~(previously_matched)]
else:
Matcher.excluded_df = Matcher.search_df.copy()[~(postcode_found_in_search) | ~(length_more_than_0)]
Matcher.search_df = Matcher.search_df[(postcode_found_in_search) & (length_more_than_0)]
print("Shape of ref_df before filtering is: ", Matcher.ref_df.shape)
unique_search_pcode_area = (Matcher.search_df["postcode_search_area"]).unique()
postcode_found_in_ref = Matcher.ref_df["postcode_search_area"].isin(unique_search_pcode_area)
Matcher.ref_df = Matcher.ref_df[postcode_found_in_ref]
Matcher.pre_filter_search_df = Matcher.pre_filter_search_df.drop("postcode_search_area", axis = 1)
Matcher.search_df = Matcher.search_df.drop("postcode_search_area", axis = 1)
Matcher.ref_df = Matcher.ref_df.drop("postcode_search_area", axis = 1)
Matcher.excluded_df = Matcher.excluded_df.drop("postcode_search_area", axis = 1)
else:
Matcher.pre_filter_search_df = Matcher.search_df.copy()
Matcher.search_df.loc[~(length_more_than_0), "Excluded from search"] = "Address length 0"
Matcher.excluded_df = Matcher.search_df[~(length_more_than_0)]
Matcher.search_df = Matcher.search_df[length_more_than_0]
Matcher.search_df = Matcher.search_df.drop("address_cols_joined", axis = 1, errors="ignore")
Matcher.excluded_df = Matcher.excluded_df.drop("address_cols_joined", axis = 1, errors="ignore")
Matcher.search_df_not_matched = Matcher.search_df
# If this is for an API call, we need to convert the search_df address columns to one column now. This is so the API call can be made and the reference dataframe created.
if in_api:
if in_file:
output_message, drop1, drop2, df, results_data_state = initial_data_load(in_file)
file_list = [string.name for string in in_file]
data_file_names = [string for string in file_list if "results_on_orig" not in string.lower()]
Matcher.file_name = get_file_name(data_file_names[0])
else:
if in_text:
Matcher.file_name = in_text
else:
Matcher.file_name = "API call"
# Exclude records that have already been matched separately, i.e. if 'Matched with reference address' column exists, and has trues in it
if in_existing:
print("Checking for previously matched records")
Matcher.pre_filter_search_df = Matcher.search_df.copy()
previously_matched = ~Matcher.pre_filter_search_df[in_existing].isnull()
Matcher.pre_filter_search_df.loc[previously_matched, "Excluded from search"] = "Previously matched"
Matcher.excluded_df = Matcher.search_df.copy()[~(length_more_than_0) | (previously_matched)]
Matcher.search_df = Matcher.search_df[(length_more_than_0) & ~(previously_matched)]
if type(Matcher.search_df) == str: search_df_cleaned, search_df_key_field, search_address_cols = prepare_search_address_string(Matcher.search_df)
else: search_df_cleaned = prepare_search_address(Matcher.search_df, Matcher.search_address_cols, Matcher.search_postcode_col, Matcher.search_df_key_field)
Matcher.search_df['full_address_postcode'] = search_df_cleaned["full_address"]
#Matcher.search_df = Matcher.search_df.reset_index(drop=True)
#Matcher.search_df.index.name = 'index'
return Matcher
def load_matcher_data(in_text, in_file, in_ref, data_state, results_data_state, ref_data_state, in_colnames, in_refcol, in_joincol, in_existing, Matcher, in_api, in_api_key):
'''
Load in user inputs from the Gradio interface. Convert all input types (single address, or csv input) into standardised data format that can be used downstream for the fuzzy matching.
'''
today_rev = datetime.now().strftime("%Y%m%d")
# Abort flag for if it's not even possible to attempt the first stage of the match for some reason
Matcher.abort_flag = False
### ref_df FILES ###
# If not an API call, run this first
if not in_api:
Matcher = check_ref_data_exists(Matcher, ref_data_state, in_ref, in_refcol, in_api, in_api_key, query_type=in_api)
### MATCH/SEARCH FILES ###
# If doing API calls, we need to know the search data before querying for specific addresses/postcodes
Matcher = check_match_data_filter(Matcher, data_state, results_data_state, in_file, in_text, in_colnames, in_joincol, in_existing, in_api)
# If an API call, ref_df data is loaded after
if in_api:
Matcher = check_ref_data_exists(Matcher, ref_data_state, in_ref, in_refcol, in_api, in_api_key, query_type=in_api)
#print("Resetting index.")
# API-called data will often have duplicate indexes in it - drop them to avoid conflicts down the line
#Matcher.ref_df = Matcher.ref_df.reset_index(drop = True)
print("Shape of ref_df after filtering is: ", Matcher.ref_df.shape)
print("Shape of search_df after filtering is: ", Matcher.search_df.shape)
Matcher.match_outputs_name = "diagnostics_initial_" + today_rev + ".csv"
Matcher.results_orig_df_name = "results_initial_" + today_rev + ".csv"
#Matcher.match_results_output.to_csv(Matcher.match_outputs_name, index = None)
#Matcher.results_on_orig_df.to_csv(Matcher.results_orig_df_name, index = None)
return Matcher
# DF preparation functions
# Run batch of matches
def run_match_batch(InitialMatch, batch_n, total_batches, progress=gr.Progress()):
if run_fuzzy_match == True:
overall_tic = time.perf_counter()
progress(0, desc= "Batch " + str(batch_n+1) + " of " + str(total_batches) + ". Fuzzy match - non-standardised dataset")
df_name = "Fuzzy not standardised"
''' FUZZY MATCHING '''
''' Run fuzzy match on non-standardised dataset '''
FuzzyNotStdMatch = orchestrate_match_run(Matcher = copy.copy(InitialMatch), standardise = False, nnet = False, file_stub= "not_std_", df_name = df_name)
if FuzzyNotStdMatch.abort_flag == True:
message = "Nothing to match! Aborting address check."
print(message)
return message, InitialMatch
FuzzyNotStdMatch = combine_two_matches(InitialMatch, FuzzyNotStdMatch, df_name)
if (len(FuzzyNotStdMatch.search_df_not_matched) == 0) | (sum(FuzzyNotStdMatch.match_results_output[FuzzyNotStdMatch.match_results_output['full_match']==False]['fuzzy_score'])==0):
overall_toc = time.perf_counter()
time_out = f"The fuzzy match script took {overall_toc - overall_tic:0.1f} seconds"
FuzzyNotStdMatch.output_summary = FuzzyNotStdMatch.output_summary + " Neural net match not attempted. "# + time_out
return FuzzyNotStdMatch.output_summary, FuzzyNotStdMatch
''' Run fuzzy match on standardised dataset '''
progress(.25, desc="Batch " + str(batch_n+1) + " of " + str(total_batches) + ". Fuzzy match - standardised dataset")
df_name = "Fuzzy standardised"
FuzzyStdMatch = orchestrate_match_run(Matcher = copy.copy(FuzzyNotStdMatch), standardise = True, nnet = False, file_stub= "std_", df_name = df_name)
FuzzyStdMatch = combine_two_matches(FuzzyNotStdMatch, FuzzyStdMatch, df_name)
''' Continue if reference file in correct format, and neural net model exists. Also if data not too long '''
if ((len(FuzzyStdMatch.search_df_not_matched) == 0) | (FuzzyStdMatch.standard_llpg_format == False) |\
(os.path.exists(FuzzyStdMatch.model_dir_name + '/saved_model.zip') == False) | (run_nnet_match == False)):
overall_toc = time.perf_counter()
time_out = f"The fuzzy match script took {overall_toc - overall_tic:0.1f} seconds"
FuzzyStdMatch.output_summary = FuzzyStdMatch.output_summary + " Neural net match not attempted. "# + time_out
return FuzzyStdMatch.output_summary, FuzzyStdMatch
if run_nnet_match == True:
''' NEURAL NET '''
if run_fuzzy_match == False:
FuzzyStdMatch = copy.copy(InitialMatch)
overall_tic = time.perf_counter()
''' First on non-standardised addresses '''
progress(.50, desc="Batch " + str(batch_n+1) + " of " + str(total_batches) + ". Neural net - non-standardised dataset")
df_name = "Neural net not standardised"
FuzzyNNetNotStdMatch = orchestrate_match_run(Matcher = copy.copy(FuzzyStdMatch), standardise = False, nnet = True, file_stub= "nnet_not_std_", df_name = df_name)
FuzzyNNetNotStdMatch = combine_two_matches(FuzzyStdMatch, FuzzyNNetNotStdMatch, df_name)
if (len(FuzzyNNetNotStdMatch.search_df_not_matched) == 0):
overall_toc = time.perf_counter()
time_out = f"The whole match script took {overall_toc - overall_tic:0.1f} seconds"
FuzzyNNetNotStdMatch.output_summary = FuzzyNNetNotStdMatch.output_summary# + time_out
return FuzzyNNetNotStdMatch.output_summary, FuzzyNNetNotStdMatch
''' Next on standardised addresses '''
progress(.75, desc="Batch " + str(batch_n+1) + " of " + str(total_batches) + ". Neural net - standardised dataset")
df_name = "Neural net standardised"
FuzzyNNetStdMatch = orchestrate_match_run(Matcher = copy.copy(FuzzyNNetNotStdMatch), standardise = True, nnet = True, file_stub= "nnet_std_", df_name = df_name)
FuzzyNNetStdMatch = combine_two_matches(FuzzyNNetNotStdMatch, FuzzyNNetStdMatch, df_name)
if run_fuzzy_match == False:
overall_toc = time.perf_counter()
time_out = f"The neural net match script took {overall_toc - overall_tic:0.1f} seconds"
FuzzyNNetStdMatch.output_summary = FuzzyNNetStdMatch.output_summary + " Only Neural net match attempted. "# + time_out
return FuzzyNNetStdMatch.output_summary, FuzzyNNetStdMatch
overall_toc = time.perf_counter()
time_out = f"The whole match script took {overall_toc - overall_tic:0.1f} seconds"
summary_of_summaries = FuzzyNotStdMatch.output_summary + "\n" + FuzzyStdMatch.output_summary + "\n" + FuzzyNNetStdMatch.output_summary + "\n" + time_out
return summary_of_summaries, FuzzyNNetStdMatch
# Overarching functions
def orchestrate_match_run(Matcher, standardise = False, nnet = False, file_stub= "not_std_", df_name = "Fuzzy not standardised"):
today_rev = datetime.now().strftime("%Y%m%d")
#print(Matcher.standardise)
Matcher.standardise = standardise
if Matcher.search_df_not_matched.empty:
print("Nothing to match! At start of preparing run.")
return Matcher
if nnet == False:
diag_shortlist,\
diag_best_match,\
match_results_output,\
results_on_orig_df,\
summary,\
search_address_cols =\
full_fuzzy_match(Matcher.search_df_not_matched.copy(),
Matcher.standardise,
Matcher.search_df_key_field,
Matcher.search_address_cols,
Matcher.search_df_cleaned,
Matcher.search_df_after_stand,
Matcher.search_df_after_full_stand,
Matcher.ref_df_cleaned,
Matcher.ref_df_after_stand,
Matcher.ref_df_after_full_stand,
Matcher.fuzzy_match_limit,
Matcher.fuzzy_scorer_used)
if match_results_output.empty:
print("Match results empty")
Matcher.abort_flag = True
return Matcher
else:
Matcher.diag_shortlist = diag_shortlist
Matcher.diag_best_match = diag_best_match
Matcher.match_results_output = match_results_output
else:
match_results_output,\
results_on_orig_df,\
summary,\
predict_df_nnet =\
full_nn_match(
Matcher.ref_address_cols,
Matcher.search_df_not_matched.copy(),
Matcher.search_address_cols,
Matcher.search_df_key_field,
Matcher.standardise,
Matcher.exported_model[0],
Matcher.matching_variables,
Matcher.text_columns,
Matcher.weights,
Matcher.fuzzy_method,
Matcher.score_cut_off,
Matcher.match_results_output.copy(),
Matcher.filter_to_lambeth_pcodes,
Matcher.model_type,
Matcher.word_to_index,
Matcher.cat_to_idx,
Matcher.device,
Matcher.vocab,
Matcher.labels_list,
Matcher.search_df_cleaned,
Matcher.ref_df_after_stand,
Matcher.search_df_after_stand,
Matcher.search_df_after_full_stand)
if match_results_output.empty:
print("Match results empty")
Matcher.abort_flag = True
return Matcher
else:
Matcher.match_results_output = match_results_output
Matcher.predict_df_nnet = predict_df_nnet
# Save to file
Matcher.results_on_orig_df = results_on_orig_df
Matcher.summary = summary
Matcher.output_summary = create_match_summary(Matcher.match_results_output, df_name = df_name)
Matcher.match_outputs_name = "diagnostics_" + file_stub + today_rev + ".csv"
Matcher.results_orig_df_name = "results_" + file_stub + today_rev + ".csv"
Matcher.match_results_output.to_csv(Matcher.match_outputs_name, index = None)
Matcher.results_on_orig_df.to_csv(Matcher.results_orig_df_name, index = None)
return Matcher
# Overarching fuzzy match function
def full_fuzzy_match(search_df:PandasDataFrame,
standardise:bool,
search_df_key_field:str,
search_address_cols:List[str],
search_df_cleaned:PandasDataFrame,
search_df_after_stand:PandasDataFrame,
search_df_after_full_stand:PandasDataFrame,
ref_df_cleaned:PandasDataFrame,
ref_df_after_stand:PandasDataFrame,
ref_df_after_full_stand:PandasDataFrame,
fuzzy_match_limit:float,
fuzzy_scorer_used:str,
new_join_col:List[str]=["UPRN"],
fuzzy_search_addr_limit:float = 100,
filter_to_lambeth_pcodes:bool=False):
'''
Compare addresses in a 'search address' dataframe with a 'reference address' dataframe by using fuzzy matching from the rapidfuzz package, blocked by postcode and then street.
'''
# Break if search item has length 0
if search_df.empty:
out_error = "Nothing to match! Just started fuzzy match."
print(out_error)
return pd.DataFrame(),pd.DataFrame(),pd.DataFrame(),pd.DataFrame(), out_error,search_address_cols
# If standardise is true, replace relevant variables with standardised versions
if standardise == True:
df_name = "standardised address"
search_df_after_stand = search_df_after_full_stand
ref_df_after_stand = ref_df_after_full_stand
else:
df_name = "non-standardised address"
# RUN WITH POSTCODE AS A BLOCKER #
# Fuzzy match against reference addresses
# Remove rows from ref search series where postcode is not found in the search_df
search_df_after_stand_series = search_df_after_stand.copy().set_index('postcode_search')['search_address_stand'].sort_index()
ref_df_after_stand_series = ref_df_after_stand.copy().set_index('postcode_search')['ref_address_stand'].sort_index()
#print(search_df_after_stand_series.index.tolist())
#print(ref_df_after_stand_series.index.tolist())
ref_df_after_stand_series_checked = ref_df_after_stand_series.copy()[ref_df_after_stand_series.index.isin(search_df_after_stand_series.index.tolist())]
# pd.DataFrame(ref_df_after_stand_series_checked.to_csv("ref_df_after_stand_series_checked.csv"))
if len(ref_df_after_stand_series_checked) == 0:
print("Nothing relevant in reference data to match!")
return pd.DataFrame(), pd.DataFrame(), pd.DataFrame(),pd.DataFrame(),"Nothing relevant in reference data to match!",search_address_cols
# 'matched' is the list for which every single row is searched for in the reference list (the ref_df).
print("Starting the fuzzy match")
tic = time.perf_counter()
results = string_match_by_post_code_multiple(match_address_series = search_df_after_stand_series.copy(),
reference_address_series = ref_df_after_stand_series_checked,
search_limit = fuzzy_search_addr_limit,
scorer_name = fuzzy_scorer_used)
toc = time.perf_counter()
print(f"Performed the fuzzy match in {toc - tic:0.1f} seconds")
# Create result dfs
match_results_output, diag_shortlist, diag_best_match = _create_fuzzy_match_results_output(results, search_df_after_stand, ref_df_cleaned, ref_df_after_stand, fuzzy_match_limit, search_df_cleaned, search_df_key_field, new_join_col, standardise, blocker_col = "Postcode")
match_results_output['match_method'] = "Fuzzy match - postcode"
search_df_not_matched = filter_not_matched(match_results_output, search_df_after_stand, search_df_key_field)
# If nothing left to match, break
if (sum(match_results_output['full_match']==False) == 0) | (sum(match_results_output[match_results_output['full_match']==False]['fuzzy_score'])==0):
print("Nothing left to match!")
summary = create_match_summary(match_results_output, df_name)
if type(search_df) != str:
results_on_orig_df = join_to_orig_df(match_results_output, search_df_cleaned, search_df_key_field, new_join_col)
else: results_on_orig_df = match_results_output
return diag_shortlist, diag_best_match, match_results_output, results_on_orig_df, summary, search_address_cols
# RUN WITH STREET AS A BLOCKER #
### Redo with street as blocker
search_df_after_stand_street = search_df_not_matched.copy()
search_df_after_stand_street['search_address_stand_w_pcode'] = search_df_after_stand_street['search_address_stand'] + " " + search_df_after_stand_street['postcode_search']
ref_df_after_stand['ref_address_stand_w_pcode'] = ref_df_after_stand['ref_address_stand'] + " " + ref_df_after_stand['postcode_search']
search_df_after_stand_street['street']= search_df_after_stand_street['full_address_search'].apply(extract_street_name)
# Exclude non-postal addresses from street-blocked search
search_df_after_stand_street.loc[search_df_after_stand_street['Excluded from search'] == "Excluded - non-postal address", 'street'] = ""
### Create lookup lists
search_df_match_series_street = search_df_after_stand_street.copy().set_index('street')['search_address_stand']
ref_df_after_stand_series_street = ref_df_after_stand.copy().set_index('Street')['ref_address_stand']
# Remove rows where street is not in ref_df df
#index_check = ref_df_after_stand_series_street.index.isin(search_df_match_series_street.index)
#ref_df_after_stand_series_street_checked = ref_df_after_stand_series_street.copy()[index_check == True]
ref_df_after_stand_series_street_checked = ref_df_after_stand_series_street.copy()[ref_df_after_stand_series_street.index.isin(search_df_match_series_street.index.tolist())]
# If nothing left to match, break
if (len(ref_df_after_stand_series_street_checked) == 0) | ((len(search_df_match_series_street) == 0)):
summary = create_match_summary(match_results_output, df_name)
if type(search_df) != str:
results_on_orig_df = join_to_orig_df(match_results_output, search_df_after_stand, search_df_key_field, new_join_col)
else: results_on_orig_df = match_results_output
return diag_shortlist, diag_best_match,\
match_results_output, results_on_orig_df, summary, search_address_cols
print("Starting the fuzzy match with street as blocker")
tic = time.perf_counter()
results_st = string_match_by_post_code_multiple(match_address_series = search_df_match_series_street.copy(),
reference_address_series = ref_df_after_stand_series_street_checked.copy(),
search_limit = fuzzy_search_addr_limit,
scorer_name = fuzzy_scorer_used)
toc = time.perf_counter()
print(f"Performed the fuzzy match in {toc - tic:0.1f} seconds")
match_results_output_st, diag_shortlist_st, diag_best_match_st = _create_fuzzy_match_results_output(results_st, search_df_after_stand_street, ref_df_cleaned, ref_df_after_stand,\
fuzzy_match_limit, search_df_cleaned, search_df_key_field, new_join_col, standardise, blocker_col = "Street")
match_results_output_st['match_method'] = "Fuzzy match - street"
match_results_output_st_out = combine_std_df_remove_dups(match_results_output, match_results_output_st, orig_addr_col = search_df_key_field)
match_results_output = match_results_output_st_out
summary = create_match_summary(match_results_output, df_name)
### Join URPN back onto orig df
if type(search_df) != str:
results_on_orig_df = join_to_orig_df(match_results_output, search_df_cleaned, search_df_key_field, new_join_col)
else: results_on_orig_df = match_results_output
return diag_shortlist, diag_best_match, match_results_output, results_on_orig_df, summary, search_address_cols
# Overarching NN function
def full_nn_match(ref_address_cols:List[str],
search_df:PandasDataFrame,
search_address_cols:List[str],
search_df_key_field:str,
standardise:bool,
exported_model:list,
matching_variables:List[str],
text_columns:List[str],
weights:dict,
fuzzy_method:str,
score_cut_off:float,
match_results:PandasDataFrame,
filter_to_lambeth_pcodes:bool,
model_type:str,
word_to_index:dict,
cat_to_idx:dict,
device:str,
vocab:List[str],
labels_list:List[str],
search_df_cleaned:PandasDataFrame,
ref_df_after_stand:PandasDataFrame,
search_df_after_stand:PandasDataFrame,
search_df_after_full_stand:PandasDataFrame,
new_join_col:List=["UPRN"]):
'''
Use a neural network model to partition 'search addresses' into consituent parts in the format of UK Ordnance Survey Land Property Identifier (LPI) addresses. These address components are compared individually against reference addresses in the same format to give an overall match score using the recordlinkage package.
'''
# Break if search item has length 0
if search_df.empty:
out_error = "Nothing to match!"
print(out_error)
return pd.DataFrame(),pd.DataFrame(),pd.DataFrame(),pd.DataFrame(),pd.DataFrame(), out_error, search_address_cols
# If it is the standardisation step, or you have come from the fuzzy match area
if (standardise == True): # | (run_fuzzy_match == True & standardise == False):
df_name = "standardised address"
search_df_after_stand = search_df_after_full_stand
else:
df_name = "non-standardised address"
print(search_df_after_stand.shape[0])
print(ref_df_after_stand.shape[0])
# Predict on search data to extract LPI address components
#predict_len = len(search_df_cleaned["full_address"])
all_columns = list(search_df_cleaned) # Creates list of all column headers
search_df_cleaned[all_columns] = search_df_cleaned[all_columns].astype(str)
predict_data = list(search_df_after_stand['search_address_stand'])
### Run predict function
print("Starting neural net prediction for " + str(len(predict_data)) + " addresses")
tic = time.perf_counter()
# Determine the number of chunks
num_chunks = math.ceil(len(predict_data) / max_predict_len)
list_out_all = []
predict_df_all = []
for i in range(num_chunks):
print("Starting to predict batch " + str(i+ 1) + " of " + str(num_chunks) + " batches.")
start_idx = i * max_predict_len
end_idx = start_idx + max_predict_len
# Extract the current chunk of data
chunk_data = predict_data[start_idx:end_idx]
# Replace blank strings with a single space
chunk_data = [" " if s in ("") else s for s in chunk_data]
if (model_type == "gru") | (model_type == "lstm"):
list_out, predict_df = full_predict_torch(model=exported_model, model_type=model_type,
input_text=chunk_data, word_to_index=word_to_index,
cat_to_idx=cat_to_idx, device=device)
else:
list_out, predict_df = full_predict_func(chunk_data, exported_model, vocab, labels_list)
# Append the results
list_out_all.extend(list_out)
predict_df_all.append(predict_df)
# Concatenate all the results dataframes
predict_df_all = pd.concat(predict_df_all, ignore_index=True)
toc = time.perf_counter()
print(f"Performed the NN prediction in {toc - tic:0.1f} seconds")
predict_df = post_predict_clean(predict_df=predict_df_all, orig_search_df=search_df_cleaned,
ref_address_cols=ref_address_cols, search_df_key_field=search_df_key_field)
# Score-based matching between neural net predictions and fuzzy match results
# Example of recordlinkage package in use: https://towardsdatascience.com/how-to-perform-fuzzy-dataframe-row-matching-with-recordlinkage-b53ca0cb944c
## Run with Postcode as blocker column
blocker_column = ["Postcode"]
scoresSBM_best_pc, matched_output_SBM_pc = score_based_match(predict_df_search = predict_df.copy(), ref_search = ref_df_after_stand.copy(),
orig_search_df = search_df_after_stand, matching_variables = matching_variables,
text_columns = text_columns, blocker_column = blocker_column, weights = weights, fuzzy_method = fuzzy_method, score_cut_off = score_cut_off, search_df_key_field=search_df_key_field, standardise=standardise, new_join_col=new_join_col)
if matched_output_SBM_pc.empty:
error_message = "Match results empty. Exiting neural net match."
print(error_message)
return pd.DataFrame(),pd.DataFrame(), error_message, predict_df
else:
matched_output_SBM_pc["match_method"] = "Neural net - Postcode"
match_results_output_final_pc = combine_std_df_remove_dups(match_results, matched_output_SBM_pc, orig_addr_col = search_df_key_field)
summary_pc = create_match_summary(match_results_output_final_pc, df_name = "NNet blocked by Postcode " + df_name)
print(summary_pc)
## Run with Street as blocker column
blocker_column = ["Street"]
scoresSBM_best_st, matched_output_SBM_st = score_based_match(predict_df_search = predict_df.copy(), ref_search = ref_df_after_stand.copy(),
orig_search_df = search_df_after_stand, matching_variables = matching_variables,
text_columns = text_columns, blocker_column = blocker_column, weights = weights, fuzzy_method = fuzzy_method, score_cut_off = score_cut_off, search_df_key_field=search_df_key_field, standardise=standardise, new_join_col=new_join_col)
# If no matching pairs are found in the function above then it returns 0 - below we replace these values with the postcode blocker values (which should almost always find at least one pair unless it's a very unusual situation)
if (type(matched_output_SBM_st) == int) | matched_output_SBM_st.empty:
print("Nothing to match for street block")
matched_output_SBM_st = matched_output_SBM_pc
matched_output_SBM_st["match_method"] = "Neural net - Postcode" #+ standard_label
else: matched_output_SBM_st["match_method"] = "Neural net - Street" #+ standard_label
### Join together old match df with new (model) match df
match_results_output_final_st = combine_std_df_remove_dups(match_results_output_final_pc,matched_output_SBM_st, orig_addr_col = search_df_key_field)
summary_street = create_match_summary(match_results_output_final_st, df_name = "NNet blocked by Street " + df_name)
print(summary_street)
# I decided in the end not to use PaoStartNumber as a blocker column. I get only a couple more matches in general for a big increase in processing time
matched_output_SBM_po = matched_output_SBM_st
matched_output_SBM_po["match_method"] = "Neural net - Street" #+ standard_label
match_results_output_final_po = match_results_output_final_st
match_results_output_final_three = match_results_output_final_po
summary_three = create_match_summary(match_results_output_final_three, df_name = "fuzzy and nn model street + postcode " + df_name)
### Join URPN back onto orig df
if type(search_df) != str:
results_on_orig_df = join_to_orig_df(match_results_output_final_three, search_df_after_stand, search_df_key_field, new_join_col)
else: results_on_orig_df = match_results_output_final_three
return match_results_output_final_three, results_on_orig_df, summary_three, predict_df
# Combiner/summary functions
def combine_std_df_remove_dups(df_not_std, df_std, orig_addr_col = "search_orig_address", match_address_series = "full_match", keep_only_duplicated = False):
if (df_not_std.empty) & (df_std.empty):
return df_not_std
combined_std_not_matches = pd.concat([df_not_std, df_std])#, ignore_index=True)
if combined_std_not_matches.empty: #| ~(match_address_series in combined_std_not_matches.columns) | ~(orig_addr_col in combined_std_not_matches.columns):
combined_std_not_matches[match_address_series] = False
if "full_address" in combined_std_not_matches.columns:
combined_std_not_matches[orig_addr_col] = combined_std_not_matches["full_address"]
combined_std_not_matches["fuzzy_score"] = 0
return combined_std_not_matches
combined_std_not_matches = combined_std_not_matches.sort_values([orig_addr_col, match_address_series], ascending=False)
if keep_only_duplicated == True:
combined_std_not_matches = combined_std_not_matches[combined_std_not_matches.duplicated(orig_addr_col)]
combined_std_not_matches_no_dups = combined_std_not_matches.drop_duplicates(orig_addr_col).sort_index()
return combined_std_not_matches_no_dups
def combine_two_matches(OrigMatchClass, NewMatchClass, df_name):
today_rev = datetime.now().strftime("%Y%m%d")
NewMatchClass.match_results_output = combine_std_df_remove_dups(OrigMatchClass.match_results_output, NewMatchClass.match_results_output, orig_addr_col = NewMatchClass.search_df_key_field)
NewMatchClass.results_on_orig_df = combine_std_df_remove_dups(OrigMatchClass.pre_filter_search_df, NewMatchClass.results_on_orig_df, orig_addr_col = NewMatchClass.search_df_key_field, match_address_series = 'Matched with reference address')
# Filter out search results where a match was found
NewMatchClass.pre_filter_search_df = NewMatchClass.results_on_orig_df
found_index = NewMatchClass.results_on_orig_df.loc[NewMatchClass.results_on_orig_df["Matched with reference address"] == True, NewMatchClass.search_df_key_field].astype(int)
#print(found_index)[NewMatchClass.search_df_key_field]
key_field_values = NewMatchClass.search_df_not_matched[NewMatchClass.search_df_key_field].astype(int) # Assuming list conversion is suitable
rows_to_drop = key_field_values[key_field_values.isin(found_index)].tolist()
NewMatchClass.search_df_not_matched = NewMatchClass.search_df_not_matched.loc[~NewMatchClass.search_df_not_matched[NewMatchClass.search_df_key_field].isin(rows_to_drop),:]#.drop(rows_to_drop, axis = 0)
# Filter out rows from NewMatchClass.search_df_cleaned
filtered_rows_to_keep = NewMatchClass.search_df_cleaned[NewMatchClass.search_df_key_field].astype(int).isin(NewMatchClass.search_df_not_matched[NewMatchClass.search_df_key_field].astype(int)).to_list()
NewMatchClass.search_df_cleaned = NewMatchClass.search_df_cleaned.loc[filtered_rows_to_keep,:]#.drop(rows_to_drop, axis = 0)
NewMatchClass.search_df_after_stand = NewMatchClass.search_df_after_stand.loc[filtered_rows_to_keep,:]#.drop(rows_to_drop)
NewMatchClass.search_df_after_full_stand = NewMatchClass.search_df_after_full_stand.loc[filtered_rows_to_keep,:]#.drop(rows_to_drop)
### Create lookup lists
NewMatchClass.search_df_after_stand_series = NewMatchClass.search_df_after_stand.copy().set_index('postcode_search')['search_address_stand'].str.lower().str.strip()
NewMatchClass.search_df_after_stand_series_full_stand = NewMatchClass.search_df_after_full_stand.copy().set_index('postcode_search')['search_address_stand'].str.lower().str.strip()
match_results_output_match_score_is_0 = NewMatchClass.match_results_output[NewMatchClass.match_results_output['fuzzy_score']==0.0][["index", "fuzzy_score"]].drop_duplicates(subset='index')
match_results_output_match_score_is_0["index"] = match_results_output_match_score_is_0["index"].astype(str)
#NewMatchClass.results_on_orig_df["index"] = NewMatchClass.results_on_orig_df["index"].astype(str)
NewMatchClass.results_on_orig_df = NewMatchClass.results_on_orig_df.merge(match_results_output_match_score_is_0, on = "index", how = "left")
NewMatchClass.results_on_orig_df.loc[NewMatchClass.results_on_orig_df["fuzzy_score"] == 0.0, "Excluded from search"] = "Match score is 0"
NewMatchClass.results_on_orig_df = NewMatchClass.results_on_orig_df.drop("fuzzy_score", axis = 1)
# Drop any duplicates, prioritise any matches
NewMatchClass.results_on_orig_df = NewMatchClass.results_on_orig_df.sort_values(by=["index", "Matched with reference address"], ascending=[True,False]).drop_duplicates(subset="index")
NewMatchClass.output_summary = create_match_summary(NewMatchClass.match_results_output, df_name = df_name)
print(NewMatchClass.output_summary)
NewMatchClass.search_df_not_matched = filter_not_matched(NewMatchClass.match_results_output, NewMatchClass.search_df, NewMatchClass.search_df_key_field)
### Rejoin the excluded matches onto the output file
#NewMatchClass.results_on_orig_df = pd.concat([NewMatchClass.results_on_orig_df, NewMatchClass.excluded_df])
NewMatchClass.match_outputs_name = "match_results_output_std_" + today_rev + ".csv" # + NewMatchClass.file_name + "_"
NewMatchClass.results_orig_df_name = "results_on_orig_df_std_" + today_rev + ".csv" # + NewMatchClass.file_name + "_"
# Only keep essential columns
essential_results_cols = [NewMatchClass.search_df_key_field, "Excluded from search", "Matched with reference address", "ref_index", "Reference matched address", "Reference file"]
essential_results_cols.extend(NewMatchClass.new_join_col)
NewMatchClass.match_results_output.to_csv(NewMatchClass.match_outputs_name, index = None)
NewMatchClass.results_on_orig_df[essential_results_cols].to_csv(NewMatchClass.results_orig_df_name, index = None)
return NewMatchClass
def create_match_summary(match_results_output:PandasDataFrame, df_name:str):
# Check if match_results_output is a dictionary-like object and has the key 'full_match'
if not isinstance(match_results_output, dict) or 'full_match' not in match_results_output or (len(match_results_output) == 0):
"Nothing in match_results_output"
full_match_count = 0
match_fail_count = 0
records_attempted = 0
dataset_length = 0
records_not_attempted = 0
match_rate = 0
match_fail_count_without_excluded = 0
match_fail_rate = 0
not_attempted_rate = 0
''' Create a summary paragraph '''
full_match_count = match_results_output['full_match'][match_results_output['full_match'] == True].count()
match_fail_count = match_results_output['full_match'][match_results_output['full_match'] == False].count()
records_attempted = int(sum((match_results_output['fuzzy_score']!=0.0) & ~(match_results_output['fuzzy_score'].isna())))
dataset_length = len(match_results_output["full_match"])
records_not_attempted = int(dataset_length - records_attempted)
match_rate = str(round((full_match_count / dataset_length) * 100,1))
match_fail_count_without_excluded = match_fail_count - records_not_attempted
match_fail_rate = str(round(((match_fail_count_without_excluded) / dataset_length) * 100,1))
not_attempted_rate = str(round((records_not_attempted / dataset_length) * 100,1))
summary = ("For the " + df_name + " dataset (" + str(dataset_length) + " records), the fuzzy matching algorithm successfully matched " + str(full_match_count) +
" records (" + match_rate + "%). The algorithm could not attempt to match " + str(records_not_attempted) +
" records (" + not_attempted_rate + "%). There are " + str(match_fail_count_without_excluded) + " records left to potentially match.")
return summary