scholarly360 commited on
Commit
0db862b
·
1 Parent(s): 054de57

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +287 -0
app.py ADDED
@@ -0,0 +1,287 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from annotated_text import annotated_text, annotation
3
+ import fitz
4
+ import os
5
+ import chromadb
6
+ import uuid
7
+ from pathlib import Path
8
+ import os
9
+ os.environ['OPENAI_API_KEY'] = os.environ['OPEN_API_KEY']
10
+ st.title("Contracts Multiple File Search ")
11
+
12
+ from langchain.retrievers import BM25Retriever, EnsembleRetriever
13
+ from langchain.schema import Document
14
+ from langchain.vectorstores import Chroma
15
+ from langchain.embeddings import HuggingFaceEmbeddings
16
+ embedding = HuggingFaceEmbeddings(model_name='BAAI/bge-base-en-v1.5')
17
+
18
+ import spacy
19
+ # Load the English model from SpaCy
20
+ nlp = spacy.load("en_core_web_md")
21
+
22
+ def util_upload_file_and_return_list_docs(uploaded_file):
23
+ #util_del_cwd()
24
+ save_path = Path(os.getcwd(), uploaded_file.name)
25
+ with open(save_path, mode='wb') as w:
26
+ w.write(uploaded_file.getvalue())
27
+ print('save_path:', save_path)
28
+ docs = fitz.open(save_path)
29
+ return(docs, save_path)
30
+ #### Helper Functions to Split using Rolling Window (recomm : use smaller rolling window )
31
+ def split_txt_file_synthetic_sentence_rolling(ctxt, sentence_size_in_chars, sliding_size_in_chars,debug=False):
32
+ sliding_size_in_chars = sentence_size_in_chars - sliding_size_in_chars
33
+ pos_start = 0
34
+ pos_end = len(ctxt)
35
+ final_return = []
36
+ if(debug):
37
+ print('pos_start : ',pos_start)
38
+ print('pos_end : ',pos_end)
39
+ if(pos_end<sentence_size_in_chars):
40
+ return([{'section_org_text':ctxt[pos_start:pos_end],'section_char_start':pos_start,'section_char_end':pos_end}])
41
+ if(sentence_size_in_chars<sliding_size_in_chars):
42
+ return(None)
43
+ stop_condition = False
44
+ start = pos_start
45
+ end = start + sentence_size_in_chars
46
+ mydict = {}
47
+ mydict['section_org_text'] = ctxt[start:end]
48
+ mydict['section_char_start'] = start
49
+ mydict['section_char_end'] = end
50
+ final_return.append(mydict)
51
+ #### First Time ENDS
52
+ while(stop_condition==False):
53
+ start = end - sliding_size_in_chars
54
+ end = start + sentence_size_in_chars
55
+ if(end>pos_end):
56
+ if(start<pos_end):
57
+ end = pos_end
58
+ mydict = {}
59
+ mydict['section_org_text'] = ctxt[start:end]
60
+ mydict['section_char_start'] = start
61
+ mydict['section_char_end'] = end
62
+ final_return.append(mydict)
63
+ stop_condition=True
64
+ else:
65
+ stop_condition=True
66
+ else:
67
+ mydict = {}
68
+ mydict['section_org_text'] = ctxt[start:end]
69
+ mydict['section_char_start'] = start
70
+ mydict['section_char_end'] = end
71
+ final_return.append(mydict)
72
+ if(debug):
73
+ print('start : ', start)
74
+ print('end : ', end)
75
+ return(final_return)
76
+ ### helper to make string out of iw_status
77
+ # def util_get_list_page_and_passage(docs):
78
+ # page_documents = []
79
+ # passage_documents = []
80
+ # for txt_index, txt_page in enumerate(docs):
81
+ # page_document = txt_page.get_text()##.encode("utf8") # get plain text (is in UTF-8)
82
+ # page_documents.append(page_document)
83
+ # sections = split_txt_file_synthetic_sentence_rolling(page_document,700,200)
84
+ # for sub_sub_index, sub_sub_item in enumerate(sections):
85
+ # sub_text=sub_sub_item['section_org_text']
86
+ # passage_document = Document(page_content=sub_text, metadata={"page_index": txt_index})
87
+ # passage_documents.append(passage_document)
88
+ # return(page_documents,passage_documents)
89
+
90
+ def split_into_sentences_with_offsets(text):
91
+ """
92
+ Splits a paragraph into sentences and returns them along with their start and end offsets.
93
+ :param text: The input text to be split into sentences.
94
+ :return: A list of tuples, each containing a sentence and its start and end offsets.
95
+ """
96
+ doc = nlp(text)
97
+ return [(sent.text, sent.start_char, sent.end_char) for sent in doc.sents]
98
+
99
+ def util_get_list_page_and_passage(docs):
100
+ page_documents = []
101
+ passage_documents = []
102
+ for txt_index, txt_page in enumerate(docs):
103
+ page_document = txt_page.get_text()##.encode("utf8") # get plain text (is in UTF-8)
104
+ page_documents.append(page_document)
105
+ sections = split_into_sentences_with_offsets(page_document)
106
+ for sub_sub_index, sub_sub_item in enumerate(sections):
107
+ sub_text=sub_sub_item[0]
108
+ passage_document = Document(page_content=sub_text, metadata={"page_index": txt_index})
109
+ passage_documents.append(passage_document)
110
+ return(page_documents,passage_documents)
111
+
112
+ # def util_index_chromadb_passages():
113
+ # ##### PROCESSING
114
+ # # create client and a new collection
115
+ # collection_name = str(uuid.uuid4().hex)
116
+ # chroma_client = chromadb.EphemeralClient()
117
+ # chroma_collection = chroma_client.get_or_create_collection(collection_name)
118
+ # # define embedding function
119
+ # embed_model = LangchainEmbedding(HuggingFaceEmbeddings(model_name="BAAI/bge-small-en"))
120
+ # vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
121
+ # return(chroma_client,chroma_collection,collection_name,vector_store,embed_model)
122
+
123
+ def util_get_only_content_inside_loop(page_no,page_documents):
124
+ for index, item in enumerate(page_documents):
125
+ if(page_documents[index].metadata['txt_page_index']==page_no):
126
+ return(page_documents[index].get_content())
127
+ return(None)
128
+ # def util_get_list_pageno_and_contents(page_documents,passage_documents,passage_nodes):
129
+ # ''' page no starts with index 1 '''
130
+ # return_value = []
131
+ # for index, item in enumerate(passage_nodes):
132
+ # page_no = passage_nodes[index].metadata['txt_page_index']
133
+ # page_content = util_get_only_content_inside_loop(page_no,page_documents)
134
+ # return_value.append((page_no+1,page_content))
135
+ # return(return_value)
136
+
137
+ def util_get_list_pageno_and_contents(some_query_passage, page_documents,passage_documents,passage_nodes):
138
+ ''' page no starts with index 1 '''
139
+
140
+ return_value = []
141
+
142
+ rescore = reranker.compute_score([[some_query_passage , x.page_content] for x in passage_nodes])
143
+ print('rescore ' , rescore)
144
+ print(rescore)
145
+ max_pos_index = rescore.index(max(rescore))
146
+ print("Maximum Index position: ",max_pos_index)
147
+ print(passage_nodes[max_pos_index].page_content)
148
+
149
+ #Document(page_content=sub_text, metadata={"page_index": txt_index})
150
+
151
+
152
+ for index, item in enumerate(passage_nodes):
153
+ page_no = passage_nodes[index].metadata['page_index']
154
+ page_content = page_documents[page_no]
155
+ if(index==max_pos_index):
156
+ return_value.append((page_no+1,page_content))
157
+ return(passage_nodes[max_pos_index].page_content, return_value)
158
+
159
+ # # def util_openai_extract_entity(example_passage, example_entity, page_content):
160
+ # # import openai
161
+ # # openai.api_key = os.environ['OPENAI_API_KEY']
162
+
163
+ # # content = """Find the Entity based on Text . Return empty string if Entity does not exists. Here is one example below
164
+ # # Text: """ + example_passage + """
165
+ # # Entity: """ + example_entity + """
166
+
167
+ # # Text: """ + page_content + """
168
+ # # Entity: """
169
+
170
+ # # return_value = openai.ChatCompletion.create(model="gpt-4",temperature=0.0001,messages=[{"role": "user", "content": content},])
171
+ # # return(str(return_value['choices'][0]['message']['content']))
172
+ def util_openai_extract_clause(example_prompt, page_content):
173
+ import openai
174
+ openai.api_key = os.environ['OPENAI_API_KEY']
175
+ content = example_prompt
176
+ content = content + "\n Answer precisely; do not add anything extra, and try to locate the answer in the below context \n context: "
177
+ return_value = openai.ChatCompletion.create(model="gpt-3.5-turbo",temperature=0.0001,messages=[{"role": "user", "content": content + "\n" + page_content},])
178
+ return(str(return_value['choices'][0]['message']['content']))
179
+
180
+
181
+ def util_openai_hyde(example_prompt):
182
+ import openai
183
+ openai.api_key = os.environ['OPENAI_API_KEY']
184
+ content = example_prompt
185
+ return_value = openai.ChatCompletion.create(model="gpt-3.5-turbo",temperature=0.0001,messages=[
186
+ {"role": "system", "content": "You are a legal contract lawyer. generate a summary from below text " + "\n"},
187
+ {"role": "user", "content": example_prompt + "\n"},
188
+
189
+ ]
190
+ )
191
+ return(str(return_value['choices'][0]['message']['content']))
192
+
193
+
194
+ def util_openai_format (example_passage, page_content):
195
+ '''
196
+ annotated_text(" ",annotation("ENTITY : ", str(page_no)),)
197
+ '''
198
+ if(True):
199
+ found_value = util_openai_extract_clause(example_passage, page_content)
200
+ if(len(found_value)>0):
201
+ found_value = found_value.strip()
202
+ first_index = page_content.find(found_value)
203
+ if(first_index!=-1):
204
+ print('first_index : ',first_index)
205
+ print('found_value : ',found_value)
206
+ return(annotated_text(page_content[0:first_index-1],annotation(found_value, " FOUND ENTITY "),page_content[first_index+len(found_value):]))
207
+ return(annotated_text(page_content))
208
+ def util_openai_modify_prompt(example_prompt, page_content):
209
+ import openai
210
+ openai.api_key = os.environ['OPENAI_API_KEY']
211
+ my_prompt = """Expand the original Query to show exact resuls for extraction\n
212
+ Query: """ + example_prompt # + """\nDocument: """ + page_content + """ """
213
+ return_value = openai.ChatCompletion.create(model="gpt-4",temperature=0.0001,messages=[{"role": "user", "content": my_prompt},])
214
+ return(str(return_value['choices'][0]['message']['content']))
215
+
216
+ # def create_bm25_page_rank(page_list_retrieve, page_query):
217
+ # """ page_corpus : array of page text , page_query is user query """
218
+ # from operator import itemgetter
219
+ # from rank_bm25 import BM25Okapi
220
+ # tokenized_corpus = [doc.split(" ") for x, doc in page_list_retrieve]
221
+ # tokenized_query = page_query.split(" ")
222
+ # bm25 = BM25Okapi(tokenized_corpus)
223
+ # doc_scores = bm25.get_scores(tokenized_query).tolist()
224
+ # tmp_list = []
225
+ # for index, item in enumerate(page_list_retrieve):
226
+ # tmp_list.append((item[0], item[1],doc_scores[index]))
227
+ # tmp_list = sorted(tmp_list, key=itemgetter(2), reverse=True)
228
+ # return(tmp_list)
229
+
230
+ page_documents = []
231
+ passage_documents = []
232
+
233
+ with st.form("my_form"):
234
+ multi = '''1. Download and Upload Multiple contracts
235
+
236
+ e.g. https://www.barc.gov.in/tenders/GCC-LPS.pdf
237
+
238
+ e.g. https://www.montrosecounty.net/DocumentCenter/View/823/Sample-Construction-Contract
239
+ '''
240
+ st.markdown(multi)
241
+ multi = '''2. Insert Query to search or find similar language '''
242
+ st.markdown(multi)
243
+ multi = '''3. Press Index.'''
244
+ st.markdown(multi)
245
+ multi = '''
246
+ ** Attempt is made for appropriate page and passage retrieval ** \n
247
+ '''
248
+ st.markdown(multi)
249
+ uploaded_file = st.file_uploader("Choose a file")
250
+ if uploaded_file is not None:
251
+ docs, save_path = util_upload_file_and_return_list_docs(uploaded_file)
252
+ page_documents , passage_documents = util_get_list_page_and_passage(docs)
253
+ print('len(page_documents) len(passage_documents ', len(page_documents), len(passage_documents))
254
+ single_example_passage = st.text_area('Enter Query Here',"What is Governing Law ")
255
+ #hyde_passage = util_openai_hyde(single_example_passage)
256
+ #print("HYDE :: ", hyde_passage)
257
+
258
+ submitted = st.form_submit_button("Index and Calculate")
259
+ if submitted and (uploaded_file is not None):
260
+ bm25_retriever = BM25Retriever.from_documents(passage_documents)
261
+ bm25_retriever.k = 2
262
+ chroma_vectorstore = Chroma.from_documents(passage_documents, embedding)
263
+ chroma_retriever = chroma_vectorstore.as_retriever(search_kwargs={"k": 2})
264
+ #initialize the ensemble retriever
265
+ ensemble_retriever = EnsembleRetriever(retrievers=[bm25_retriever, chroma_retriever],weights=[0.25, 0.75])
266
+ passage_nodes = ensemble_retriever.get_relevant_documents(single_example_passage)
267
+ print('len(passage_nodes):', len(passage_nodes))
268
+ ### From Passage to PAGE
269
+
270
+ found_passage, page_list_retrieve = util_get_list_pageno_and_contents(single_example_passage, page_documents,passage_documents,passage_nodes)
271
+ print('len(page_list_retrieve):', len(page_list_retrieve))
272
+ if(len(page_list_retrieve)>0):
273
+ page_list_retrieve = list(set(page_list_retrieve))
274
+ for iindex in page_list_retrieve:
275
+ page_no = iindex[0]
276
+ page_content = iindex[1]
277
+ annotated_text(" ",annotation("RELEVANT PAGENO : ", str(page_no), font_family="Comic Sans MS", border="2px dashed red"),)
278
+ util_openai_format(single_example_passage, page_content)
279
+ #st.write('Modified Prompt :: ')
280
+ annotated_text(" ",annotation("RELEVANT PASSAGE : ", "", font_family="Comic Sans MS", border="2px dashed red"),)
281
+ st.write(found_passage)
282
+ # util_del_file(save_path)
283
+ # chroma_client.delete_collection(name=collection_name)
284
+ pchroma_client = chromadb.Client()
285
+ for citem in pchroma_client.list_collections():
286
+ print(citem.name)
287
+