Spaces:
Runtime error
Runtime error
scontess
commited on
Commit
Β·
b123fe6
1
Parent(s):
8438089
dopopull
Browse files- src/streamlit_app.py +6 -9
src/streamlit_app.py
CHANGED
@@ -50,15 +50,17 @@ X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_st
|
|
50 |
st.write(f"π **Training:** {X_train.shape[0]} immagini")
|
51 |
st.write(f"π **Validation:** {X_val.shape[0]} immagini")
|
52 |
|
53 |
-
# π
|
|
|
|
|
|
|
54 |
history = None # π Inizializza history
|
55 |
|
56 |
-
if os.path.exists("Silva.h5"):
|
57 |
model = load_model("Silva.h5")
|
58 |
st.write("β
Modello `Silva.h5` caricato, nessun nuovo training necessario!")
|
59 |
else:
|
60 |
-
st.write("π Training in corso
|
61 |
-
|
62 |
base_model = VGG16(weights="imagenet", include_top=False, input_shape=(64, 64, 3))
|
63 |
for layer in base_model.layers:
|
64 |
layer.trainable = False
|
@@ -71,12 +73,7 @@ else:
|
|
71 |
model = Model(inputs=base_model.input, outputs=output)
|
72 |
model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
|
73 |
|
74 |
-
# π Training con monitoraggio validazione
|
75 |
history = model.fit(X_train, y_train, epochs=10, validation_data=(X_val, y_val))
|
76 |
-
|
77 |
-
st.write("β
Addestramento completato!")
|
78 |
-
|
79 |
-
# π Salvare il modello
|
80 |
model.save("Silva.h5")
|
81 |
st.write("β
Modello salvato come `Silva.h5`!")
|
82 |
|
|
|
50 |
st.write(f"π **Training:** {X_train.shape[0]} immagini")
|
51 |
st.write(f"π **Validation:** {X_val.shape[0]} immagini")
|
52 |
|
53 |
+
# π Checkbox per decidere se rifare il training
|
54 |
+
force_training = st.checkbox("π Rifai il training anche se Silva.h5 esiste")
|
55 |
+
|
56 |
+
# π Caricamento o training del modello
|
57 |
history = None # π Inizializza history
|
58 |
|
59 |
+
if os.path.exists("Silva.h5") and not force_training:
|
60 |
model = load_model("Silva.h5")
|
61 |
st.write("β
Modello `Silva.h5` caricato, nessun nuovo training necessario!")
|
62 |
else:
|
63 |
+
st.write("π Training in corso...")
|
|
|
64 |
base_model = VGG16(weights="imagenet", include_top=False, input_shape=(64, 64, 3))
|
65 |
for layer in base_model.layers:
|
66 |
layer.trainable = False
|
|
|
73 |
model = Model(inputs=base_model.input, outputs=output)
|
74 |
model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
|
75 |
|
|
|
76 |
history = model.fit(X_train, y_train, epochs=10, validation_data=(X_val, y_val))
|
|
|
|
|
|
|
|
|
77 |
model.save("Silva.h5")
|
78 |
st.write("β
Modello salvato come `Silva.h5`!")
|
79 |
|