choko / app.py
schoolkithub's picture
Update app.py
d808ec0 verified
raw
history blame
6.89 kB
import os
import gradio as gr
import requests
import pandas as pd
from huggingface_hub import InferenceClient
from duckduckgo_search import DDGS
from datasets import load_dataset
import wikipediaapi
from llama_index.core import VectorStoreIndex, Document, StorageContext, load_index_from_storage
from llama_index.llms.huggingface import HuggingFaceLLM
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
HF_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACEHUB_API_TOKEN")
llm_model_id = "deepseek-ai/DeepSeek-V2"
llm_fallback_id = "mistralai/Mistral-7B-Instruct-v0.2"
# Setup HF LLM client
hf_client = InferenceClient(llm_model_id, token=HF_TOKEN)
hf_fallback = InferenceClient(llm_fallback_id, token=HF_TOKEN)
# Wikipedia API with user agent
wiki_api = wikipediaapi.Wikipedia(
language='en',
user_agent='SmartAgent/1.0 ([email protected])'
)
# Build or load LlamaIndex for fast retrieval (optional, for small Wikipedia sample)
try:
wiki_dataset = load_dataset("wikipedia", "20220301.en", split="train[:5000]", trust_remote_code=True)
docs = [Document(text=doc['text']) for doc in wiki_dataset]
index = VectorStoreIndex.from_documents(docs)
except Exception as e:
index = None
def duckduckgo_search(query):
with DDGS() as ddgs:
results = [r for r in ddgs.text(query, max_results=3)]
return "\n".join([r["body"] for r in results if r.get("body")]) or "No results found."
def wikipedia_search(query):
page = wiki_api.page(query)
return page.summary if page.exists() else None
def index_search(query):
if index is None:
return None
res = index.as_query_engine().query(query)
return str(res) if res else None
def handle_excel(file_url):
# Download and sum food (not drinks)
try:
fname = "tmp.xlsx"
r = requests.get(file_url)
with open(fname, "wb") as f:
f.write(r.content)
df = pd.read_excel(fname)
# Assume drinks have 'drink' or 'beverage' in a column called 'Item' or 'Category'
if "Item" in df.columns:
food_df = df[~df["Item"].str.contains("drink|beverage", case=False, na=False)]
total = food_df["Total"].sum()
return f"${total:.2f}"
if "Category" in df.columns:
food_df = df[df["Category"].str.lower() == "food"]
total = food_df["Total"].sum()
return f"${total:.2f}"
return "File parsed but could not find food sales."
except Exception as e:
return f"Excel error: {e}"
class SmartAgent:
def __init__(self):
pass
def __call__(self, question: str) -> str:
q_lower = question.lower()
# DuckDuckGo for current events/recent/live
if any(term in q_lower for term in ["current", "latest", "2024", "2025", "who is the president", "recent", "live"]):
return duckduckgo_search(question)
# Wikipedia summary
wiki_result = wikipedia_search(question)
if wiki_result:
return wiki_result
# LlamaIndex retrieval
rag_result = index_search(question)
if rag_result:
return rag_result
# LLM generation
try:
resp = hf_client.text_generation(question, max_new_tokens=256)
return resp
except Exception:
try:
resp = hf_fallback.text_generation(question, max_new_tokens=256)
return resp
except Exception as e:
return f"HF LLM error: {e}"
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
print(f"User logged in: {username}")
else:
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
agent = SmartAgent()
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
file_url = item.get("file_url", None)
if not task_id or not question_text:
continue
# Handle Excel task
if file_url and ("excel" in question_text.lower() or "file" in question_text.lower()):
submitted_answer = handle_excel(file_url)
else:
submitted_answer = agent(question_text)
# Final answer extraction/formatting if needed (TODO: Add regex/extract logic)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Smart Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Clone this space, define your agent logic, tools, packages, etc.
2. Log in to Hugging Face.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
demo.launch(debug=True, share=False)