_base_ = [ './datasets/hsi_detection.py', '../_base_/default_runtime.py' ] # fp16 = dict(loss_scale=512.) # pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth' # noqa num_levels = 2 in_channels = 30 embed_dims =256 # embed_dims256 model = dict( type='DINO', num_queries=900, # num_matching_queries 900 with_box_refine=True, as_two_stage=True, num_feature_levels=num_levels, candidate_bboxes_size = 0.01, scale_gt_bboxes_size = 0,# new parament for point detection data_preprocessor=dict( type='HSIDetDataPreprocessor'), backbone=dict( type='No_backbone_ST', in_channels=in_channels, embed_dims=embed_dims, patch_size=(1,), # Please only add indices that would be used # in FPN, otherwise some parameter will not be used num_levels =num_levels ), encoder=dict( num_layers=6, layer_cfg=dict( self_attn_cfg=dict(embed_dims=embed_dims, num_levels=num_levels,num_points=4, #local_attn_type ='initial_version', dropout=0.0), # 0.1 for DeformDETR ffn_cfg=dict( embed_dims=embed_dims, feedforward_channels=embed_dims*8, # 1024 for DeformDETR ffn_drop=0.0))), # 0.1 for DeformDETR decoder=dict( num_layers=6, return_intermediate=True, layer_cfg=dict( self_attn_cfg=dict(embed_dims=embed_dims, num_heads=8, dropout=0.0), # 0.1 for DeformDETR cross_attn_cfg=dict(embed_dims=embed_dims, num_levels=num_levels, num_points=4, #local_attn_type = 'initial_version', dropout=0.0), # 0.1 for DeformDETR ffn_cfg=dict( embed_dims=embed_dims, feedforward_channels=embed_dims*8, # 1024 for DeformDETR 2048 for dino ffn_drop=0.0)), # 0.1 for DeformDETR norm_cfg=dict(type='LN') post_norm_cfg=None), positional_encoding=dict( num_feats=embed_dims//2, normalize=True, offset=0.0, # -0.5 for DeformDETR temperature=20), # 10000 for DeformDETR bbox_head=dict( type='DINOHead', num_classes=8, sync_cls_avg_factor=True, pre_bboxes_round=True, # new parament for point detection loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), # 2.0 in DeformDETR loss_bbox=dict(type='L1Loss', loss_weight=5.0), loss_iou=dict(type='GIoULoss', loss_weight=2.0)), dn_cfg=dict( # TODO: Move to model.train_cfg ? label_noise_scale=0.5, # 0.5 box_noise_scale=1, # 0.4 for DN-DETR 1 group_cfg=dict(dynamic=True, num_groups=None, num_dn_queries=100)), # TODO: half num_dn_queries # training and testing settings train_cfg=dict( assigner=dict( type='HungarianAssigner', match_costs=[ dict(type='FocalLossCost', weight=2.0), dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'), dict(type='IoUCost', iou_mode='giou', weight=2.0) ])), test_cfg=dict(max_per_img=300)) # 100 for DeformDETR # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict( type='AdamW', lr=0.0001, # 0.0002 for DeformDETR weight_decay=0.0001), clip_grad=dict(max_norm=0.1, norm_type=2), paramwise_cfg=dict(custom_keys={'backbone': dict(lr_mult=0.1)}) ) # custom_keys contains sampling_offsets and reference_points in DeformDETR # noqa # learning policy max_epochs = 12 train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=12) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') param_scheduler = [ dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[11], gamma=0.1) ] # train_dataloader = dict( # batch_size=4,) # test_dataloader = dict( # batch_size=4,) # # # NOTE: `auto_scale_lr` is for automatically scaling LR, # # USER SHOULD NOT CHANGE ITS VALUES. # # base_batch_size = (8 GPUs) x (2 samples per GPU) # auto_scale_lr = dict(base_batch_size=4) # auto_scale_lr = dict(base_batch_size=4) auto_scale_lr = dict(base_batch_size=4)